Beyond Deshielding: NMR Evidence of Shielding in Hydridic and Protonic Hydrogen Bonds
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40741729
PubMed Central
PMC12355688
DOI
10.1021/acs.jctc.5c00870
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The red shift of the X-H stretching frequency, with a significant increase in intensity of the corresponding spectral band and a downfield chemical shift of hydrogen (deshielding) in nuclear magnetic resonance (NMR) spectroscopy, has traditionally been used as a criterion for identifying X-H···Y hydrogen bonds (HBs) where X is the hydrogen donor and Y is the acceptor. However, over the past two decades, it has become evident that certain HBs can exhibit a blue shift in the X-H stretching frequency and may also show a decrease in IR intensity, diverging from classical expectations. In this study, we investigate a wide array of HBs, encompassing both red-shifted and blue-shifted systems, as well as protonic and hydridic HB systems. We focus on understanding the underlying electronic conditions behind the reverse chemical shift effects─upfield shifts (shielding) upon HB formation, challenging the view that hydrogen bonding (H-bonding) typically leads to deshielding. We employ state-of-the-art quantum chemical methods, integrating computed NMR shielding tensors and electron deformation density, in combination with experimental NMR, to probe that phenomenon. The computational findings are thoroughly validated against experimental results. Our research confirms that shielding is also possible upon HB formation, thereby broadening the conceptual framework of H-bonding.
See more in PubMed
Driver M. D., Williamson M. J., Cook J. L., Hunter C. A.. Functional group interaction profiles: a general treatment of solvent effects on non-covalent interactions. Chem. Sci. 2020;11:4456–4466. doi: 10.1039/D0SC01288B. PubMed DOI PMC
Cook J. L., Hunter C. A., Low C. M. R., Perez-Velasco A., Vinter J. G.. Solvent Effects on Hydrogen Bonding. Angew. Chem., Int. Ed. 2007;46:3706–3709. doi: 10.1002/anie.200604966. PubMed DOI
Robertson C. C., Wright J. S., Carrington E. J., Perutz R. N., Hunter C. A., Brammer L.. Hydrogen bonding vs. halogen bonding: the solvent decides. Chem. Sci. 2017;8:5392–5398. doi: 10.1039/C7SC01801K. PubMed DOI PMC
Hunter C. A.. Quantifying Intermolecular Interactions: Guidelines for the Molecular Recognition Toolbox. Angew. Chem., Int. Ed. 2004;43:5310–5324. doi: 10.1002/anie.200301739. PubMed DOI
Dominelli-Whiteley N., Brown J. J., Muchowska K. B., Mati I. K., Adam C., Hubbard T. A., Elmi A., Brown A. J., Bell I. A. W., Cockroft S. L.. Strong short-range cooperativity in hydrogen-bond chains. Angew. Chem., Int. Ed. 2017;129:7766–7770. doi: 10.1002/ange.201703757. PubMed DOI PMC
Manna D., Lo R., Vacek J., Miriyala V. M., Bouř P., Wu T., Osifová Z., Nachtigallová D., Dračínský M., Hobza P.. The stability of hydrogen-bonded ion-pair complexes unexpectedly increases with increasing solvent polarity. Angew. Chem., Int. Ed. 2024;63(20):e202403218. doi: 10.1002/anie.202403218. PubMed DOI
Lo R., Mašínová A., Lamanec M., Nachtigallová D., Hobza P.. The unusual stability of H-bonded complexes in solvent caused by greater solvation energy of complex compared to those of isolated fragments. J. Comput. Chem. 2023;44:329–333. doi: 10.1002/jcc.26928. PubMed DOI
Meredith N. Y., Borsley S., Smolyar I. V., Nichol G. S., Baker C. M., Ling K. B., Cockroft S. L.. Dissecting solvent effects on hydrogen bonding. Angew. Chem., Int. Ed. 2022;61(30):e202206604. doi: 10.1002/anie.202206604. PubMed DOI PMC
Iddon B., Hunter C. A.. Solvation-enhanced salt bridges. J. Am. Chem. Soc. 2024;146(41):28580–28588. doi: 10.1021/jacs.4c11869. PubMed DOI PMC
Soloviev D. O., Hanna F. E., Misuraca M. C., Hunter C. A.. H-bond cooperativity: polarisation effects on secondary amides. Chem. Sci. 2022;13:11863–11868. doi: 10.1039/D2SC04271A. PubMed DOI PMC
Trevisan L., Bond A. D., Hunter C. A.. Quantitative measurement of cooperativity in h-bonded networks. J. Am. Chem. Soc. 2022;144:19499–19507. doi: 10.1021/jacs.2c08120. PubMed DOI PMC
Lo R., Manna D., Vacek J., Bouř P., Wu T., Osifová Z., Socha O., Dračínský M., Hobza P.. Striking impact of solvent polarity on the strength of hydrogen-bonded complexes: a nexus between theory and experiment. Angew. Chem., Int. Ed. 2025;64(12):e202422594. doi: 10.1002/anie.202422594. PubMed DOI PMC
McNaught, A. D. ; Wilkinson, A. . Compendium of Chemical Terminology; Blackwell Scientific Publications: Oxford, 1997.
Arunan E., Desiraju G. R., Klein R. A., Sadlej J., Scheiner S., Alkorta I., Clary D. C., Crabtree R. H., Dannenberg J. J., Hobza P., Kjaergaard H. G., Legon A. C., Mennucci B., Nesbitt D. J.. Defining the hydrogen bond: An account (IUPAC Technical Report) Pure Appl. Chem. 2011;83:1619–1636. doi: 10.1351/PAC-REP-10-01-01. DOI
Pimentel, G. C. ; McClellan, A. L. . The Hydrogen Bond; W. H. Freeman and Co.: San Francisco, 1960.
Hobza P., Havlas Z.. Blue-Shifting Hydrogen Bonds. Chem. Rev. 2000;100:4253–4264. doi: 10.1021/cr990050q. PubMed DOI
Delanoye S. N., Herrebout W. A., Van der Veken B. J.. Blue Shifting Hydrogen Bonds in the Complexes of Chlorofluoro Haloforms with Acetone-d6 and Oxirane-d4 . J. Am. Chem. Soc. 2002;124:11854–11855. doi: 10.1021/ja027610e. PubMed DOI
Van der Veken B. J., Herrebout W. A., Szostak R., Shchepkin D. N., Havlas Z., Hobza P.. The Nature of Improper, Blue-Shifting Hydrogen Bonding Verified Experimentally. J. Am. Chem. Soc. 2001;123:12290–12293. doi: 10.1021/ja010915t. PubMed DOI
Civiš S., Lamanec M., Špirko V., Kubišta J., Špet’ko M., Hobza P.. Hydrogen bonding with hydridic hydrogenexperimental low-temperature IR and computational study: Is a revised definition of hydrogen bonding appropriate? J. Am. Chem. Soc. 2023;145:8550–8559. doi: 10.1021/jacs.3c00802. PubMed DOI PMC
Lamanec M., Civiš S., Hobza P.. On the similar spectral manifestations of protonic and hydridic hydrogen bonds despite their different origin. Commun. Chem. 2024;7(1):254. doi: 10.1038/s42004-024-01334-9. PubMed DOI PMC
Lamanec M., Zienertová J., Špet́ko M., Nachtigallová D., Hobza P.. Similarities and differences of hydridic and protonic hydrogen bonding. ChemPhyschem. 2024;25(17):e202400403. doi: 10.1002/cphc.202400403. PubMed DOI
Grabowski S. J., Sokalski W. A., Leszczynski J.. Hydride bondingAb initio studies of BeH2. Li+, BeH2. Na+ and BeH2. Mg2+ model systems. Chem. Phys. Lett. 2006;422:334–339. doi: 10.1016/j.cplett.2006.01.120. DOI
Rozas I., Alkorta I., Elguero J.. Inverse hydrogen-bonded complexes. J. Phys. Chem. A. 1997;101:4236–4244. doi: 10.1021/jp963943k. DOI
Jabłoński M.. Binding of X–H to the lone-pair vacancy: Charge-inverted hydrogen bond. Chem. Phys. Lett. 2009;477:374–376. doi: 10.1016/j.cplett.2009.07.009. DOI
Dračínský M.. The chemical bond: The perspective of NMR spectroscopy. Annu. Rep. NMR Spectrosc. 2017;90:1–40. doi: 10.1016/bs.arnmr.2016.07.001. DOI
Dingley A. J., Grzesiek S.. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J. Am. Chem. Soc. 1998;120:8293–8297. doi: 10.1021/ja981513x. DOI
Isaacs E. D., Shukla A., Platzman P. M., Hamann D. R., Barbiellini B., Tulk C. A.. Covalency of the hydrogen bond in ice: A direct x-ray measurement. Phys. Rev. Lett. 1999;82:600–603. doi: 10.1103/PhysRevLett.82.600. DOI
Pecul M., Leszczynski J., Sadlej J.. Comprehensive ab initio studies of nuclear magnetic resonance shielding and coupling constants in XH···O hydrogen-bonded complexes of simple organic molecules. J. Chem. Phys. 2000;112:7930–7938. doi: 10.1063/1.481394. DOI
Hobza P., Špirko V., Havlas Z., Buchhold K., Reimann B., Barth H. D., Brutschy B.. Anti-hydrogen bond between chloroform and fluorobenzene. Chem. Phys. Lett. 1999;299:180–186. doi: 10.1016/S0009-2614(98)01264-0. DOI
Bauzá A., Mooibroek T. J., Frontera A.. Directionality of π-holes in nitro compounds. Chem. Commun. 2015;51:1491–1493. doi: 10.1039/C4CC09132A. PubMed DOI
Wu J. I., Pühlhofer F. G., Schleyer P. V. R., Puchta R., Kiran B., Mauksch M., Hommes N. J. V. E., Alkorta I., Elguero J.. The effect of perfluorination on the aromaticity of benzene and heterocyclic six-membered rings. J. Phys. Chem. A. 2009;113(24):6789–6794. doi: 10.1021/jp902983r. PubMed DOI