Colonisation of Newborn Piglets with a Mixture of Bacteroides Species Improves Their Gut Health and Performance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0523
Ministry of Agriculture of the Czech Republic
QK23020036
Ministry of Agriculture of the Czech Republic
PubMed
41156815
PubMed Central
PMC12565888
DOI
10.3390/microorganisms13102356
PII: microorganisms13102356
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteroides, Clostridium perfringens, Prevotella, gut microbiota, piglet, probiotic, sow,
- Publikační typ
- časopisecké články MeSH
Due to the low populations of Bacteroides sp. in the gut microbiota of sows compared to nursed piglets, sows may not represent an ideal source of Bacteroides sp. for newborn piglets. In this study, we therefore tested the effect of oral administration of a mixture of Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides fragilis and Bacteroides xylanisolvens on the microbiota development of newborn piglets. Oral administration of such a mixture to piglets within 12 h after parturition did not result in any adverse effects. Sequencing of 16S rRNA showed that 4 days after administration, these species formed approx. 20% of total faecal microbiota and affected the development of gut microbiota in treated piglets. The treatment resulted in an increased abundance of Veillonella caviae, Fusobacterium gastrosuis, Dialister sp., Clostridium jeddahitimonense, C. cadaveris, Butyricicoccus pullicaecorum, Actinobacillus indolicus, A. minor, Streptococcus pasteurianus, S. parasuis, S. equinus, S. pluranimalium, S. thoraltensis and S. suis. On the other hand, administration of the Bacteroides mixture suppressed piglet colonisation by C. disporicum and multiple species from family Prevotellaceae. Bacteroides-treated piglets exhibited significantly higher body weight than untreated controls at 3 months of age. Administration of a mixture of Bacteroides shaped the development of gut microbiota in nursed piglets, which resulted in improved parameters at the end of the pre-fattening period.
Zobrazit více v PubMed
Patil Y., Gooneratne R., Ju X.H. Interactions between host and gut microbiota in domestic pigs: A review. Gut Microbes. 2020;11:310–334. doi: 10.1080/19490976.2019.1690363. PubMed DOI PMC
Kim H.B., Isaacson R.E. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 2015;177:242–251. doi: 10.1016/j.vetmic.2015.03.014. PubMed DOI
Pajarillo E.A., Chae J.P., Balolong M.P., Kim H.B., Seo K.S., Kang D.K. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J. Microbiol. 2014;52:646–651. doi: 10.1007/s12275-014-4270-2. PubMed DOI
Ji L., Shen J., Liu C., Yan J., Ma X. Dietary Bacillus velezensis improves piglet intestinal health and antioxidant capacity via regulating the gut microbiota. Int. J. Mol. Sci. 2025;26:5875. doi: 10.3390/ijms26125875. PubMed DOI PMC
Khongkool K., Taweechotipatr M., Payungporn S., Sawaswong V., Lertworapreecha M. Characterization and evaluation of Lactobacillus plantarum LC5.2 isolated from thai native pigs for its probiotic potential in gut microbiota modulation and immune enhancement. J. Microbiol. Biotechnol. 2025;35:e2503028. doi: 10.4014/jmb.2503.03028. PubMed DOI PMC
Castillo Zuniga J., Fresno Rueda A.M., Samuel R.S., St-Pierre B., Levesque C.L. Impact of Lactobacillus- and Bifidobacterium-based direct-fed microbials on the performance, intestinal morphology, and fecal bacterial populations of nursery pigs. Microorganisms. 2024;12:1786. doi: 10.3390/microorganisms12091786. PubMed DOI PMC
Lan R., Kim I. Enterococcus faecium supplementation in sows during gestation and lactation improves the performance of sucking piglets. Vet. Med. Sci. 2020;6:92–99. doi: 10.1002/vms3.215. PubMed DOI PMC
Vasquez R., Kim S.H., Oh J.K., Song J.H., Hwang I.C., Kim I.H., Kang D.K. Multispecies probiotic supplementation in diet with reduced crude protein levels altered the composition and function of gut microbiome and restored microbiome-derived metabolites in growing pigs. Front. Microbiol. 2023;14:1192249. doi: 10.3389/fmicb.2023.1192249. PubMed DOI PMC
Deng X., Guo T., He Y., Gao S., Su J., Pan H., Li A. Parabacteroides goldsteinii alleviates intestinal inflammation in dextran sulfate sodium-treated pigs. Animals. 2025;15:1231. doi: 10.3390/ani15091231. PubMed DOI PMC
Volf J., Faldynova M., Matiasovicova J., Sebkova A., Karasova D., Prikrylova H., Havlickova H., Rychlik I. Probiotic mixtures consisting of representatives of Bacteroidetes and Selenomonadales increase resistance of newly hatched chicks to Salmonella Enteritidis infection. Microorganisms. 2024;12:2145. doi: 10.3390/microorganisms12112145. PubMed DOI PMC
Kubasova T., Davidova-Gerzova L., Merlot E., Medvecky M., Polansky O., Gardan-Salmon D., Quesnel H., Rychlik I. Housing systems influence gut microbiota composition of sows but not of their piglets. PLoS ONE. 2017;12:e0170051. doi: 10.1371/journal.pone.0170051. PubMed DOI PMC
Kubasova T., Davidova-Gerzova L., Babak V., Cejkova D., Montagne L., Le-Floc’h N., Rychlik I. Effects of host genetics and environmental conditions on fecal microbiota composition of pigs. PLoS ONE. 2018;13:e0201901. doi: 10.1371/journal.pone.0201901. PubMed DOI PMC
Gerzova L., Babak V., Sedlar K., Faldynova M., Videnska P., Cejkova D., Jensen A.N., Denis M., Kerouanton A., Ricci A., et al. Characterization of antibiotic resistance gene abundance and microbiota composition in feces of organic and conventional pigs from four EU countries. PLoS ONE. 2015;10:e0132892. doi: 10.1371/journal.pone.0132892. PubMed DOI PMC
Karasova D., Crhanova M., Babak V., Jerabek M., Brzobohaty L., Matesova Z., Rychlik I. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea—A field study. Res. Vet. Sci. 2021;135:59–65. doi: 10.1016/j.rvsc.2020.12.022. PubMed DOI
Motta V., Luise D., Bosi P., Trevisi P. Faecal microbiota shift during weaning transition in piglets and evaluation of AO blood types as shaping factor for the bacterial community profile. PLoS ONE. 2019;14:e0217001. doi: 10.1371/journal.pone.0217001. PubMed DOI PMC
Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC
Kollarcikova M., Faldynova M., Matiasovicova J., Jahodarova E., Kubasova T., Seidlerova Z., Babak V., Videnska P., Cizek A., Rychlik I. Different Bacteroides species colonise human and chicken intestinal tract. Microorganisms. 2020;8:1483. doi: 10.3390/microorganisms8101483. PubMed DOI PMC
Juricova H., Matiasovicova J., Kubasova T., Cejkova D., Rychlik I. The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Sci. Rep. 2021;11:3290. doi: 10.1038/s41598-021-82640-3. PubMed DOI PMC
Gupta S.K., Padmanabhan B.R., Diene S.M., Lopez-Rojas R., Kempf M., Landraud L., Rolain J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014;58:212–220. doi: 10.1128/AAC.01310-13. PubMed DOI PMC
Bonin N., Doster E., Worley H., Pinnell L.J., Bravo J.E., Ferm P., Marini S., Prosperi M., Noyes N., Morley P.S., et al. MEGARes and AMR++, v3.0: An updated comprehensive database of antimicrobial resistance determinants and an improved software pipeline for classification using high-throughput sequencing. Nucleic Acids Res. 2023;51:D744–D752. doi: 10.1093/nar/gkac1047. PubMed DOI PMC
Bortolaia V., Kaas R.S., Ruppe E., Roberts M.C., Schwarz S., Cattoir V., Philippon A., Allesoe R.L., Rebelo A.R., Florensa A.F., et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020;75:3491–3500. doi: 10.1093/jac/dkaa345. PubMed DOI PMC
Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.V., Cheng A.A., Liu S., et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi: 10.1093/nar/gkz935. PubMed DOI PMC
Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. Erratum in Nat. Biotechnol. 2019, 37, 1091. PubMed DOI PMC
Girardot C., Scholtalbers J., Sauer S., Su S.Y., Furlong E.E. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinform. 2016;17:419. doi: 10.1186/s12859-016-1284-2. PubMed DOI PMC
Chen S., Zhou Y., Chen Y., Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Bokulich N.A., Kaehler B.D., Rideout J.R., Dillon M., Bolyen E., Knight R., Huttley G.A., Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90. doi: 10.1186/s40168-018-0470-z. PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glockner F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Thompson J.S., Malamy M.H. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus beta-lactamase II. J. Bacteriol. 1990;172:2584–2593. doi: 10.1128/jb.172.5.2584-2593.1990. PubMed DOI PMC
Dolejska M., Senk D., Cizek A., Rybarikova J., Sychra O., Literak I. Antimicrobial resistant Escherichia coli isolates in cattle and house sparrows on two Czech dairy farms. Res. Vet. Sci. 2008;85:491–494. doi: 10.1016/j.rvsc.2008.03.007. PubMed DOI
Faldynova M., Pravcova M., Sisak F., Havlickova H., Kolackova I., Cizek A., Karpiskova R., Rychlik I. Evolution of antibiotic resistance in Salmonella enterica serovar typhimurium strains isolated in the Czech Republic between 1984 and 2002. Antimicrob. Agents Chemother. 2003;47:2002–2005. doi: 10.1128/AAC.47.6.2002-2005.2003. PubMed DOI PMC
Kraimi N., Dawkins M., Gebhardt-Henrich S.G., Velge P., Rychlik I., Volf J., Creach P., Smith A., Colles F., Leterrier C. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol. Behav. 2019;210:112658. doi: 10.1016/j.physbeh.2019.112658. PubMed DOI
Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Sisak F., Babak V., et al. Gut anaerobes capable of chicken caecum colonisation. Microorganisms. 2019;7:597. doi: 10.3390/microorganisms7120597. PubMed DOI PMC
Marcolla C.S., Ju T., Willing B.P. Cecal microbiota development and physiological responses of broilers following early life microbial inoculation using different delivery methods and microbial sources. Appl. Environ. Microbiol. 2023;89:e0027123. doi: 10.1128/aem.00271-23. PubMed DOI PMC
Kubasova T., Seidlerova Z., Rychlik I. Ecological adaptations of gut microbiota members and their consequences for use as a new generation of probiotics. Int. J. Mol. Sci. 2021;22:5471. doi: 10.3390/ijms22115471. PubMed DOI PMC
Karasova D., Faldynova M., Matiasovicova J., Sebkova A., Crhanova M., Kubasova T., Seidlerova Z., Prikrylova H., Volf J., Zeman M., et al. Host species adaptation of obligate gut anaerobes is dependent on their environmental survival. Microorganisms. 2022;10:1085. doi: 10.3390/microorganisms10061085. PubMed DOI PMC
Liu B., Yin X., Yu H., Feng Y., Ying X., Gong J., Gyles C.L. Alteration of the Microbiota and Virulence Gene Expression in E. coli O157:H7 in Pig Ligated Intestine with and without AE Lesions. PLoS ONE. 2015;10:e0130272. doi: 10.1371/journal.pone.0130272. PubMed DOI PMC
De Witte C., Flahou B., Ducatelle R., Smet A., De Bruyne E., Cnockaert M., Taminiau B., Daube G., Vandamme P., Haesebrouck F. Detection, isolation and characterization of Fusobacterium gastrosuis sp. nov. colonizing the stomach of pigs. Syst. Appl. Microbiol. 2017;40:42–50. doi: 10.1016/j.syapm.2016.10.001. PubMed DOI
Fredriksen S., Neila-Ibanez C., Hennig-Pauka I., Guan X., Dunkelberger J., de Oliveira I.F., Ferrando M.L., Correa-Fiz F., Aragon V., Boekhorst J., et al. Streptococcus suis infection on European farms is associated with an altered tonsil microbiome and resistome. Microb. Genom. 2024;10:001334. doi: 10.1099/mgen.0.001334. PubMed DOI PMC
Benjdia A., Martens E.C., Gordon J.I., Berteau O. Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. J. Biol. Chem. 2011;286:25973–25982. doi: 10.1074/jbc.M111.228841. PubMed DOI PMC
Vlasatikova L., Zeman M., Crhanova M., Matiasovicova J., Karasova D., Faldynova M., Prikrylova H., Sebkova A., Rychlik I. Colonization of chickens with competitive exclusion products results in extensive differences in metabolite composition in cecal digesta. Poult. Sci. 2024;103:103217. doi: 10.1016/j.psj.2023.103217. PubMed DOI PMC