Colonisation of Newborn Piglets with a Mixture of Bacteroides Species Improves Their Gut Health and Performance

. 2025 Oct 14 ; 13 (10) : . [epub] 20251014

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41156815

Grantová podpora
RO0523 Ministry of Agriculture of the Czech Republic
QK23020036 Ministry of Agriculture of the Czech Republic

Odkazy

PubMed 41156815
PubMed Central PMC12565888
DOI 10.3390/microorganisms13102356
PII: microorganisms13102356
Knihovny.cz E-zdroje

Due to the low populations of Bacteroides sp. in the gut microbiota of sows compared to nursed piglets, sows may not represent an ideal source of Bacteroides sp. for newborn piglets. In this study, we therefore tested the effect of oral administration of a mixture of Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides fragilis and Bacteroides xylanisolvens on the microbiota development of newborn piglets. Oral administration of such a mixture to piglets within 12 h after parturition did not result in any adverse effects. Sequencing of 16S rRNA showed that 4 days after administration, these species formed approx. 20% of total faecal microbiota and affected the development of gut microbiota in treated piglets. The treatment resulted in an increased abundance of Veillonella caviae, Fusobacterium gastrosuis, Dialister sp., Clostridium jeddahitimonense, C. cadaveris, Butyricicoccus pullicaecorum, Actinobacillus indolicus, A. minor, Streptococcus pasteurianus, S. parasuis, S. equinus, S. pluranimalium, S. thoraltensis and S. suis. On the other hand, administration of the Bacteroides mixture suppressed piglet colonisation by C. disporicum and multiple species from family Prevotellaceae. Bacteroides-treated piglets exhibited significantly higher body weight than untreated controls at 3 months of age. Administration of a mixture of Bacteroides shaped the development of gut microbiota in nursed piglets, which resulted in improved parameters at the end of the pre-fattening period.

Zobrazit více v PubMed

Patil Y., Gooneratne R., Ju X.H. Interactions between host and gut microbiota in domestic pigs: A review. Gut Microbes. 2020;11:310–334. doi: 10.1080/19490976.2019.1690363. PubMed DOI PMC

Kim H.B., Isaacson R.E. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 2015;177:242–251. doi: 10.1016/j.vetmic.2015.03.014. PubMed DOI

Pajarillo E.A., Chae J.P., Balolong M.P., Kim H.B., Seo K.S., Kang D.K. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J. Microbiol. 2014;52:646–651. doi: 10.1007/s12275-014-4270-2. PubMed DOI

Ji L., Shen J., Liu C., Yan J., Ma X. Dietary Bacillus velezensis improves piglet intestinal health and antioxidant capacity via regulating the gut microbiota. Int. J. Mol. Sci. 2025;26:5875. doi: 10.3390/ijms26125875. PubMed DOI PMC

Khongkool K., Taweechotipatr M., Payungporn S., Sawaswong V., Lertworapreecha M. Characterization and evaluation of Lactobacillus plantarum LC5.2 isolated from thai native pigs for its probiotic potential in gut microbiota modulation and immune enhancement. J. Microbiol. Biotechnol. 2025;35:e2503028. doi: 10.4014/jmb.2503.03028. PubMed DOI PMC

Castillo Zuniga J., Fresno Rueda A.M., Samuel R.S., St-Pierre B., Levesque C.L. Impact of Lactobacillus- and Bifidobacterium-based direct-fed microbials on the performance, intestinal morphology, and fecal bacterial populations of nursery pigs. Microorganisms. 2024;12:1786. doi: 10.3390/microorganisms12091786. PubMed DOI PMC

Lan R., Kim I. Enterococcus faecium supplementation in sows during gestation and lactation improves the performance of sucking piglets. Vet. Med. Sci. 2020;6:92–99. doi: 10.1002/vms3.215. PubMed DOI PMC

Vasquez R., Kim S.H., Oh J.K., Song J.H., Hwang I.C., Kim I.H., Kang D.K. Multispecies probiotic supplementation in diet with reduced crude protein levels altered the composition and function of gut microbiome and restored microbiome-derived metabolites in growing pigs. Front. Microbiol. 2023;14:1192249. doi: 10.3389/fmicb.2023.1192249. PubMed DOI PMC

Deng X., Guo T., He Y., Gao S., Su J., Pan H., Li A. Parabacteroides goldsteinii alleviates intestinal inflammation in dextran sulfate sodium-treated pigs. Animals. 2025;15:1231. doi: 10.3390/ani15091231. PubMed DOI PMC

Volf J., Faldynova M., Matiasovicova J., Sebkova A., Karasova D., Prikrylova H., Havlickova H., Rychlik I. Probiotic mixtures consisting of representatives of Bacteroidetes and Selenomonadales increase resistance of newly hatched chicks to Salmonella Enteritidis infection. Microorganisms. 2024;12:2145. doi: 10.3390/microorganisms12112145. PubMed DOI PMC

Kubasova T., Davidova-Gerzova L., Merlot E., Medvecky M., Polansky O., Gardan-Salmon D., Quesnel H., Rychlik I. Housing systems influence gut microbiota composition of sows but not of their piglets. PLoS ONE. 2017;12:e0170051. doi: 10.1371/journal.pone.0170051. PubMed DOI PMC

Kubasova T., Davidova-Gerzova L., Babak V., Cejkova D., Montagne L., Le-Floc’h N., Rychlik I. Effects of host genetics and environmental conditions on fecal microbiota composition of pigs. PLoS ONE. 2018;13:e0201901. doi: 10.1371/journal.pone.0201901. PubMed DOI PMC

Gerzova L., Babak V., Sedlar K., Faldynova M., Videnska P., Cejkova D., Jensen A.N., Denis M., Kerouanton A., Ricci A., et al. Characterization of antibiotic resistance gene abundance and microbiota composition in feces of organic and conventional pigs from four EU countries. PLoS ONE. 2015;10:e0132892. doi: 10.1371/journal.pone.0132892. PubMed DOI PMC

Karasova D., Crhanova M., Babak V., Jerabek M., Brzobohaty L., Matesova Z., Rychlik I. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea—A field study. Res. Vet. Sci. 2021;135:59–65. doi: 10.1016/j.rvsc.2020.12.022. PubMed DOI

Motta V., Luise D., Bosi P., Trevisi P. Faecal microbiota shift during weaning transition in piglets and evaluation of AO blood types as shaping factor for the bacterial community profile. PLoS ONE. 2019;14:e0217001. doi: 10.1371/journal.pone.0217001. PubMed DOI PMC

Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC

Kollarcikova M., Faldynova M., Matiasovicova J., Jahodarova E., Kubasova T., Seidlerova Z., Babak V., Videnska P., Cizek A., Rychlik I. Different Bacteroides species colonise human and chicken intestinal tract. Microorganisms. 2020;8:1483. doi: 10.3390/microorganisms8101483. PubMed DOI PMC

Juricova H., Matiasovicova J., Kubasova T., Cejkova D., Rychlik I. The distribution of antibiotic resistance genes in chicken gut microbiota commensals. Sci. Rep. 2021;11:3290. doi: 10.1038/s41598-021-82640-3. PubMed DOI PMC

Gupta S.K., Padmanabhan B.R., Diene S.M., Lopez-Rojas R., Kempf M., Landraud L., Rolain J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014;58:212–220. doi: 10.1128/AAC.01310-13. PubMed DOI PMC

Bonin N., Doster E., Worley H., Pinnell L.J., Bravo J.E., Ferm P., Marini S., Prosperi M., Noyes N., Morley P.S., et al. MEGARes and AMR++, v3.0: An updated comprehensive database of antimicrobial resistance determinants and an improved software pipeline for classification using high-throughput sequencing. Nucleic Acids Res. 2023;51:D744–D752. doi: 10.1093/nar/gkac1047. PubMed DOI PMC

Bortolaia V., Kaas R.S., Ruppe E., Roberts M.C., Schwarz S., Cattoir V., Philippon A., Allesoe R.L., Rebelo A.R., Florensa A.F., et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020;75:3491–3500. doi: 10.1093/jac/dkaa345. PubMed DOI PMC

Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.V., Cheng A.A., Liu S., et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi: 10.1093/nar/gkz935. PubMed DOI PMC

Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. Erratum in Nat. Biotechnol. 2019, 37, 1091. PubMed DOI PMC

Girardot C., Scholtalbers J., Sauer S., Su S.Y., Furlong E.E. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinform. 2016;17:419. doi: 10.1186/s12859-016-1284-2. PubMed DOI PMC

Chen S., Zhou Y., Chen Y., Gu J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Bokulich N.A., Kaehler B.D., Rideout J.R., Dillon M., Bolyen E., Knight R., Huttley G.A., Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90. doi: 10.1186/s40168-018-0470-z. PubMed DOI PMC

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glockner F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Thompson J.S., Malamy M.H. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus beta-lactamase II. J. Bacteriol. 1990;172:2584–2593. doi: 10.1128/jb.172.5.2584-2593.1990. PubMed DOI PMC

Dolejska M., Senk D., Cizek A., Rybarikova J., Sychra O., Literak I. Antimicrobial resistant Escherichia coli isolates in cattle and house sparrows on two Czech dairy farms. Res. Vet. Sci. 2008;85:491–494. doi: 10.1016/j.rvsc.2008.03.007. PubMed DOI

Faldynova M., Pravcova M., Sisak F., Havlickova H., Kolackova I., Cizek A., Karpiskova R., Rychlik I. Evolution of antibiotic resistance in Salmonella enterica serovar typhimurium strains isolated in the Czech Republic between 1984 and 2002. Antimicrob. Agents Chemother. 2003;47:2002–2005. doi: 10.1128/AAC.47.6.2002-2005.2003. PubMed DOI PMC

Kraimi N., Dawkins M., Gebhardt-Henrich S.G., Velge P., Rychlik I., Volf J., Creach P., Smith A., Colles F., Leterrier C. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol. Behav. 2019;210:112658. doi: 10.1016/j.physbeh.2019.112658. PubMed DOI

Kubasova T., Kollarcikova M., Crhanova M., Karasova D., Cejkova D., Sebkova A., Matiasovicova J., Faldynova M., Sisak F., Babak V., et al. Gut anaerobes capable of chicken caecum colonisation. Microorganisms. 2019;7:597. doi: 10.3390/microorganisms7120597. PubMed DOI PMC

Marcolla C.S., Ju T., Willing B.P. Cecal microbiota development and physiological responses of broilers following early life microbial inoculation using different delivery methods and microbial sources. Appl. Environ. Microbiol. 2023;89:e0027123. doi: 10.1128/aem.00271-23. PubMed DOI PMC

Kubasova T., Seidlerova Z., Rychlik I. Ecological adaptations of gut microbiota members and their consequences for use as a new generation of probiotics. Int. J. Mol. Sci. 2021;22:5471. doi: 10.3390/ijms22115471. PubMed DOI PMC

Karasova D., Faldynova M., Matiasovicova J., Sebkova A., Crhanova M., Kubasova T., Seidlerova Z., Prikrylova H., Volf J., Zeman M., et al. Host species adaptation of obligate gut anaerobes is dependent on their environmental survival. Microorganisms. 2022;10:1085. doi: 10.3390/microorganisms10061085. PubMed DOI PMC

Liu B., Yin X., Yu H., Feng Y., Ying X., Gong J., Gyles C.L. Alteration of the Microbiota and Virulence Gene Expression in E. coli O157:H7 in Pig Ligated Intestine with and without AE Lesions. PLoS ONE. 2015;10:e0130272. doi: 10.1371/journal.pone.0130272. PubMed DOI PMC

De Witte C., Flahou B., Ducatelle R., Smet A., De Bruyne E., Cnockaert M., Taminiau B., Daube G., Vandamme P., Haesebrouck F. Detection, isolation and characterization of Fusobacterium gastrosuis sp. nov. colonizing the stomach of pigs. Syst. Appl. Microbiol. 2017;40:42–50. doi: 10.1016/j.syapm.2016.10.001. PubMed DOI

Fredriksen S., Neila-Ibanez C., Hennig-Pauka I., Guan X., Dunkelberger J., de Oliveira I.F., Ferrando M.L., Correa-Fiz F., Aragon V., Boekhorst J., et al. Streptococcus suis infection on European farms is associated with an altered tonsil microbiome and resistome. Microb. Genom. 2024;10:001334. doi: 10.1099/mgen.0.001334. PubMed DOI PMC

Benjdia A., Martens E.C., Gordon J.I., Berteau O. Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron. J. Biol. Chem. 2011;286:25973–25982. doi: 10.1074/jbc.M111.228841. PubMed DOI PMC

Vlasatikova L., Zeman M., Crhanova M., Matiasovicova J., Karasova D., Faldynova M., Prikrylova H., Sebkova A., Rychlik I. Colonization of chickens with competitive exclusion products results in extensive differences in metabolite composition in cecal digesta. Poult. Sci. 2024;103:103217. doi: 10.1016/j.psj.2023.103217. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...