Morphology, microbiota, and metabolome along the intestinal tract of female turkeys

. 2022 Nov ; 101 (11) : 102046. [epub] 20220703

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36130451
Odkazy

PubMed 36130451
PubMed Central PMC9489512
DOI 10.1016/j.psj.2022.102046
PII: S0032-5791(22)00337-6
Knihovny.cz E-zdroje

The global turkey industry is confronted with emerging challenges regarding health and welfare. Performance and disease resilience are directly linked to gut health. A clear definition of a healthy gut is a prerequisite to developing new strategies for improved gut health and, thus, general health, welfare and productivity. To date, detailed knowledge about gut health characteristics, especially during the critical fattening period, is still lacking for turkeys. Therefore, the goal of this study was to describe the morphology, microbiota, and metabolome along the intestinal tract of clinically healthy Salmonella- and Campylobacter-free commercial turkey hens throughout the fattening period from 7 to 10 wk posthatch, and obtain information on the stability of the investigated values over time. Feed changes were avoided directly preceding and during the investigation period. Investigation methods included histomorphometric measurement of intestinal villi and crypts, Illumina-sequencing for microbiota analysis, and proton nuclear magnetic resonance spectroscopy for metabolite identification and quantification. Overall, the study demonstrated a high repeatability across all 3 experiments and gut section differences observed coincided with their functions. It was demonstrated that gut maturation, defined by gut microbiota stability, is reached earlier in the ceca than any other intestinal section where morphological changes are ongoing throughout the fattening period. Therefore, the present study provides valuable information necessary to advise future studies on the development and implementation of measures to support gut maturation and establish a protective microbiota in commercial turkeys.

Zobrazit více v PubMed

Adji A.V., Plumeriastuti H., Ma'ruf A., Legowo D. Histopathological alterations of ceca in broiler chickens (Gallus gallus) exposed to chronic heat stress. J. Worlds Poult. Res. 2019;9:211–217.

Asare P.T., Greppi A., Pennacchia A., Brenig K., Geirnaert A., Schwab C., Stephan R., Lacroix C. In vitro modeling of chicken cecal microbiota ecology and metabolism using the PolyFermS platform. Front. Microbiol. 2021;12:1–20. PubMed PMC

Auckland J.N., Morris T.R. Compensatory growth in turkeys - effect of undernutrition on subsequent protein requirements. Br. Poult. Sci. 1971;12:41–48. PubMed

Awad W., Ghareeb K., Bohm J. Intestinal structure and function of broiler chickens on diets supplemented with a synbiotic containing Enterococcus faecium and oligosaccharides. Int. J. Mol. Sci. 2008;9:2205–2216. PubMed PMC

Awad W.A., Hess C., Hess M. Re-thinking the chicken-Campylobacter jejuni interaction: a review. Avian Pathol. 2018;47:352–363. PubMed

Awad W.A., Molnar A., Aschenbach J.R., Ghareeb K., Khayal B., Hess C., Liebhart D., Dublecz K., Hess M. Campylobacter infection in chickens modulates the intestinal epithelial barrier function. J. Innate Immun. 2015;21:151–160. PubMed

Barba-Vidal E., Martin-Orue S.M., Castillejos L. Review: are we using probiotics correctly in post-weaning piglets? Animal. 2018;12:2489–2498. PubMed

Biddle A., Stewart L., Blanchard J., Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5:627–640.

Bindari Y.R., Gerber P.F. Centennial review: factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult. Sci. 2022;101:1–19. PubMed PMC

Bjerrum L., Engberg R.M., Leser T.D., Jensen B.B., Finster K., Pedersen K. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poult. Sci. 2006;85:1151–1164. PubMed

Bolyen E., Rideout J.R., Dillon M.R., Bokulich N., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., Bai Y., Bisanz J.E., Bittinger K., Brejnrod A., Brislawn C.J., Brown C.T., Callahan B.J., Caraballo-Rodriguez A.M., Chase J., Cope E.K., Da Silva R., Diener C., Dorrestein P.C., Douglas G.M., Durall D.M., Duvallet C., Edwardson C.F., Ernst M., Estaki M., Fouquier J., Gauglitz J.M., Gibbons S.M., Gibson D.L., Gonzalez A., Gorlick K., Guo J.R., Hillmann B., Holmes S., Holste H., Huttenhower C., Huttley G.A., Janssen S., Jarmusch A.K., Jiang L.J., Kaehler B.D., Bin Kang K., Keefe C.R., Keim P., Kelley S.T., Knights D., Koester I., Kosciolek T., Kreps J., Langille M.G.I., Lee J., Ley R., Liu Y.X., Loftfield E., Lozupone C., Maher M., Marotz C., Martin B.D., McDonald D., McIver L.J., Melnik A.V., Metcalf J.L., Morgan S.C., Morton J.T., Naimey A.T., Navas-Molina J.A., Nothias L.F., Orchanian S.B., Pearson T., Peoples S.L., Petras D., Preuss M.L., Pruesse E., Rasmussen L.B., Rivers A., Robeson M.S., Rosenthal P., Segata N., Shaffer M., Shiffer A., Sinha R., Song S.J., Spear J.R., Swafford A.D., Thompson L.R., Torres P.J., Trinh P., Tripathi A., Turnbaugh P.J., Ul-Hasan S., vander Hooft J.J.J., Vargas F., Vazquez-Baeza Y., Vogtmann E., von Hippel M., Walters W., Wan Y.H., Wang M.X., Warren J., Weber K.C., Williamson C.H.D., Willis A.D., Xu Z.Z., Zaneveld J.R., Zhang Y.L., Zhu Q.Y., Knight R., Caporaso J.G. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–857. PubMed PMC

Brunsgaard G. Morphological characteristics, epithelial cell proliferation, and crypt fission in cecum and colon of growing pigs. Dig. Dis. Sci. 1997;42:2384–2393. PubMed

Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Pena A.G., Goodrich J.K., Gordon J.I., Huttley G.A., Kelley S.T., Knights D., Koenig J.E., Ley R.E., Lozupone C.A., McDonald D., Muegge B.D., Pirrung M., Reeder J., Sevinsky J.R., Tumbaugh P.J., Walters W.A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. PubMed PMC

Carrasco J.M.D., Casanova N.A., Miyakawa M.E.F. Microbiota, gut health and chicken productivity: what is the connection? Microorganisms. 2019;7:1–15. PubMed PMC

Chao A., Shen T.J. Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environ. Ecol. Stat. 2003;10:429–443.

Clavijo V., Florez M.J.V. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult. Sci. 2018;97:1006–1021. PubMed PMC

Cook A.M., Denger K. Metabolism of taurine in microorganisms - a primer in molecular biodiversity? Taurine. 2006;6:3–13. PubMed

Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. PubMed PMC

Dobrowolski P., Tomaszewska E., Klebaniuk R., Tomczyk-Warunek A., Szymanczyk S., Donaldson J., Swietlicka I., Mielnik-Blaszczak M., Kuc D., Muszynski S. Structural changes in the small intestine of female turkeys receiving a probiotic preparation are dose and region dependent. Animal. 2019;13:2773–2781. PubMed

Dorries K., Lalk M. Metabolic footprint analysis uncovers strain specific overflow metabolism and D-isoleucine production of Staphylococcus aureus COL and HG001. PLoS One. 2013;8:1–9. PubMed PMC

European Parliament and Council. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Pages 33–79.

Ganzle M.G. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015;2:106–117.

Gao P.F., Ma C., Sun Z., Wang L.F., Huang S., Su X.Q., Xu J., Zhang H.P. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome. 2017;5:1–14. PubMed PMC

Gerritsen J., Fuentes S., Grievink W., van Niftrik L., Tindall B.J., Timmerman H.M., Rijkers G.T., Smidt H. Characterization of Romboutsia ilealis gen. nov., sp nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov and Asaccharospora gen. nov. Int. J. Syst. Evol. Microbiol. 2014;64:1600–1616. PubMed

Gous R.M., Fisher C., Tumova E., Machander V., Chodova D., Vlckova J., Uhlirova L., Ketta M. The growth of turkeys 1. Growth of the body and feathers and the chemical composition of growth. Br. Poult. Sci. 2019;60:539–547. PubMed

Gous R.M., Fisher C., Tumova E., Machander V., Chodova D., Vlckova J., Uhlirova L., Ketta M. The growth of turkeys 2. Body components and allometric relationships. Br. Poult. Sci. 2019;60:548–553. PubMed

Grashorn M.A., Bessei W. Comparison of heavy turkey breeds B.U.T. Big 6 and Hybrid Euro FP for fattening performance, slaughter yield and meat quality. Arch Geflugelk. 2004;68:2–7.

Grimes, J. L. 2015. Nutritional determinants for gut health and litter characteristics in turkeys. Proc. 20th European Symposium on Poultry Nutrition, Prague, Czech Republic.

Ha E.M. Escherichia coli-derived uracil increases the antibacterial activity and growth rate of Lactobacillus plantarum. J. Microbiol. Biotechnol. 2016;26:975–987. PubMed

Hafez H.M., Attia Y.A. Challenges to the poultry industry: current perspectives and strategic future after the COVID-19 outbreak. Front. Vet. Sci. 2020;7:1–16. PubMed PMC

Iji P.A., Saki A., Tivey D.R. Body and intestinal growth of broiler chicks on a commercial starter diet. 1. Intestinal weight and mucosal development. Br. Poult. Sci. 2001;42:505–513. PubMed

Kaakoush N.O. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell Infect. Microbiol. 2015;5:1–4. PubMed PMC

Kers J.G., Velkers F.C., Fischer E.A.J., Hermes G.D.A., Stegeman J.A., Smidt H. Host and environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol. 2018;9:1–14. PubMed PMC

Kogut M.H. Gut health in poultry. CAB Rev. 2017;12:1–8.

Kohl K.D. Diversity and function of the avian gut microbiota. J. Comp. Physiol. B. 2012;182:591–602. PubMed

Kubasova T., Seidlerova Z., Rychlik I. Ecological adaptations of gut microbiota members and their consequences for use as a new generation of probiotics. Int. J. Mol. Sci. 2021;22:1–11. PubMed PMC

Laudadio V., Passantino L., Perillo A., Lopresti G., Passantino A., Khan R.U., Tufarelli V. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult. Sci. 2012;91:265–270. PubMed

Lemme A., Frackenpohl U., Petri A., Meyer H. Response of male BUT Big 6 turkeys to varying amino acid feeding programs. Poult. Sci. 2006;85:652–660. PubMed

Lozupone C., Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005;71:8228–8235. PubMed PMC

Lv H.J., Huang Y., Wang T., Zhai S.K., Hou Z.C., Chen S.R. Microbial composition in the duodenum and ileum of yellow broilers with high and low feed efficiency. Front. Microbiol. 2021;12:1–13. PubMed PMC

Medvecky M., Cejkova D., Polansky O., Karasova D., Kubasova T., Cizek A., Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics. 2018;19:1–15. PubMed PMC

Morita T., Usuda N., Hanai T., Nagata T. Changes of colon epithelium proliferation due to individual aging with cyclin proliferating cell nuclear antigen (PCNA cyclin) immunostaining compared to [H-3] thymidine autoradiography. Histochemistry. 1994;101:13–20. PubMed

Ndagijimana M., Laghi L., Vitali B., Placucci G., Brigidi P., Guerzoni M.E. Effect of a synbiotic food consumption on human gut metabolic profiles evaluated by 1H nuclear magnetic resonance spectroscopy. Int. J. Food Microbiol. 2009;134:147–153. PubMed

Plavnik I., Hurwitz S. Performance of broiler chickens and turkey poults subjected to feed restriction or to feeding of low-protein or low-sodium diets at an early age. Poult. Sci. 1990;69:945–952.

Polansky O., Sekelova Z., Faldynova M., Sebkova A., Sisak F., Rychlik I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl. Environ. Microbiol. 2016;82:1569–1576. PubMed PMC

Sannasiddappa T.H., Costabile A., Gibson G.R., Clarke S.R. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system. PLoS One. 2011;6:1–8. PubMed PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC

Scupham A.J. Succession in the intestinal microbiota of preadolescent turkeys. FEMS Microbiol. Ecol. 2007;60:136–147. PubMed

Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol. Rev. 2010;90:859–904. PubMed

Shi R., Yang X., Chen L., Chang H.T., Liu H.Y., Zhao J., Wang X.W., Wang C.Q. Pathogenicity of Shigella in chickens. PLoS One. 2014;9:1–7. PubMed PMC

Svihus B. Function of the digestive system. J. Appl. Poult. Res. 2014;23:306–314.

Troitzsch A., Van Loi V., Methling K., Zuhlke D., Lalk M., Riedel K., Bernhardt J., Elsayed E.M., Bange G., Antelmann H., Pane-Farre J. Carbon source-dependent reprogramming of anaerobic metabolism in Staphylococcus aureus. J. Bacteriol. 2021;203:1–17. PubMed PMC

Vacca M., Celano G., Calabrese F.M., Portincasa P., Gobbetti M., De Angelis M. The controversial role of human gut Lachnospiraceae. Microorganisms. 2020;8:1–25. PubMed PMC

Volf J., Rajova J., Babak V., Seidlerova Z., Rychlik I. Detoxification, hydrogen sulphide metabolism and wound healing are the main functions that differentiate caecum protein expression from ileum of week-old chicken. Animals-Basel. 2021;11:1–11. PubMed PMC

Wider G., Dreier L. Measuring protein concentrations by NMR spectroscopy. J. Am. Chem. Soc. 2006;128:2571–2576. PubMed

Wieers G., Belkhir L., Enaud R., Leclercq S., de Foy J.M.P., Dequenne I., de Timary P., Cani P.D. How probiotics affect the microbiota. Front. Cell Infect. Microbiol. 2020;9:1–9. PubMed PMC

Wilkinson T.J., Cowan A.A., Vallin H.E., Onime L.A., Oyama L.B., Cameron S.J., Gonot C., Moorby J.M., Waddams K., Theobald V.J., Leemans D., Bowra S., Nixey C., Huws S.A. Characterization of the microbiome along the gastrointestinal tract of growing turkeys. Front. Microbiol. 2017;8:1–11. PubMed PMC

Willis A.D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 2019;10:1–5. PubMed PMC

Xiao S.S., Mi J.D., Mei L., Liang J.B., Feng K.X., Wu Y.B., Liao X.D., Wang Y. Microbial diversity and community variation in the intestines of layer chickens. Animals-Basel. 2021;11:1–17. PubMed PMC

Yang X., Liang S.S., Guo F.S., Ren Z.Z., Yang X.J., Long F.Y. Gut microbiota mediates the protective role of Lactobacillus plantarum in ameliorating deoxynivalenol-induced apoptosis and intestinal inflammation of broiler chickens. Poult. Sci. 2020;99:2395–2406. PubMed PMC

Yeoman C.J., Chia N., Jeraldo P., Sipos M., Goldenfeld N.D., White B.A. The microbiome of the chicken gastrointestinal tract. Anim. Health Res. Rev. 2012;13:89–99. PubMed

Zareian M., Ebrahimpour A., Abu Bakar F., Mohamed A.K.S., Forghani B., Ab-Kadir M.S.B., Saari N. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. Int. J. Mol. Sci. 2012;13:5482–5497. PubMed PMC

Zdunczyk Z., Jankowski J., Kaczmarek S., Juskiewicz J. Determinants and effects of postileal fermentation in broilers and turkeys part 1: gut microbiota composition and its modulation by feed additives. Worlds Poult. Sci. J. 2015;71:37–48.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...