Detoxification, Hydrogen Sulphide Metabolism and Wound Healing Are the Main Functions That Differentiate Caecum Protein Expression from Ileum of Week-Old Chicken
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO0518
Ministerstvo Zemědělství
INPOMED ATCZ194
Ministerstvo pro místní rozvoj
PubMed
34827887
PubMed Central
PMC8614574
DOI
10.3390/ani11113155
PII: ani11113155
Knihovny.cz E-zdroje
- Klíčová slova
- caecum, chicken, hydrogen sulphide, ileum, stress response, wound healing,
- Publikační typ
- časopisecké články MeSH
Sections of chicken gut differ in many aspects, e.g., the passage of digesta (continuous vs. discontinuous), the concentration of oxygen, and the density of colonising microbiota. Using an unbiased LC-MS/MS protocol, we compared protein expression in 18 ileal and 57 caecal tissue samples that originated from 7-day old ISA brown chickens. We found that proteins specific to the ileum were either structural (e.g., 3 actin isoforms, villin, or myosin 1A), or those required for nutrient digestion (e.g., sucrose isomaltase, maltase-glucoamylase, peptidase D) and absorption (e.g., fatty acid-binding protein 2 and 6 or bile acid-CoA:amino acid N-acyltransferase). On the other hand, proteins characteristic of the caecum were involved in sensing and limiting the consequences of oxidative stress (e.g., thioredoxin, peroxiredoxin 6), cell adhesion, and motility associated with wound healing (e.g., fibronectin 1, desmoyokin). These mechanisms are coupled with the activation of mechanisms suppressing the inflammatory response (galectin 1). Rather prominent were also expressions of proteins linked to hydrogen sulphide metabolism in caecum represented by cystathionin beta synthase, selenium-binding protein 1, mercaptopyruvate sulphurtransferase, and thiosulphate sulphurtransferase. Higher mRNA expression of nuclear factor, erythroid 2-like 2, the main oxidative stress transcriptional factor in caecum, further supported our observations.
Zobrazit více v PubMed
Svihus B., Choct M., Classen H. Function and nutritional roles of the avian caeca: A review. World’s Poult. Sci. J. 2013;69:249–264. doi: 10.1017/S0043933913000287. DOI
Isshiki Y., Nakahiro Y. Effect of Ceca Removal on Water Absorption in Chickens. Jpn. Poult. Sci. 1975;12:271–273. doi: 10.2141/jpsa.12.271. DOI
Sanders K.M., Koh S.D., Ro S., Ward S.M. Regulation of gastrointestinal motility—insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 2012;9:633–645. doi: 10.1038/nrgastro.2012.168. PubMed DOI PMC
Clench M.H. The Avian Cecum: Update and Motility Review. J. Exp. Zool. 1999;283:441–447. doi: 10.1002/(SICI)1097-010X(19990301/01)283:4/5<441::AID-JEZ13>3.0.CO;2-8. DOI
Videnska P., Faldynova M., Juricova H., Babak V., Sisak F., Havlickova H., Rychlik I. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet. Res. 2013;9:30. doi: 10.1186/1746-6148-9-30. PubMed DOI PMC
Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I. Succession and Replacement of Bacterial Populations in the Caecum of Egg Laying Hens over Their Whole Life. PLoS ONE. 2014;9:e115142. doi: 10.1371/journal.pone.0115142. PubMed DOI PMC
Pol A., Renkema G.H., Tangerman A., Winkel E.G., Engelke U.F., De Brouwer A.P.M., Lloyd K.C., Araiza R.S., Heuvel L.V.D., Omran H., et al. Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat. Genet. 2018;50:120–129. doi: 10.1038/s41588-017-0006-7. PubMed DOI PMC
Zheng L., Kelly C., Colgan S.P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. Am. J. Physiol.-Cell Physiol. 2015;309:C350–C360. doi: 10.1152/ajpcell.00191.2015. PubMed DOI PMC
Colgan S.P., Taylor C. Hypoxia: An alarm signal during intestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 2010;7:281–287. doi: 10.1038/nrgastro.2010.39. PubMed DOI PMC
Volf J., Polansky O., Sekelova Z., Velge P., Schouler C., Kaspers B., Rychlik I. Gene expression in the chicken caecum is dependent on microbiota composition. Veter. Res. 2017;48:85. doi: 10.1186/s13567-017-0493-7. PubMed DOI PMC
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Volf J., Polansky O., Varmuzova K., Gerzova L., Sekelova Z., Faldynova M., Babak V., Medvecky M., Smith A.L., Kaspers B., et al. Transient and Prolonged Response of Chicken Cecum Mucosa to Colonization with Different Gut Microbiota. PLoS ONE. 2016;11:e0163932. doi: 10.1371/journal.pone.0163932. PubMed DOI PMC
Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC
Bertocchi M., Sirri F., Palumbo O., Luise D., Maiorano G., Bosi P., Trevisi P. Exploring Differential Transcriptome between Jejunal and Cecal Tissue of Broiler Chickens. Animals. 2019;9:221. doi: 10.3390/ani9050221. PubMed DOI PMC
Tyska M.J., Mackey A.T., Huang J.-D., Copeland N.G., Jenkins N.A., Mooseker M.S. Myosin-1a Is Critical for Normal Brush Border Structure and Composition. Mol. Biol. Cell. 2005;16:2443–2457. doi: 10.1091/mbc.e04-12-1116. PubMed DOI PMC
Sim L., Quezada-Calvillo R., Sterchi E.E., Nichols B.L., Rose D.R. Human Intestinal Maltase–Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity. J. Mol. Biol. 2008;375:782–792. doi: 10.1016/j.jmb.2007.10.069. PubMed DOI
Danielsen E.M. Tyrosine Sulfation, a Post-Translational Modification of Microvillar Enzymes in the Small Intestinal Entero-cyte. EMBO J. 1987;6:2891–2896. doi: 10.1002/j.1460-2075.1987.tb02592.x. PubMed DOI PMC
Sim L., Willemsma C., Mohan S., Naim H.Y., Pinto B.M., Rose D.R. Structural Basis for Substrate Selectivity in Human Maltase-Glucoamylase and Sucrase-Isomaltase N-terminal Domains. J. Biol. Chem. 2010;285:17763–17770. doi: 10.1074/jbc.M109.078980. PubMed DOI PMC
Praslickova D., Torchia E.C., Sugiyama M.G., Magrane E.J., Zwicker B.L., Kolodzieyski L., Agellon L.B. The Ileal Lipid Binding Protein Is Required for Efficient Absorption and Transport of Bile Acids in the Distal Portion of the Murine Small Intestine. PLoS ONE. 2012;7:e50810. doi: 10.1371/journal.pone.0050810. PubMed DOI PMC
Huang E., Hynes M.J., Zhang T., Ginestier C., Dontu G., Appelman H., Fields J.Z., Wicha M.S., Boman B.M. Aldehyde Dehydrogenase 1 Is a Marker for Normal and Malignant Human Colonic Stem Cells (SC) and Tracks SC Overpopulation during Colon Tumorigenesis. Cancer Res. 2009;69:3382–3389. doi: 10.1158/0008-5472.CAN-08-4418. PubMed DOI PMC
Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int. 2019;2019:3904645. doi: 10.1155/2019/3904645. PubMed DOI PMC
Taskoparan B., Seza E.G., Demirkol S., Tunçer S., Stefek M., Gure A.O., Banerjee S. Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer. Cell. Oncol. (Dordr.) 2017;40:563–578. doi: 10.1007/s13402-017-0351-7. PubMed DOI
Nanson J.D., Forwood J.K. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis. PLoS ONE. 2015;10:e0141543. doi: 10.1371/journal.pone.0141543. PubMed DOI PMC
Mayoral J.G., Leonard K.T., DeFelipe L.A., Turjansksi A.G., Nouzova M., Noriegal F.G. Functional analysis of a mosquito short-chain dehydrogenase cluster. Arch. Insect Biochem. Physiol. 2013;82:96–115. doi: 10.1002/arch.21078. PubMed DOI PMC
Li H., Li Y., Yang L., Zhang D., Liu Z., Wang Y., Han R., Li G., Li Z., Tian Y., et al. Identification of a Novel Lipid Metabolism-Associated Hepatic Gene Family Induced by Estrogen via ERα in Chicken (Gallus gallus) Front. Genet. 2020;11:271. doi: 10.3389/fgene.2020.00271. PubMed DOI PMC
Yodoi J., Matsuo Y., Tian H., Masutani H., Inamoto T. Anti-Inflammatory Thioredoxin Family Proteins for Medicare, Healthcare and Aging Care. Nutrients. 2017;9:1081. doi: 10.3390/nu9101081. PubMed DOI PMC
Bindoli A., Fukuto J.M., Forman H.J. Thiol Chemistry in Peroxidase Catalysis and Redox Signaling. Antioxid. Redox Signal. 2008;10:1549–1564. doi: 10.1089/ars.2008.2063. PubMed DOI PMC
Maclean K.N., Greiner L.S., Evans J.R., Sood S.K., Lhotak S., Markham N.E., Stabler S.P., Allen R.H., Austin R.C., Balasubramaniam V., et al. Cystathionine Protects against Endoplasmic Reticulum Stress-induced Lipid Accumulation, Tissue Injury, and Apoptotic Cell Death. J. Biol. Chem. 2012;287:31994–32005. doi: 10.1074/jbc.M112.355172. PubMed DOI PMC
Wang X., Wang Y., Zhang L., Zhang D., Bai L., Kong W., Huang Y., Tang C., Du J., Jin H. L-Cystathionine Protects against Homocysteine-Induced Mitochondria-Dependent Apoptosis of Vascular Endothelial Cells. Oxidative Med. Cell. Longev. 2019;2019:1253289. doi: 10.1155/2019/1253289. PubMed DOI PMC
Gobbi R.P., De Francesco N., Bondar C., Muglia C., Chirdo F., Rumbo M., Rocca A., Toscano M., Sambuelli A., A Rabinovich G., et al. A galectin-specific signature in the gut delineates Crohn’s disease and ulcerative colitis from other human inflammatory intestinal disorders. BioFactors. 2016;42:93–105. doi: 10.1002/biof.1252. PubMed DOI
Thijssen V., Postel R., Brandwijk R.J.M.G.E., Dings R., Nesmelova I., Satijn S., Verhofstad N., Nakabeppu Y., Baum L.G., Bakkers J., et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc. Natl. Acad. Sci. USA. 2006;103:15975–15980. doi: 10.1073/pnas.0603883103. PubMed DOI PMC
Wu Y., Liu M., Li Z., Wu X.-B., Wang Y., Wang Y., Nie M., Huang F., Ju J., Ma C., et al. LYAR promotes colorectal cancer cell mobility by activating galectin-1 expression. Oncotarget. 2015;6:32890–32901. doi: 10.18632/oncotarget.5335. PubMed DOI PMC
Peng Y., Ye Y., Jia J., He Y., Yang Z., Zhu X., Huang H., Wang W., Geng L., Yin S., et al. Galectin-1-induced tolerogenic dendritic cells combined with apoptotic lymphocytes prolong liver allograft survival. Int. Immunopharmacol. 2018;65:470–482. doi: 10.1016/j.intimp.2018.10.019. PubMed DOI
Garin M.I., Chu C.-C., Golshayan D., Cernuda-Morollón E., Wait R., Lechler R.I. Galectin-1: A key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007;109:2058–2065. doi: 10.1182/blood-2006-04-016451. PubMed DOI
Fox J.W., Mayer U., Nischt R., Aumailley M., Reinhardt D., Wiedemann H., Mann K., Timpl R., Krieg T., Engel J. Re-combinant Nidogen Consists of Three Globular Domains and Mediates Binding of Laminin to Collagen Type IV. EMBO J. 1991;10:3137–3146. doi: 10.1002/j.1460-2075.1991.tb04875.x. PubMed DOI PMC
Reinhardt D., Mann K., Nischt R., Fox J., Chu M., Krieg T., Timpl R. Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. J. Biol. Chem. 1993;268:10881–10887. doi: 10.1016/S0021-9258(18)82067-1. PubMed DOI
Pöschl E., Fox J., Block D., Mayer U., Timpl R. Two non-contiguous regions contribute to nidogen binding to a single EGF-like motif of the laminin gamma 1 chain. EMBO J. 1994;13:3741–3747. doi: 10.1002/j.1460-2075.1994.tb06683.x. PubMed DOI PMC
Pankov R., Yamada K. Fibronectin at a glance. J. Cell Sci. 2002;115:3861–3863. doi: 10.1242/jcs.00059. PubMed DOI
Shankar J., Messenberg A., Chan J., Underhill T.M., Foster L.J., Nabi I.R. Pseudopodial Actin Dynamics Control Epithelial-Mesenchymal Transition in Metastatic Cancer Cells. Cancer Res. 2010;70:3780–3790. doi: 10.1158/0008-5472.CAN-09-4439. PubMed DOI
Mejillano M.R., Kojima S.-I., Applewhite D.A., Gertler F.B., Svitkina T.M., Borisy G.G. Lamellipodial Versus Filopodial Mode of the Actin Nanomachinery: Pivotal Role of the Filament Barbed End. Cell. 2004;118:363–373. doi: 10.1016/j.cell.2004.07.019. PubMed DOI
Ammer A.G., Weed S.A. Cortactin branches out: Roles in regulating protrusive actin dynamics. Cell Motil. Cytoskelet. 2008;65:687–707. doi: 10.1002/cm.20296. PubMed DOI PMC
Kirfel J., Pantelis D., Kabba M., Kahl P., Röper A., Kalff J.C., Buettner R. Impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen metabolism. Exp. Cell Res. 2008;314:3684–3691. doi: 10.1016/j.yexcr.2008.09.023. PubMed DOI
Zhang W., Jiang B., Guo Z., Sardet C., Zou B., Lam C.S., Li J., He M.-L., Lan H.-Y., Pang R., et al. Four-and-a-half LIM protein 2 promotes invasive potential and epithelial-mesenchymal transition in colon cancer. Carcinogenesis. 2010;31:1220–1229. doi: 10.1093/carcin/bgq094. PubMed DOI
Wixler V. The role of FHL2 in wound healing and inflammation. FASEB J. 2019;33:7799–7809. doi: 10.1096/fj.201802765RR. PubMed DOI
Aktar R., Peiris M., Fikree A., Cibert-Goton V., Walmsley M., Tough I.R., Watanabe P., Araujo E.J.D.A., Mohammed S.D., Delalande J.-M., et al. The extracellular matrix glycoprotein tenascin-X regulates peripheral sensory and motor neurones. J. Physiol. 2018;596:4237–4251. doi: 10.1113/JP276300. PubMed DOI PMC
Kleist B., Poetsch M. Neuroendocrine differentiation: The mysterious fellow of colorectal cancer. World J. Gastroenterol. 2015;21:11740–11747. doi: 10.3748/wjg.v21.i41.11740. PubMed DOI PMC
Gunawardene A., Corfe B.M., Staton C.A. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int. J. Exp. Pathol. 2011;92:219–231. doi: 10.1111/j.1365-2613.2011.00767.x. PubMed DOI PMC
Attene-Ramos M.S., Wagner E.D., Gaskins H.R., Plewa M.J. Hydrogen Sulfide Induces Direct Radical-Associated DNA Damage. Mol. Cancer Res. 2007;5:455–459. doi: 10.1158/1541-7786.MCR-06-0439. PubMed DOI
Attene-Ramos M.S., Nava G.M., Muellner M.G., Wagner E.D., Plewa M.J., Gaskins H.R. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ. Mol. Mutagen. 2010;51:304–314. doi: 10.1002/em.20546. PubMed DOI
Wallace J.L., Ferraz J.G., Muscara M. Hydrogen Sulfide: An Endogenous Mediator of Resolution of Inflammation and Injury. Antioxid. Redox Signal. 2012;17:58–67. doi: 10.1089/ars.2011.4351. PubMed DOI PMC
Flannigan K.L., Ferraz J.G.P., Wang R., Wallace J.L. Enhanced Synthesis and Diminished Degradation of Hydrogen Sulfide in Experimental Colitis: A Site-Specific, Pro-Resolution Mechanism. PLoS ONE. 2013;8:e71962. doi: 10.1371/journal.pone.0071962. PubMed DOI PMC
Hirata I., Naito Y., Takagi T., Mizushima K., Suzuki T., Omatsu T., Handa O., Ichikawa H., Ueda H., Yoshikawa T. Endogenous Hydrogen Sulfide Is an Anti-inflammatory Molecule in Dextran Sodium Sulfate-Induced Colitis in Mice. Dig. Dis. Sci. 2011;56:1379–1386. doi: 10.1007/s10620-010-1461-5. PubMed DOI
Motta J.-P., Flannigan K.L., Agbor T.A., Beatty J.K., Blackler R.W., Workentine M.L., Da Silva G.J., Wang R., Buret A.G., Wallace J.L. Hydrogen Sulfide Protects from Colitis and Restores Intestinal Microbiota Biofilm and Mucus Production. Inflamm. Bowel Dis. 2015;21:1006–1017. doi: 10.1097/MIB.0000000000000345. PubMed DOI
Calvert J., Jha S., Gundewar S., Elrod J., Ramachandran A., Pattillo C.B., Kevil C., Lefer D.J. Hydrogen Sulfide Mediates Cardioprotection Through Nrf2 Signaling. Circ. Res. 2009;105:365–374. doi: 10.1161/CIRCRESAHA.109.199919. PubMed DOI PMC
Nguyen T., Nioi P., Pickett C.B. The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. J. Biol. Chem. 2009;284:13291–13295. doi: 10.1074/jbc.R900010200. PubMed DOI PMC
Wang L., Chen Y., Sternberg P., Cai J. Essential Roles of the PI3 Kinase/Akt Pathway in Regulating Nrf2-Dependent Anti-oxidant Functions in the RPE. Investig. Ophthalmol. Vis. Sci. 2008;49:1671–1678. doi: 10.1167/iovs.07-1099. PubMed DOI PMC
Morphology, microbiota, and metabolome along the intestinal tract of female turkeys