Detoxification, Hydrogen Sulphide Metabolism and Wound Healing Are the Main Functions That Differentiate Caecum Protein Expression from Ileum of Week-Old Chicken

. 2021 Nov 04 ; 11 (11) : . [epub] 20211104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34827887

Grantová podpora
RVO0518 Ministerstvo Zemědělství
INPOMED ATCZ194 Ministerstvo pro místní rozvoj

Sections of chicken gut differ in many aspects, e.g., the passage of digesta (continuous vs. discontinuous), the concentration of oxygen, and the density of colonising microbiota. Using an unbiased LC-MS/MS protocol, we compared protein expression in 18 ileal and 57 caecal tissue samples that originated from 7-day old ISA brown chickens. We found that proteins specific to the ileum were either structural (e.g., 3 actin isoforms, villin, or myosin 1A), or those required for nutrient digestion (e.g., sucrose isomaltase, maltase-glucoamylase, peptidase D) and absorption (e.g., fatty acid-binding protein 2 and 6 or bile acid-CoA:amino acid N-acyltransferase). On the other hand, proteins characteristic of the caecum were involved in sensing and limiting the consequences of oxidative stress (e.g., thioredoxin, peroxiredoxin 6), cell adhesion, and motility associated with wound healing (e.g., fibronectin 1, desmoyokin). These mechanisms are coupled with the activation of mechanisms suppressing the inflammatory response (galectin 1). Rather prominent were also expressions of proteins linked to hydrogen sulphide metabolism in caecum represented by cystathionin beta synthase, selenium-binding protein 1, mercaptopyruvate sulphurtransferase, and thiosulphate sulphurtransferase. Higher mRNA expression of nuclear factor, erythroid 2-like 2, the main oxidative stress transcriptional factor in caecum, further supported our observations.

Zobrazit více v PubMed

Svihus B., Choct M., Classen H. Function and nutritional roles of the avian caeca: A review. World’s Poult. Sci. J. 2013;69:249–264. doi: 10.1017/S0043933913000287. DOI

Isshiki Y., Nakahiro Y. Effect of Ceca Removal on Water Absorption in Chickens. Jpn. Poult. Sci. 1975;12:271–273. doi: 10.2141/jpsa.12.271. DOI

Sanders K.M., Koh S.D., Ro S., Ward S.M. Regulation of gastrointestinal motility—insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 2012;9:633–645. doi: 10.1038/nrgastro.2012.168. PubMed DOI PMC

Clench M.H. The Avian Cecum: Update and Motility Review. J. Exp. Zool. 1999;283:441–447. doi: 10.1002/(SICI)1097-010X(19990301/01)283:4/5<441::AID-JEZ13>3.0.CO;2-8. DOI

Videnska P., Faldynova M., Juricova H., Babak V., Sisak F., Havlickova H., Rychlik I. Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin. BMC Vet. Res. 2013;9:30. doi: 10.1186/1746-6148-9-30. PubMed DOI PMC

Videnska P., Sedlar K., Lukac M., Faldynova M., Gerzova L., Cejkova D., Sisak F., Rychlik I. Succession and Replacement of Bacterial Populations in the Caecum of Egg Laying Hens over Their Whole Life. PLoS ONE. 2014;9:e115142. doi: 10.1371/journal.pone.0115142. PubMed DOI PMC

Pol A., Renkema G.H., Tangerman A., Winkel E.G., Engelke U.F., De Brouwer A.P.M., Lloyd K.C., Araiza R.S., Heuvel L.V.D., Omran H., et al. Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat. Genet. 2018;50:120–129. doi: 10.1038/s41588-017-0006-7. PubMed DOI PMC

Zheng L., Kelly C., Colgan S.P. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. Am. J. Physiol.-Cell Physiol. 2015;309:C350–C360. doi: 10.1152/ajpcell.00191.2015. PubMed DOI PMC

Colgan S.P., Taylor C. Hypoxia: An alarm signal during intestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 2010;7:281–287. doi: 10.1038/nrgastro.2010.39. PubMed DOI PMC

Volf J., Polansky O., Sekelova Z., Velge P., Schouler C., Kaspers B., Rychlik I. Gene expression in the chicken caecum is dependent on microbiota composition. Veter. Res. 2017;48:85. doi: 10.1186/s13567-017-0493-7. PubMed DOI PMC

Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Volf J., Polansky O., Varmuzova K., Gerzova L., Sekelova Z., Faldynova M., Babak V., Medvecky M., Smith A.L., Kaspers B., et al. Transient and Prolonged Response of Chicken Cecum Mucosa to Colonization with Different Gut Microbiota. PLoS ONE. 2016;11:e0163932. doi: 10.1371/journal.pone.0163932. PubMed DOI PMC

Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC

Bertocchi M., Sirri F., Palumbo O., Luise D., Maiorano G., Bosi P., Trevisi P. Exploring Differential Transcriptome between Jejunal and Cecal Tissue of Broiler Chickens. Animals. 2019;9:221. doi: 10.3390/ani9050221. PubMed DOI PMC

Tyska M.J., Mackey A.T., Huang J.-D., Copeland N.G., Jenkins N.A., Mooseker M.S. Myosin-1a Is Critical for Normal Brush Border Structure and Composition. Mol. Biol. Cell. 2005;16:2443–2457. doi: 10.1091/mbc.e04-12-1116. PubMed DOI PMC

Sim L., Quezada-Calvillo R., Sterchi E.E., Nichols B.L., Rose D.R. Human Intestinal Maltase–Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity. J. Mol. Biol. 2008;375:782–792. doi: 10.1016/j.jmb.2007.10.069. PubMed DOI

Danielsen E.M. Tyrosine Sulfation, a Post-Translational Modification of Microvillar Enzymes in the Small Intestinal Entero-cyte. EMBO J. 1987;6:2891–2896. doi: 10.1002/j.1460-2075.1987.tb02592.x. PubMed DOI PMC

Sim L., Willemsma C., Mohan S., Naim H.Y., Pinto B.M., Rose D.R. Structural Basis for Substrate Selectivity in Human Maltase-Glucoamylase and Sucrase-Isomaltase N-terminal Domains. J. Biol. Chem. 2010;285:17763–17770. doi: 10.1074/jbc.M109.078980. PubMed DOI PMC

Praslickova D., Torchia E.C., Sugiyama M.G., Magrane E.J., Zwicker B.L., Kolodzieyski L., Agellon L.B. The Ileal Lipid Binding Protein Is Required for Efficient Absorption and Transport of Bile Acids in the Distal Portion of the Murine Small Intestine. PLoS ONE. 2012;7:e50810. doi: 10.1371/journal.pone.0050810. PubMed DOI PMC

Huang E., Hynes M.J., Zhang T., Ginestier C., Dontu G., Appelman H., Fields J.Z., Wicha M.S., Boman B.M. Aldehyde Dehydrogenase 1 Is a Marker for Normal and Malignant Human Colonic Stem Cells (SC) and Tracks SC Overpopulation during Colon Tumorigenesis. Cancer Res. 2009;69:3382–3389. doi: 10.1158/0008-5472.CAN-08-4418. PubMed DOI PMC

Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int. 2019;2019:3904645. doi: 10.1155/2019/3904645. PubMed DOI PMC

Taskoparan B., Seza E.G., Demirkol S., Tunçer S., Stefek M., Gure A.O., Banerjee S. Opposing roles of the aldo-keto reductases AKR1B1 and AKR1B10 in colorectal cancer. Cell. Oncol. (Dordr.) 2017;40:563–578. doi: 10.1007/s13402-017-0351-7. PubMed DOI

Nanson J.D., Forwood J.K. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis. PLoS ONE. 2015;10:e0141543. doi: 10.1371/journal.pone.0141543. PubMed DOI PMC

Mayoral J.G., Leonard K.T., DeFelipe L.A., Turjansksi A.G., Nouzova M., Noriegal F.G. Functional analysis of a mosquito short-chain dehydrogenase cluster. Arch. Insect Biochem. Physiol. 2013;82:96–115. doi: 10.1002/arch.21078. PubMed DOI PMC

Li H., Li Y., Yang L., Zhang D., Liu Z., Wang Y., Han R., Li G., Li Z., Tian Y., et al. Identification of a Novel Lipid Metabolism-Associated Hepatic Gene Family Induced by Estrogen via ERα in Chicken (Gallus gallus) Front. Genet. 2020;11:271. doi: 10.3389/fgene.2020.00271. PubMed DOI PMC

Yodoi J., Matsuo Y., Tian H., Masutani H., Inamoto T. Anti-Inflammatory Thioredoxin Family Proteins for Medicare, Healthcare and Aging Care. Nutrients. 2017;9:1081. doi: 10.3390/nu9101081. PubMed DOI PMC

Bindoli A., Fukuto J.M., Forman H.J. Thiol Chemistry in Peroxidase Catalysis and Redox Signaling. Antioxid. Redox Signal. 2008;10:1549–1564. doi: 10.1089/ars.2008.2063. PubMed DOI PMC

Maclean K.N., Greiner L.S., Evans J.R., Sood S.K., Lhotak S., Markham N.E., Stabler S.P., Allen R.H., Austin R.C., Balasubramaniam V., et al. Cystathionine Protects against Endoplasmic Reticulum Stress-induced Lipid Accumulation, Tissue Injury, and Apoptotic Cell Death. J. Biol. Chem. 2012;287:31994–32005. doi: 10.1074/jbc.M112.355172. PubMed DOI PMC

Wang X., Wang Y., Zhang L., Zhang D., Bai L., Kong W., Huang Y., Tang C., Du J., Jin H. L-Cystathionine Protects against Homocysteine-Induced Mitochondria-Dependent Apoptosis of Vascular Endothelial Cells. Oxidative Med. Cell. Longev. 2019;2019:1253289. doi: 10.1155/2019/1253289. PubMed DOI PMC

Gobbi R.P., De Francesco N., Bondar C., Muglia C., Chirdo F., Rumbo M., Rocca A., Toscano M., Sambuelli A., A Rabinovich G., et al. A galectin-specific signature in the gut delineates Crohn’s disease and ulcerative colitis from other human inflammatory intestinal disorders. BioFactors. 2016;42:93–105. doi: 10.1002/biof.1252. PubMed DOI

Thijssen V., Postel R., Brandwijk R.J.M.G.E., Dings R., Nesmelova I., Satijn S., Verhofstad N., Nakabeppu Y., Baum L.G., Bakkers J., et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc. Natl. Acad. Sci. USA. 2006;103:15975–15980. doi: 10.1073/pnas.0603883103. PubMed DOI PMC

Wu Y., Liu M., Li Z., Wu X.-B., Wang Y., Wang Y., Nie M., Huang F., Ju J., Ma C., et al. LYAR promotes colorectal cancer cell mobility by activating galectin-1 expression. Oncotarget. 2015;6:32890–32901. doi: 10.18632/oncotarget.5335. PubMed DOI PMC

Peng Y., Ye Y., Jia J., He Y., Yang Z., Zhu X., Huang H., Wang W., Geng L., Yin S., et al. Galectin-1-induced tolerogenic dendritic cells combined with apoptotic lymphocytes prolong liver allograft survival. Int. Immunopharmacol. 2018;65:470–482. doi: 10.1016/j.intimp.2018.10.019. PubMed DOI

Garin M.I., Chu C.-C., Golshayan D., Cernuda-Morollón E., Wait R., Lechler R.I. Galectin-1: A key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007;109:2058–2065. doi: 10.1182/blood-2006-04-016451. PubMed DOI

Fox J.W., Mayer U., Nischt R., Aumailley M., Reinhardt D., Wiedemann H., Mann K., Timpl R., Krieg T., Engel J. Re-combinant Nidogen Consists of Three Globular Domains and Mediates Binding of Laminin to Collagen Type IV. EMBO J. 1991;10:3137–3146. doi: 10.1002/j.1460-2075.1991.tb04875.x. PubMed DOI PMC

Reinhardt D., Mann K., Nischt R., Fox J., Chu M., Krieg T., Timpl R. Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. J. Biol. Chem. 1993;268:10881–10887. doi: 10.1016/S0021-9258(18)82067-1. PubMed DOI

Pöschl E., Fox J., Block D., Mayer U., Timpl R. Two non-contiguous regions contribute to nidogen binding to a single EGF-like motif of the laminin gamma 1 chain. EMBO J. 1994;13:3741–3747. doi: 10.1002/j.1460-2075.1994.tb06683.x. PubMed DOI PMC

Pankov R., Yamada K. Fibronectin at a glance. J. Cell Sci. 2002;115:3861–3863. doi: 10.1242/jcs.00059. PubMed DOI

Shankar J., Messenberg A., Chan J., Underhill T.M., Foster L.J., Nabi I.R. Pseudopodial Actin Dynamics Control Epithelial-Mesenchymal Transition in Metastatic Cancer Cells. Cancer Res. 2010;70:3780–3790. doi: 10.1158/0008-5472.CAN-09-4439. PubMed DOI

Mejillano M.R., Kojima S.-I., Applewhite D.A., Gertler F.B., Svitkina T.M., Borisy G.G. Lamellipodial Versus Filopodial Mode of the Actin Nanomachinery: Pivotal Role of the Filament Barbed End. Cell. 2004;118:363–373. doi: 10.1016/j.cell.2004.07.019. PubMed DOI

Ammer A.G., Weed S.A. Cortactin branches out: Roles in regulating protrusive actin dynamics. Cell Motil. Cytoskelet. 2008;65:687–707. doi: 10.1002/cm.20296. PubMed DOI PMC

Kirfel J., Pantelis D., Kabba M., Kahl P., Röper A., Kalff J.C., Buettner R. Impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen metabolism. Exp. Cell Res. 2008;314:3684–3691. doi: 10.1016/j.yexcr.2008.09.023. PubMed DOI

Zhang W., Jiang B., Guo Z., Sardet C., Zou B., Lam C.S., Li J., He M.-L., Lan H.-Y., Pang R., et al. Four-and-a-half LIM protein 2 promotes invasive potential and epithelial-mesenchymal transition in colon cancer. Carcinogenesis. 2010;31:1220–1229. doi: 10.1093/carcin/bgq094. PubMed DOI

Wixler V. The role of FHL2 in wound healing and inflammation. FASEB J. 2019;33:7799–7809. doi: 10.1096/fj.201802765RR. PubMed DOI

Aktar R., Peiris M., Fikree A., Cibert-Goton V., Walmsley M., Tough I.R., Watanabe P., Araujo E.J.D.A., Mohammed S.D., Delalande J.-M., et al. The extracellular matrix glycoprotein tenascin-X regulates peripheral sensory and motor neurones. J. Physiol. 2018;596:4237–4251. doi: 10.1113/JP276300. PubMed DOI PMC

Kleist B., Poetsch M. Neuroendocrine differentiation: The mysterious fellow of colorectal cancer. World J. Gastroenterol. 2015;21:11740–11747. doi: 10.3748/wjg.v21.i41.11740. PubMed DOI PMC

Gunawardene A., Corfe B.M., Staton C.A. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int. J. Exp. Pathol. 2011;92:219–231. doi: 10.1111/j.1365-2613.2011.00767.x. PubMed DOI PMC

Attene-Ramos M.S., Wagner E.D., Gaskins H.R., Plewa M.J. Hydrogen Sulfide Induces Direct Radical-Associated DNA Damage. Mol. Cancer Res. 2007;5:455–459. doi: 10.1158/1541-7786.MCR-06-0439. PubMed DOI

Attene-Ramos M.S., Nava G.M., Muellner M.G., Wagner E.D., Plewa M.J., Gaskins H.R. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ. Mol. Mutagen. 2010;51:304–314. doi: 10.1002/em.20546. PubMed DOI

Wallace J.L., Ferraz J.G., Muscara M. Hydrogen Sulfide: An Endogenous Mediator of Resolution of Inflammation and Injury. Antioxid. Redox Signal. 2012;17:58–67. doi: 10.1089/ars.2011.4351. PubMed DOI PMC

Flannigan K.L., Ferraz J.G.P., Wang R., Wallace J.L. Enhanced Synthesis and Diminished Degradation of Hydrogen Sulfide in Experimental Colitis: A Site-Specific, Pro-Resolution Mechanism. PLoS ONE. 2013;8:e71962. doi: 10.1371/journal.pone.0071962. PubMed DOI PMC

Hirata I., Naito Y., Takagi T., Mizushima K., Suzuki T., Omatsu T., Handa O., Ichikawa H., Ueda H., Yoshikawa T. Endogenous Hydrogen Sulfide Is an Anti-inflammatory Molecule in Dextran Sodium Sulfate-Induced Colitis in Mice. Dig. Dis. Sci. 2011;56:1379–1386. doi: 10.1007/s10620-010-1461-5. PubMed DOI

Motta J.-P., Flannigan K.L., Agbor T.A., Beatty J.K., Blackler R.W., Workentine M.L., Da Silva G.J., Wang R., Buret A.G., Wallace J.L. Hydrogen Sulfide Protects from Colitis and Restores Intestinal Microbiota Biofilm and Mucus Production. Inflamm. Bowel Dis. 2015;21:1006–1017. doi: 10.1097/MIB.0000000000000345. PubMed DOI

Calvert J., Jha S., Gundewar S., Elrod J., Ramachandran A., Pattillo C.B., Kevil C., Lefer D.J. Hydrogen Sulfide Mediates Cardioprotection Through Nrf2 Signaling. Circ. Res. 2009;105:365–374. doi: 10.1161/CIRCRESAHA.109.199919. PubMed DOI PMC

Nguyen T., Nioi P., Pickett C.B. The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. J. Biol. Chem. 2009;284:13291–13295. doi: 10.1074/jbc.R900010200. PubMed DOI PMC

Wang L., Chen Y., Sternberg P., Cai J. Essential Roles of the PI3 Kinase/Akt Pathway in Regulating Nrf2-Dependent Anti-oxidant Functions in the RPE. Investig. Ophthalmol. Vis. Sci. 2008;49:1671–1678. doi: 10.1167/iovs.07-1099. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Morphology, microbiota, and metabolome along the intestinal tract of female turkeys

. 2022 Nov ; 101 (11) : 102046. [epub] 20220703

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...