Infectious bursal disease virus infection leads to changes in the gut associated-lymphoid tissue and the microbiota composition
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29390031
PubMed Central
PMC5794159
DOI
10.1371/journal.pone.0192066
PII: PONE-D-17-33345
Knihovny.cz E-zdroje
- MeSH
- cékum mikrobiologie MeSH
- infekce viry z čeledi Birnaviridae patologie veterinární virologie MeSH
- kur domácí MeSH
- lymfoidní tkáň mikrobiologie patologie MeSH
- mikrobiota * MeSH
- nemoci drůbeže patologie virologie MeSH
- virus infekční bursitidy drůbeže patogenita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive poultry disease. IBD virus (IBDV) is the causative agent, which may lead to high morbidity and mortality rates in susceptible birds. IBDV-pathogenesis studies have focused mainly on primary lymphoid organs. It is not known if IBDV infection may modify the development of the gut associated lymphoid tissues (GALT) as well as the microbiota composition. The aim of the present study was to investigate the effects of IBDV-infection on the bursa of Fabricius (BF), caecal tonsils (CT) and caecum, and to determine the effects on the gut microbiota composition in the caecum. Commercial broiler chickens were inoculated with a very virulent (vv) strain of IBDV at 14 (Experiment 2) or 15 (Experiment 1) days post hatch (dph). Virus replication, lesion development, immune parameters including numbers of T and B lymphocytes, macrophages, as well as the gut microbiota composition were compared between groups. Rapid IBDV-replication was detected in the BF, CT and caecum. It was accompanied by histological lesions including an infiltration of heterophils. In addition a significant reduction in the total mucosal thickness of the caecum was observed in vvIBDV-infected birds compared to virus-free controls (P < 0.05). vvIBDV infection also led to an increase in T lymphocyte numbers and macrophages, as well as a decrease in the number of B lymphocytes in the lamina propria of the caecum, and in the caecal tonsils. Illumina sequencing analysis indicated that vvIBDV infection also induced changes in the abundance of Clostridium XIVa and Faecalibacterium over time. Overall, our results suggested that vvIBDV infection had a significant impact on the GALT and led to a modulation of gut microbiota composition, which may lead to a higher susceptibility of affected birds for pathogens invading through the gut.
University of Veterinary Medicine Hannover Clinic for Poultry Bünteweg Hannover Germany
Veterinary Diagnostic Pathology Fort Valley Virginia United States of America
Zobrazit více v PubMed
Cosgrove A. An apparently new disease of chickens: avian nephrosis. Avian Dis. 1962;6(3):385–9.
Qi X, Chen Y, Ren X, Zhang L, Gao L, Wang N, et al. A reassortment vaccine candidate as the improved formulation to induce protection against very virulent infectious bursal disease virus. Vaccine. 2014;32(13):1436–43. doi: 10.1016/j.vaccine.2014.01.042 PubMed DOI
Rehman Z, Meng C, Umar S, Munir M, Ding C. Interaction of infectious bursal disease virus with the immune system of poultry. Worlds Poult Sci J. 2016;72(4):805–20.
Hoerr FJ. Clinical aspects of immunosuppression in poultry. Avian Dis. 2010;54(1):2–15. doi: 10.1637/8909-043009-Review.1 PubMed DOI
Befus AD, Johnston N, Leslie G, Bienenstock J. Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer's patches. J Immunol. 1980;125(6):2626–32. PubMed
Liebler-Tenorio EM, Pabst R. MALT structure and function in farm animals. Vet Res. 2006;37(3):257–80. doi: 10.1051/vetres:2006001 PubMed DOI
Muller R, Kaufer I, Reinacher M, Weiss E. Immunofluorescent studies of early virus propagation after oral infection with infectious bursal disease virus (IBDV). Zentralbl Veterinarmed B. 1979;26(5):345–52. PubMed
Saif Y. Infectious bursal disease and hemorrhagic enteritis. Poult Sci. 1998;77(8):1186–9. PubMed
Wang D, Liu Y, She R, Xu J, Liu L, Xiong J, et al. Reduced mucosal injury of SPF chickens by mast cell stabilization after infection with very virulent infectious bursal disease virus. Vet Immunol Immunopathol. 2009;131(3):229–37. PubMed
Robinson CM, Pfeiffer JK. Viruses and the microbiota. Annu Rev Virol. 2014;1:55–69. doi: 10.1146/annurev-virology-031413-085550 PubMed DOI PMC
Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73. doi: 10.1126/science.1223490 PubMed DOI PMC
Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci. 2002;99(24):15451–5. doi: 10.1073/pnas.202604299 PubMed DOI PMC
Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science. 2000;288(5474):2222–6. PubMed
Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Natl Immunol. 2011;12(1):21–7. PubMed
Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(6):1131S–41S. PubMed
Dillon S, Lee E, Kotter C, Austin G, Dong Z, Hecht D, et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 2014;7(4):983–94. doi: 10.1038/mi.2013.116 PubMed DOI PMC
Perumbakkam S, Hunt HD, Cheng HH. Marek's disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication. FEMS Microbiol Ecol. 2014;90(1):300–12. doi: 10.1111/1574-6941.12392 PubMed DOI
Eterradossi N, Toquin D, Rivallan G, Guittet M. Modified activity of a VP2-located neutralizing epitope on various vaccine, pathogenic and hypervirulent strains of infectious bursal disease virus. Arch Virol. 1997;142(2):255–70. . PubMed
Tippenhauer M, Heller DE, Weigend S, Rautenschlein S. The host genotype influences infectious bursal disease virus pathogenesis in chickens by modulation of T cells responses and cytokine gene expression. Dev Comp Immunol. 2013;40(1):1–10. doi: 10.1016/j.dci.2012.10.013 PubMed DOI
Block H, Meyer-Block K, Rebeski DE, Scharr H, De Wit S, Rohn K, et al. A field study on the significance of vaccination against infectious bursal disease virus (IBDV) at the optimal time point in broiler flocks with maternally derived IBDV antibodies. Avian Pathol. 2007;36(5):401–9. doi: 10.1080/03079450701589175 PubMed DOI
Rautenschlein S, von Samson-Himmelstjerna G, Haase C. A comparison of immune responses to infection with virulent infectious bursal disease virus (IBDV) between specific-pathogen-free chickens infected at 12 and 28 days of age. Vet Immunol Immunopathol. 2007;115(3–4):251–60. doi: 10.1016/j.vetimm.2006.11.002 PubMed DOI
Humphrey S, Chaloner G, Kemmett K, Davidson N, Williams N, Kipar A, et al. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. mBio. 2014;5(4):e01364–14. doi: 10.1128/mBio.01364-14 PubMed DOI PMC
Schwarz A, Gauly M, Abel H, Daş G, Humburg J, Rohn K, et al. Immunopathogenesis of Ascaridia galli infection in layer chicken. Dev Comp Immunol. 2011;35(7):774–84. doi: 10.1016/j.dci.2011.02.012 PubMed DOI
Han Z, Pielsticker C, Gerzova L, Rychlik I, Rautenschlein S. The influence of age on Campylobacter jejuni infection in chicken. Dev Comp Immunol. 2016;62:58–71. doi: 10.1016/j.dci.2016.04.020 PubMed DOI
Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Characterisation of the most important metabolic pathways and biological processes expressed in chicken caecal microbiota. Appl Environ Microbiol. 2015:AEM. 03473–15. PubMed PMC
de Wit J.J. Gumboro disease: estimation of optimal time of vaccination by the Deventer formula. Polish Vet J. 1998. 3: 19–22.
Aricibasi M, Jung A, Heller ED, Rautenschlein S. Differences in genetic background influence the induction of innate and acquired immune responses in chickens depending on the virulence of the infecting infectious bursal disease virus (IBDV) strain. Vet Immunol Immunopathol. 2010;135(1):79–92. PubMed
Tippenhauer M, Heller DE, Weigend S, Rautenschlein S. The host genotype influences infectious bursal disease virus pathogenesis in chickens by modulation of T cells responses and cytokine gene expression. Dev Comp Immunol. 2013;40(1):1–10. doi: 10.1016/j.dci.2012.10.013 PubMed DOI
Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 2014;5(1):108–19. doi: 10.4161/gmic.26945 PubMed DOI PMC
Yegani M, Korver D. Factors affecting intestinal health in poultry. Poult Sci. 2008;87(10):2052–63. doi: 10.3382/ps.2008-00091 PubMed DOI PMC
Sharma J. The avian immune system Diseases of Poultry Saif YM, ed Iowa State University Press, Ames: 2003:5–16.
Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol. 2016;9(4):606–25. doi: 10.1177/1756283X16644242 PubMed DOI PMC
Round JL, Mazmanian SK. The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313 doi: 10.1038/nri2515 PubMed DOI PMC
Fadly AM, Nazerian K. Pathogenesis of infectious bursal disease in chickens infected with virus at various ages. Avian Dis. 1983;27(3):714–23. PubMed
Ley DH, Yamamoto R, Bickford AA. The pathogenesis of infectious bursal disease: serologic, histopathologic, and clinical chemical observations. Avian Dis. 1983;27(4):1060–85. PubMed
Tanimura N, Tsukamoto K, Nakamura K, Narita M, Maeda M. Association between pathogenicity of infectious bursal disease virus and viral antigen distribution detected by immunohistochemistry. Avian Dis. 1995:9–20. PubMed
Olah I, Glick B. Structure of the germinal centers in the chicken caecal tonsil: light and electron microscopic and autoradiographic studies. Poult Sci. 1979;58(1):195–210. PubMed
Wang D, Xiong J, She R, Liu L, Zhang Y, Luo D, et al. Mast cell mediated inflammatory response in chickens after infection with very virulent infectious bursal disease virus. Vet Immunol Immunopathol. 2008;124(1):19–28. PubMed
Wang D, Zhou X, She R, Xiong J, Sun Q, Peng K, et al. Impaired intestinal mucosal immunity in specific-pathogen-free chickens after infection with very virulent infectious bursal disease virus. Poult Sci. 2009;88(8):1623–8. doi: 10.3382/ps.2009-00124 PubMed DOI
Specian RD, Oliver MG. Functional biology of intestinal goblet cells. Am J Physiol Cell Physiol. 1991;260(2):C183–C93. PubMed
Khan W. Physiological changes in the gastrointestinal tract and host protective immunity: learning from the mouse-Trichinella spiralis model. Parasitology. 2008;135(6):671–82. doi: 10.1017/S0031182008004381 PubMed DOI
Boshuizen JA, Reimerink JH, Korteland-van Male AM, van Ham VJ, Bouma J, Gerwig GJ, et al. Homeostasis and function of goblet cells during rotavirus infection in mice. Virology. 2005;337(2):210–21. doi: 10.1016/j.virol.2005.03.039 PubMed DOI
Sun Q, Shang Y, She R, Jiang T, Wang D, Ding Y, et al. Detection of intestinal intraepithelial lymphocytes, goblet cells and secretory IgA in the intestinal mucosa during Newcastle disease virus infection. Avian Pathol. 2013;42(6):541–5. doi: 10.1080/03079457.2013.845292 PubMed DOI
Ishikawa N, Wakelin D, Mahida YR. Role of T helper 2 cells in intestinal goblet cell hyperplasia in mice infected with Trichinella spiralis. Gastroenterology. 1997;113(2):542–9. PubMed
Miller H, Nawa Y. Nippostrongylus brasiliensis: intestinal goblet-cell response in adoptively immunized rats. Exp Parasitol. 1979;47(1):81–90. PubMed
Jiang JQ, He X-S, Feng N, Greenberg HB. Qualitative and quantitative characteristics of rotavirus-specific CD8 T cells vary depending on the route of infection. J Virol. 2008;82(14):6812–9. doi: 10.1128/JVI.00450-08 PubMed DOI PMC
Noujaim J, Filho RA, Lima E, Okamoto AS, Amorim RL, Neto RT. Detection of T lymphocytes in intestine of broiler chicks treated with Lactobacillus spp. and challenged with Salmonella enterica serovar Enteritidis. Poult Sci. 2008;87(5):927–33. doi: 10.3382/ps.2007-00476 PubMed DOI
Tanimura N, Sharma J. Appearance of T cells in the bursa of Fabricius and cecal tonsils during the acute phase of infectious bursal disease virus infection in chickens. Avian Dis. 1997:638–45. PubMed
Rauf A, Khatri M, Murgia MV, Saif YM. Fas/FasL and perforin–granzyme pathways mediated T cell cytotoxic responses in infectious bursal disease virus infected chickens. Results Immunol. 2012;2:112–9. doi: 10.1016/j.rinim.2012.05.003 PubMed DOI PMC
Kim I-J, Gagic M, Sharma JM. Recovery of antibody-producing ability and lymphocyte repopulation of bursal follicles in chickens exposed to infectious bursal disease virus. Avian Dis. 1999:401–13. PubMed
MacDonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science. 2005;307(5717):1920–5. doi: 10.1126/science.1106442 PubMed DOI
Petkov DI, Linnemann EG, Kapczynski DR, Sellers HS. Identification and characterization of two distinct bursal B-cell subpopulations following infectious bursal disease virus infection of White Leghorn chickens. Avian Dis. 2009;53: 347–355 doi: 10.1637/8456-082208-Reg.1 PubMed DOI
Bautista D, Elankumaran S, Heckert R. Effect of a variant infectious bursal disease virus (E/Del) on Salmonella typhimurium infection in commercial broiler chickens. Avian Dis. 2004;48(2):361–9. doi: 10.1637/7130 PubMed DOI
Nakamura K, Yuasa N, Abe H, Narita M. Effect of infectious bursal disease virus on infections produced by Escherichia coli of high and low virulence in chickens. Avian Pathol. 1990;19(4):713–21. doi: 10.1080/03079459008418726 PubMed DOI
Thompson G, Mohammed H, Bauman B, Naqi S. Systemic and local antibody responses to infectious bronchitis virus in chickens inoculated with infectious bursal disease virus and control chickens. Avian Dis. 1997:519–27. PubMed
Toro H, Van Santen V, Hoerr F, Breedlove C. Effects of chicken anemia virus and infectious bursal disease virus in commercial chickens. Avian Dis. 2009;53(1):94–102. doi: 10.1637/8408-071408-Reg.1 PubMed DOI
Molloy MJ, Grainger JR, Bouladoux N, Hand TW, Koo LY, Naik S, et al. Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis. Cell Host Microbe. 2013;14(3):318–28. doi: 10.1016/j.chom.2013.08.003 PubMed DOI PMC
Handley SA, Thackray LB, Zhao G, Presti R, Miller AD, Droit L, et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell. 2012;151(2):253–66. doi: 10.1016/j.cell.2012.09.024 PubMed DOI PMC
Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe. 2013;14(3):329–39. doi: 10.1016/j.chom.2013.08.006 PubMed DOI PMC
Moir S, Fauci AS. B cells in HIV infection and disease. Nat Rev Immunol. 2009;9(4):235–45. doi: 10.1038/nri2524 PubMed DOI PMC
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41. doi: 10.1126/science.1198469 PubMed DOI PMC
Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human Inflamm Bowel Dis. Proc Natl Acad Sci. 2007;104(34):13780–5. doi: 10.1073/pnas.0706625104 PubMed DOI PMC
Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci. 2008;105(43):16731–6. doi: 10.1073/pnas.0804812105 PubMed DOI PMC
Willing B, Halfvarson J, Dicksved J, Rosenquist M, Järnerot G, Engstrand L, et al. Twin studies reveal specific imbalances in the mucosa‐associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis.2009;15(5):653–60. doi: 10.1002/ibd.20783 PubMed DOI
Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11. doi: 10.1136/gut.2005.073817 PubMed DOI PMC
Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PloS One. 2011;6(1):e16393 doi: 10.1371/journal.pone.0016393 PubMed DOI PMC