Infectious bursal disease virus infection leads to changes in the gut associated-lymphoid tissue and the microbiota composition

. 2018 ; 13 (2) : e0192066. [epub] 20180201

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29390031

Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive poultry disease. IBD virus (IBDV) is the causative agent, which may lead to high morbidity and mortality rates in susceptible birds. IBDV-pathogenesis studies have focused mainly on primary lymphoid organs. It is not known if IBDV infection may modify the development of the gut associated lymphoid tissues (GALT) as well as the microbiota composition. The aim of the present study was to investigate the effects of IBDV-infection on the bursa of Fabricius (BF), caecal tonsils (CT) and caecum, and to determine the effects on the gut microbiota composition in the caecum. Commercial broiler chickens were inoculated with a very virulent (vv) strain of IBDV at 14 (Experiment 2) or 15 (Experiment 1) days post hatch (dph). Virus replication, lesion development, immune parameters including numbers of T and B lymphocytes, macrophages, as well as the gut microbiota composition were compared between groups. Rapid IBDV-replication was detected in the BF, CT and caecum. It was accompanied by histological lesions including an infiltration of heterophils. In addition a significant reduction in the total mucosal thickness of the caecum was observed in vvIBDV-infected birds compared to virus-free controls (P < 0.05). vvIBDV infection also led to an increase in T lymphocyte numbers and macrophages, as well as a decrease in the number of B lymphocytes in the lamina propria of the caecum, and in the caecal tonsils. Illumina sequencing analysis indicated that vvIBDV infection also induced changes in the abundance of Clostridium XIVa and Faecalibacterium over time. Overall, our results suggested that vvIBDV infection had a significant impact on the GALT and led to a modulation of gut microbiota composition, which may lead to a higher susceptibility of affected birds for pathogens invading through the gut.

Zobrazit více v PubMed

Cosgrove A. An apparently new disease of chickens: avian nephrosis. Avian Dis. 1962;6(3):385–9.

Qi X, Chen Y, Ren X, Zhang L, Gao L, Wang N, et al. A reassortment vaccine candidate as the improved formulation to induce protection against very virulent infectious bursal disease virus. Vaccine. 2014;32(13):1436–43. doi: 10.1016/j.vaccine.2014.01.042 PubMed DOI

Rehman Z, Meng C, Umar S, Munir M, Ding C. Interaction of infectious bursal disease virus with the immune system of poultry. Worlds Poult Sci J. 2016;72(4):805–20.

Hoerr FJ. Clinical aspects of immunosuppression in poultry. Avian Dis. 2010;54(1):2–15. doi: 10.1637/8909-043009-Review.1 PubMed DOI

Befus AD, Johnston N, Leslie G, Bienenstock J. Gut-associated lymphoid tissue in the chicken. I. Morphology, ontogeny, and some functional characteristics of Peyer's patches. J Immunol. 1980;125(6):2626–32. PubMed

Liebler-Tenorio EM, Pabst R. MALT structure and function in farm animals. Vet Res. 2006;37(3):257–80. doi: 10.1051/vetres:2006001 PubMed DOI

Muller R, Kaufer I, Reinacher M, Weiss E. Immunofluorescent studies of early virus propagation after oral infection with infectious bursal disease virus (IBDV). Zentralbl Veterinarmed B. 1979;26(5):345–52. PubMed

Saif Y. Infectious bursal disease and hemorrhagic enteritis. Poult Sci. 1998;77(8):1186–9. PubMed

Wang D, Liu Y, She R, Xu J, Liu L, Xiong J, et al. Reduced mucosal injury of SPF chickens by mast cell stabilization after infection with very virulent infectious bursal disease virus. Vet Immunol Immunopathol. 2009;131(3):229–37. PubMed

Robinson CM, Pfeiffer JK. Viruses and the microbiota. Annu Rev Virol. 2014;1:55–69. doi: 10.1146/annurev-virology-031413-085550 PubMed DOI PMC

Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73. doi: 10.1126/science.1223490 PubMed DOI PMC

Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci. 2002;99(24):15451–5. doi: 10.1073/pnas.202604299 PubMed DOI PMC

Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science. 2000;288(5474):2222–6. PubMed

Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Natl Immunol. 2011;12(1):21–7. PubMed

Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73(6):1131S–41S. PubMed

Dillon S, Lee E, Kotter C, Austin G, Dong Z, Hecht D, et al. An altered intestinal mucosal microbiome in HIV-1 infection is associated with mucosal and systemic immune activation and endotoxemia. Mucosal Immunol. 2014;7(4):983–94. doi: 10.1038/mi.2013.116 PubMed DOI PMC

Perumbakkam S, Hunt HD, Cheng HH. Marek's disease virus influences the core gut microbiome of the chicken during the early and late phases of viral replication. FEMS Microbiol Ecol. 2014;90(1):300–12. doi: 10.1111/1574-6941.12392 PubMed DOI

Eterradossi N, Toquin D, Rivallan G, Guittet M. Modified activity of a VP2-located neutralizing epitope on various vaccine, pathogenic and hypervirulent strains of infectious bursal disease virus. Arch Virol. 1997;142(2):255–70. . PubMed

Tippenhauer M, Heller DE, Weigend S, Rautenschlein S. The host genotype influences infectious bursal disease virus pathogenesis in chickens by modulation of T cells responses and cytokine gene expression. Dev Comp Immunol. 2013;40(1):1–10. doi: 10.1016/j.dci.2012.10.013 PubMed DOI

Block H, Meyer-Block K, Rebeski DE, Scharr H, De Wit S, Rohn K, et al. A field study on the significance of vaccination against infectious bursal disease virus (IBDV) at the optimal time point in broiler flocks with maternally derived IBDV antibodies. Avian Pathol. 2007;36(5):401–9. doi: 10.1080/03079450701589175 PubMed DOI

Rautenschlein S, von Samson-Himmelstjerna G, Haase C. A comparison of immune responses to infection with virulent infectious bursal disease virus (IBDV) between specific-pathogen-free chickens infected at 12 and 28 days of age. Vet Immunol Immunopathol. 2007;115(3–4):251–60. doi: 10.1016/j.vetimm.2006.11.002 PubMed DOI

Humphrey S, Chaloner G, Kemmett K, Davidson N, Williams N, Kipar A, et al. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. mBio. 2014;5(4):e01364–14. doi: 10.1128/mBio.01364-14 PubMed DOI PMC

Schwarz A, Gauly M, Abel H, Daş G, Humburg J, Rohn K, et al. Immunopathogenesis of Ascaridia galli infection in layer chicken. Dev Comp Immunol. 2011;35(7):774–84. doi: 10.1016/j.dci.2011.02.012 PubMed DOI

Han Z, Pielsticker C, Gerzova L, Rychlik I, Rautenschlein S. The influence of age on Campylobacter jejuni infection in chicken. Dev Comp Immunol. 2016;62:58–71. doi: 10.1016/j.dci.2016.04.020 PubMed DOI

Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Characterisation of the most important metabolic pathways and biological processes expressed in chicken caecal microbiota. Appl Environ Microbiol. 2015:AEM. 03473–15. PubMed PMC

de Wit J.J. Gumboro disease: estimation of optimal time of vaccination by the Deventer formula. Polish Vet J. 1998. 3: 19–22.

Aricibasi M, Jung A, Heller ED, Rautenschlein S. Differences in genetic background influence the induction of innate and acquired immune responses in chickens depending on the virulence of the infecting infectious bursal disease virus (IBDV) strain. Vet Immunol Immunopathol. 2010;135(1):79–92. PubMed

Tippenhauer M, Heller DE, Weigend S, Rautenschlein S. The host genotype influences infectious bursal disease virus pathogenesis in chickens by modulation of T cells responses and cytokine gene expression. Dev Comp Immunol. 2013;40(1):1–10. doi: 10.1016/j.dci.2012.10.013 PubMed DOI

Pan D, Yu Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 2014;5(1):108–19. doi: 10.4161/gmic.26945 PubMed DOI PMC

Yegani M, Korver D. Factors affecting intestinal health in poultry. Poult Sci. 2008;87(10):2052–63. doi: 10.3382/ps.2008-00091 PubMed DOI PMC

Sharma J. The avian immune system Diseases of Poultry Saif YM, ed Iowa State University Press, Ames: 2003:5–16.

Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol. 2016;9(4):606–25. doi: 10.1177/1756283X16644242 PubMed DOI PMC

Round JL, Mazmanian SK. The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313 doi: 10.1038/nri2515 PubMed DOI PMC

Fadly AM, Nazerian K. Pathogenesis of infectious bursal disease in chickens infected with virus at various ages. Avian Dis. 1983;27(3):714–23. PubMed

Ley DH, Yamamoto R, Bickford AA. The pathogenesis of infectious bursal disease: serologic, histopathologic, and clinical chemical observations. Avian Dis. 1983;27(4):1060–85. PubMed

Tanimura N, Tsukamoto K, Nakamura K, Narita M, Maeda M. Association between pathogenicity of infectious bursal disease virus and viral antigen distribution detected by immunohistochemistry. Avian Dis. 1995:9–20. PubMed

Olah I, Glick B. Structure of the germinal centers in the chicken caecal tonsil: light and electron microscopic and autoradiographic studies. Poult Sci. 1979;58(1):195–210. PubMed

Wang D, Xiong J, She R, Liu L, Zhang Y, Luo D, et al. Mast cell mediated inflammatory response in chickens after infection with very virulent infectious bursal disease virus. Vet Immunol Immunopathol. 2008;124(1):19–28. PubMed

Wang D, Zhou X, She R, Xiong J, Sun Q, Peng K, et al. Impaired intestinal mucosal immunity in specific-pathogen-free chickens after infection with very virulent infectious bursal disease virus. Poult Sci. 2009;88(8):1623–8. doi: 10.3382/ps.2009-00124 PubMed DOI

Specian RD, Oliver MG. Functional biology of intestinal goblet cells. Am J Physiol Cell Physiol. 1991;260(2):C183–C93. PubMed

Khan W. Physiological changes in the gastrointestinal tract and host protective immunity: learning from the mouse-Trichinella spiralis model. Parasitology. 2008;135(6):671–82. doi: 10.1017/S0031182008004381 PubMed DOI

Boshuizen JA, Reimerink JH, Korteland-van Male AM, van Ham VJ, Bouma J, Gerwig GJ, et al. Homeostasis and function of goblet cells during rotavirus infection in mice. Virology. 2005;337(2):210–21. doi: 10.1016/j.virol.2005.03.039 PubMed DOI

Sun Q, Shang Y, She R, Jiang T, Wang D, Ding Y, et al. Detection of intestinal intraepithelial lymphocytes, goblet cells and secretory IgA in the intestinal mucosa during Newcastle disease virus infection. Avian Pathol. 2013;42(6):541–5. doi: 10.1080/03079457.2013.845292 PubMed DOI

Ishikawa N, Wakelin D, Mahida YR. Role of T helper 2 cells in intestinal goblet cell hyperplasia in mice infected with Trichinella spiralis. Gastroenterology. 1997;113(2):542–9. PubMed

Miller H, Nawa Y. Nippostrongylus brasiliensis: intestinal goblet-cell response in adoptively immunized rats. Exp Parasitol. 1979;47(1):81–90. PubMed

Jiang JQ, He X-S, Feng N, Greenberg HB. Qualitative and quantitative characteristics of rotavirus-specific CD8 T cells vary depending on the route of infection. J Virol. 2008;82(14):6812–9. doi: 10.1128/JVI.00450-08 PubMed DOI PMC

Noujaim J, Filho RA, Lima E, Okamoto AS, Amorim RL, Neto RT. Detection of T lymphocytes in intestine of broiler chicks treated with Lactobacillus spp. and challenged with Salmonella enterica serovar Enteritidis. Poult Sci. 2008;87(5):927–33. doi: 10.3382/ps.2007-00476 PubMed DOI

Tanimura N, Sharma J. Appearance of T cells in the bursa of Fabricius and cecal tonsils during the acute phase of infectious bursal disease virus infection in chickens. Avian Dis. 1997:638–45. PubMed

Rauf A, Khatri M, Murgia MV, Saif YM. Fas/FasL and perforin–granzyme pathways mediated T cell cytotoxic responses in infectious bursal disease virus infected chickens. Results Immunol. 2012;2:112–9. doi: 10.1016/j.rinim.2012.05.003 PubMed DOI PMC

Kim I-J, Gagic M, Sharma JM. Recovery of antibody-producing ability and lymphocyte repopulation of bursal follicles in chickens exposed to infectious bursal disease virus. Avian Dis. 1999:401–13. PubMed

MacDonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science. 2005;307(5717):1920–5. doi: 10.1126/science.1106442 PubMed DOI

Petkov DI, Linnemann EG, Kapczynski DR, Sellers HS. Identification and characterization of two distinct bursal B-cell subpopulations following infectious bursal disease virus infection of White Leghorn chickens. Avian Dis. 2009;53: 347–355 doi: 10.1637/8456-082208-Reg.1 PubMed DOI

Bautista D, Elankumaran S, Heckert R. Effect of a variant infectious bursal disease virus (E/Del) on Salmonella typhimurium infection in commercial broiler chickens. Avian Dis. 2004;48(2):361–9. doi: 10.1637/7130 PubMed DOI

Nakamura K, Yuasa N, Abe H, Narita M. Effect of infectious bursal disease virus on infections produced by Escherichia coli of high and low virulence in chickens. Avian Pathol. 1990;19(4):713–21. doi: 10.1080/03079459008418726 PubMed DOI

Thompson G, Mohammed H, Bauman B, Naqi S. Systemic and local antibody responses to infectious bronchitis virus in chickens inoculated with infectious bursal disease virus and control chickens. Avian Dis. 1997:519–27. PubMed

Toro H, Van Santen V, Hoerr F, Breedlove C. Effects of chicken anemia virus and infectious bursal disease virus in commercial chickens. Avian Dis. 2009;53(1):94–102. doi: 10.1637/8408-071408-Reg.1 PubMed DOI

Molloy MJ, Grainger JR, Bouladoux N, Hand TW, Koo LY, Naik S, et al. Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis. Cell Host Microbe. 2013;14(3):318–28. doi: 10.1016/j.chom.2013.08.003 PubMed DOI PMC

Handley SA, Thackray LB, Zhao G, Presti R, Miller AD, Droit L, et al. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell. 2012;151(2):253–66. doi: 10.1016/j.cell.2012.09.024 PubMed DOI PMC

Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, et al. Alterations in the gut microbiota associated with HIV-1 infection. Cell Host Microbe. 2013;14(3):329–39. doi: 10.1016/j.chom.2013.08.006 PubMed DOI PMC

Moir S, Fauci AS. B cells in HIV infection and disease. Nat Rev Immunol. 2009;9(4):235–45. doi: 10.1038/nri2524 PubMed DOI PMC

Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41. doi: 10.1126/science.1198469 PubMed DOI PMC

Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human Inflamm Bowel Dis. Proc Natl Acad Sci. 2007;104(34):13780–5. doi: 10.1073/pnas.0706625104 PubMed DOI PMC

Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci. 2008;105(43):16731–6. doi: 10.1073/pnas.0804812105 PubMed DOI PMC

Willing B, Halfvarson J, Dicksved J, Rosenquist M, Järnerot G, Engstrand L, et al. Twin studies reveal specific imbalances in the mucosa‐associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis.2009;15(5):653–60. doi: 10.1002/ibd.20783 PubMed DOI

Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55(2):205–11. doi: 10.1136/gut.2005.073817 PubMed DOI PMC

Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PloS One. 2011;6(1):e16393 doi: 10.1371/journal.pone.0016393 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...