Common origin of ornithine-urea cycle in opisthokonts and stramenopiles

. 2020 Oct 07 ; 10 (1) : 16687. [epub] 20201007

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid33028894
Odkazy

PubMed 33028894
PubMed Central PMC7542463
DOI 10.1038/s41598-020-73715-8
PII: 10.1038/s41598-020-73715-8
Knihovny.cz E-zdroje

Eukaryotic complex phototrophs exhibit a colorful evolutionary history. At least three independent endosymbiotic events accompanied by the gene transfer from the endosymbiont to host assembled a complex genomic mosaic. Resulting patchwork may give rise to unique metabolic capabilities; on the other hand, it can also blur the reconstruction of phylogenetic relationships. The ornithine-urea cycle (OUC) belongs to the cornerstone of the metabolism of metazoans and, as found recently, also photosynthetic stramenopiles. We have analyzed the distribution and phylogenetic positions of genes encoding enzymes of the urea synthesis pathway in eukaryotes. We show here that metazoan and stramenopile OUC enzymes share common origins and that enzymes of the OUC found in primary algae (including plants) display different origins. The impact of this fact on the evolution of stramenopiles is discussed here.

Zobrazit více v PubMed

Allen AE, et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature. 2011;473:203–207. doi: 10.1038/nature10074. PubMed DOI

Smith SR, et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 2019 doi: 10.1038/s41467-019-12407-y. PubMed DOI PMC

Burki F, et al. Untangling the early diversification of eukaryotes: A phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc. Biol. Sci. 2016;283:20152802. PubMed PMC

Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. New phylogenomic analysis of the enigmatic phylum telonemia further resolves the eukaryote tree of life. Mol. Biol. Evol. 2019;36:757–765. doi: 10.1093/molbev/msz012. PubMed DOI PMC

Frickey T, Lupas AN. PhyloGenie: Automated phylome generation and analysis. Nucleic Acids Res. 2004;32:5231–5238. doi: 10.1093/nar/gkh867. PubMed DOI PMC

Keeling PJ, et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:20. doi: 10.1371/journal.pbio.1001889. PubMed DOI PMC

Edgar RRC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI

Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usabiltiy. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–2288. doi: 10.1093/bioinformatics/btp368. PubMed DOI

Burki F, Okamoto N, Pombert J-FJ-F, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: Phylogenomic evidence for separate origins. Proc. R. Soc. B Biol. Sci. 2012;279:2246–2254. doi: 10.1098/rspb.2011.2301. PubMed DOI PMC

Burki F, Shalchian-Tabrizi K, Pawlowski J. Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol. Lett. 2008;4:366–369. doi: 10.1098/rsbl.2008.0224. PubMed DOI PMC

Curtis BA, et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492:59–65. doi: 10.1038/nature11681. PubMed DOI

Nozaki H, et al. Phylogenetic implications of the CAD complex from the primitive red alga Cyanidioschyzon merolae (Cyanidiales, Rhodophyta) J. Phycol. 2005 doi: 10.1111/j.1529-8817.2005.00079.x. DOI

Zhang H, et al. The cyanobacterial ornithine–ammonia cycle involves an arginine dihydrolase. Nat. Chem. Biol. 2018;14:575–581. doi: 10.1038/s41589-018-0038-z. PubMed DOI

Cihlář J, Füssy Z, Horák A, Oborník M. Evolution of the tetrapyrrole biosynthetic pathway in secondary algae: Conservation, Redundancy and Replacement. PLoS One. 2016;11:e0166338. doi: 10.1371/journal.pone.0166338. PubMed DOI PMC

Davis PK, Wu G. Compartmentation and kinetics of urea cycle enzymes in porcine enterocytes. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 1998;119:527–537. doi: 10.1016/S0305-0491(98)00014-5. PubMed DOI

Reyes-Prieto A, Moustafa A. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes. Sci. Rep. 2012;2:20. doi: 10.1038/srep00955. PubMed DOI PMC

Füssy Z, Faitová T, Oborník M. Subcellular compartments interplay for carbon and nitrogen allocation in chromera velia and vitrella brassicaformis. Genome Biol. Evol. 2019;11:1765–1779. doi: 10.1093/gbe/evz123. PubMed DOI PMC

Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: A multitasked signaling gas in plants. Mol. Plant. 2015;8:506–520. doi: 10.1016/j.molp.2014.12.010. PubMed DOI

Neill S, et al. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 2008;59:165–176. doi: 10.1093/jxb/erm293. PubMed DOI

Gupta KJ, et al. The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Sci. 2011;181:520–526. doi: 10.1016/j.plantsci.2011.03.018. PubMed DOI

Vardi A, et al. A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol. 2006;4:0411–0419. doi: 10.1371/journal.pbio.0040060. PubMed DOI PMC

Vardi A. Cell signaling in marine diatoms. Commun. Integr. Biol. 2008;1:134–136. doi: 10.4161/cib.1.2.6867. PubMed DOI PMC

Kumar A, Castellano I, Patti FP, Palumbo A, Buia MC. Nitric oxide in marine photosynthetic organisms. Nitric Oxide. 2015;47:34–39. doi: 10.1016/j.niox.2015.03.001. PubMed DOI

Chow F, Pedersén M, Oliveira MC. Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta) J. Appl. Phycol. 2013;25:1847–1853. doi: 10.1007/s10811-013-0005-8. DOI

Estevez MS, Puntarulo S. Nitric oxide generation upon growth of Antarctic Chlorella sp. cells. Physiol. Plant. 2005;125:192–201. doi: 10.1111/j.1399-3054.2005.00561.x. DOI

Brown MW, et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol. Evol. 2018;10:427–433. doi: 10.1093/gbe/evy014. PubMed DOI PMC

Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 2004;5:123–135. doi: 10.1038/nrg1271. PubMed DOI

Moreira D, Deschamps P. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes. Cold Spring Harb. Perspect. Biol. 2014;6:20. doi: 10.1101/cshperspect.a016014. PubMed DOI PMC

Moustafa A, et al. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science (80) 2009;324:1724–1726. doi: 10.1126/science.1172983. PubMed DOI

Deschamps P, Moreira D. Reevaluating the green contribution to diatom genomes. Genome Biol. Evol. 2012;4:683–688. doi: 10.1093/gbe/evs053. PubMed DOI PMC

Dorrell RG, Smith AG. Do red and green make brown?: Perspectives on plastid acquisitions within chromalveolates. Eukaryot. Cell. 2011;10:856–868. doi: 10.1128/EC.00326-10. PubMed DOI PMC

Dorrell RG, et al. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. Elife. 2017;6:20. doi: 10.7554/eLife.23717. PubMed DOI PMC

Gile GH, et al. Distribution and phylogeny of EFL and EF-1α in euglenozoa suggest ancestral co-occurrence followed by differential loss. PLoS One. 2009;4:e5162. doi: 10.1371/journal.pone.0005162. PubMed DOI PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.1zcrjdfpr

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace