Common origin of ornithine-urea cycle in opisthokonts and stramenopiles
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
33028894
PubMed Central
PMC7542463
DOI
10.1038/s41598-020-73715-8
PII: 10.1038/s41598-020-73715-8
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- databáze genetické MeSH
- fylogeneze MeSH
- Heterokontophyta metabolismus MeSH
- močovina metabolismus MeSH
- ornithin metabolismus MeSH
- symbióza fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- močovina MeSH
- ornithin MeSH
Eukaryotic complex phototrophs exhibit a colorful evolutionary history. At least three independent endosymbiotic events accompanied by the gene transfer from the endosymbiont to host assembled a complex genomic mosaic. Resulting patchwork may give rise to unique metabolic capabilities; on the other hand, it can also blur the reconstruction of phylogenetic relationships. The ornithine-urea cycle (OUC) belongs to the cornerstone of the metabolism of metazoans and, as found recently, also photosynthetic stramenopiles. We have analyzed the distribution and phylogenetic positions of genes encoding enzymes of the urea synthesis pathway in eukaryotes. We show here that metazoan and stramenopile OUC enzymes share common origins and that enzymes of the OUC found in primary algae (including plants) display different origins. The impact of this fact on the evolution of stramenopiles is discussed here.
J Craig Venter Institute 10355 Science Center Drive San Diego CA 92121 USA
Scripps Institution of Oceanography 9500 Gilman Drive La Jolla CA 92093 USA
Zobrazit více v PubMed
Allen AE, et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature. 2011;473:203–207. doi: 10.1038/nature10074. PubMed DOI
Smith SR, et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat. Commun. 2019 doi: 10.1038/s41467-019-12407-y. PubMed DOI PMC
Burki F, et al. Untangling the early diversification of eukaryotes: A phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc. Biol. Sci. 2016;283:20152802. PubMed PMC
Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. New phylogenomic analysis of the enigmatic phylum telonemia further resolves the eukaryote tree of life. Mol. Biol. Evol. 2019;36:757–765. doi: 10.1093/molbev/msz012. PubMed DOI PMC
Frickey T, Lupas AN. PhyloGenie: Automated phylome generation and analysis. Nucleic Acids Res. 2004;32:5231–5238. doi: 10.1093/nar/gkh867. PubMed DOI PMC
Keeling PJ, et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:20. doi: 10.1371/journal.pbio.1001889. PubMed DOI PMC
Edgar RRC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI
Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usabiltiy. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Lartillot N, Lepage T, Blanquart S. PhyloBayes 3: A Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009;25:2286–2288. doi: 10.1093/bioinformatics/btp368. PubMed DOI
Burki F, Okamoto N, Pombert J-FJ-F, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: Phylogenomic evidence for separate origins. Proc. R. Soc. B Biol. Sci. 2012;279:2246–2254. doi: 10.1098/rspb.2011.2301. PubMed DOI PMC
Burki F, Shalchian-Tabrizi K, Pawlowski J. Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol. Lett. 2008;4:366–369. doi: 10.1098/rsbl.2008.0224. PubMed DOI PMC
Curtis BA, et al. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature. 2012;492:59–65. doi: 10.1038/nature11681. PubMed DOI
Nozaki H, et al. Phylogenetic implications of the CAD complex from the primitive red alga Cyanidioschyzon merolae (Cyanidiales, Rhodophyta) J. Phycol. 2005 doi: 10.1111/j.1529-8817.2005.00079.x. DOI
Zhang H, et al. The cyanobacterial ornithine–ammonia cycle involves an arginine dihydrolase. Nat. Chem. Biol. 2018;14:575–581. doi: 10.1038/s41589-018-0038-z. PubMed DOI
Cihlář J, Füssy Z, Horák A, Oborník M. Evolution of the tetrapyrrole biosynthetic pathway in secondary algae: Conservation, Redundancy and Replacement. PLoS One. 2016;11:e0166338. doi: 10.1371/journal.pone.0166338. PubMed DOI PMC
Davis PK, Wu G. Compartmentation and kinetics of urea cycle enzymes in porcine enterocytes. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 1998;119:527–537. doi: 10.1016/S0305-0491(98)00014-5. PubMed DOI
Reyes-Prieto A, Moustafa A. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes. Sci. Rep. 2012;2:20. doi: 10.1038/srep00955. PubMed DOI PMC
Füssy Z, Faitová T, Oborník M. Subcellular compartments interplay for carbon and nitrogen allocation in chromera velia and vitrella brassicaformis. Genome Biol. Evol. 2019;11:1765–1779. doi: 10.1093/gbe/evz123. PubMed DOI PMC
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: A multitasked signaling gas in plants. Mol. Plant. 2015;8:506–520. doi: 10.1016/j.molp.2014.12.010. PubMed DOI
Neill S, et al. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 2008;59:165–176. doi: 10.1093/jxb/erm293. PubMed DOI
Gupta KJ, et al. The emerging roles of nitric oxide (NO) in plant mitochondria. Plant Sci. 2011;181:520–526. doi: 10.1016/j.plantsci.2011.03.018. PubMed DOI
Vardi A, et al. A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol. 2006;4:0411–0419. doi: 10.1371/journal.pbio.0040060. PubMed DOI PMC
Vardi A. Cell signaling in marine diatoms. Commun. Integr. Biol. 2008;1:134–136. doi: 10.4161/cib.1.2.6867. PubMed DOI PMC
Kumar A, Castellano I, Patti FP, Palumbo A, Buia MC. Nitric oxide in marine photosynthetic organisms. Nitric Oxide. 2015;47:34–39. doi: 10.1016/j.niox.2015.03.001. PubMed DOI
Chow F, Pedersén M, Oliveira MC. Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta) J. Appl. Phycol. 2013;25:1847–1853. doi: 10.1007/s10811-013-0005-8. DOI
Estevez MS, Puntarulo S. Nitric oxide generation upon growth of Antarctic Chlorella sp. cells. Physiol. Plant. 2005;125:192–201. doi: 10.1111/j.1399-3054.2005.00561.x. DOI
Brown MW, et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol. Evol. 2018;10:427–433. doi: 10.1093/gbe/evy014. PubMed DOI PMC
Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 2004;5:123–135. doi: 10.1038/nrg1271. PubMed DOI
Moreira D, Deschamps P. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes. Cold Spring Harb. Perspect. Biol. 2014;6:20. doi: 10.1101/cshperspect.a016014. PubMed DOI PMC
Moustafa A, et al. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science (80) 2009;324:1724–1726. doi: 10.1126/science.1172983. PubMed DOI
Deschamps P, Moreira D. Reevaluating the green contribution to diatom genomes. Genome Biol. Evol. 2012;4:683–688. doi: 10.1093/gbe/evs053. PubMed DOI PMC
Dorrell RG, Smith AG. Do red and green make brown?: Perspectives on plastid acquisitions within chromalveolates. Eukaryot. Cell. 2011;10:856–868. doi: 10.1128/EC.00326-10. PubMed DOI PMC
Dorrell RG, et al. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. Elife. 2017;6:20. doi: 10.7554/eLife.23717. PubMed DOI PMC
Gile GH, et al. Distribution and phylogeny of EFL and EF-1α in euglenozoa suggest ancestral co-occurrence followed by differential loss. PLoS One. 2009;4:e5162. doi: 10.1371/journal.pone.0005162. PubMed DOI PMC
Dryad
10.5061/dryad.1zcrjdfpr