Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
31591397
PubMed Central
PMC6779911
DOI
10.1038/s41467-019-12407-y
PII: 10.1038/s41467-019-12407-y
Knihovny.cz E-zdroje
- MeSH
- biologické modely MeSH
- chloroplasty genetika metabolismus MeSH
- dusičnany metabolismus MeSH
- dusík metabolismus MeSH
- metabolické sítě a dráhy genetika MeSH
- metabolomika metody MeSH
- mitochondrie genetika metabolismus MeSH
- molekulární evoluce MeSH
- mořská voda mikrobiologie MeSH
- proteomika metody MeSH
- regulace genové exprese MeSH
- rozsivky genetika metabolismus MeSH
- signální transdukce genetika MeSH
- stanovení celkové genové exprese metody MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- dusičnany MeSH
- dusík MeSH
- uhlík MeSH
Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.
Departamento de Biologia Vegetal Universidade Federal de Viçosa Viçosa Minas Gerais 36570 900 Brazil
Department of Bioengineering University of California San Diego La Jolla CA 92093 USA
Division of Biological Sciences University of California San Diego La Jolla CA 92093 USA
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Max Planck Institut of Molecular Plant Physiology Am Mühlenberg 1 14476 Potsdam Germany
Microbial and Environmental Genomics J Craig Venter Institute La Jolla CA 92037 USA
Targenomix GmbH Wissenschaftspark Potsdam Golm 14476 Potsdam Germany
Zobrazit více v PubMed
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237 LP–237240. doi: 10.1126/science.281.5374.237. PubMed DOI
Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 2007;10:1170–1181. doi: 10.1111/j.1461-0248.2007.01117.x. PubMed DOI
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 2015;6:899. doi: 10.3389/fpls.2015.00899. PubMed DOI PMC
Krapp A. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr. Opin. Plant Biol. 2015;25:115–122. doi: 10.1016/j.pbi.2015.05.010. PubMed DOI
Todd, R. B. in Biochemistry and Molecular Biology 281–303 (Springer International Publishing, 2016).
Armbrust EV, et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86. doi: 10.1126/science.1101156. PubMed DOI
Bowler C, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239. doi: 10.1038/nature07410. PubMed DOI
Robertson DL, Tartar A. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis. Mol. Biol. Evol. 2006;23:1048–1055. doi: 10.1093/molbev/msj110. PubMed DOI
Allen AE, et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature. 2011;473:203. doi: 10.1038/nature10074. PubMed DOI
Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R. The place of diatoms in the biofuels industry. Biofuels. 2012;3:221–240. doi: 10.4155/bfs.11.157. DOI
Yang Z-K, et al. Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J. Appl. Phycol. 2014;26:73–82. doi: 10.1007/s10811-013-0050-3. PubMed DOI PMC
Levitan O, et al. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc. Natl. Acad. Sci. USA. 2015;112:412–417. doi: 10.1073/pnas.1419818112. PubMed DOI PMC
Alipanah L, Rohloff J, Winge P, Bones AM, Brembu T. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum. J. Exp. Bot. 2015;66:6281–6296. doi: 10.1093/jxb/erv340. PubMed DOI PMC
Remmers IM, et al. Orchestration of transcriptome, proteome and metabolome in the diatom Phaeodactylum tricornutum during nitrogen limitation. Algal Res. 2018;35:33–49. doi: 10.1016/j.algal.2018.08.012. DOI
Levering J, et al. Genome-scale model reveals metabolic basis of biomass partitioning in a model diatom. PLoS ONE. 2016;11:e0155038. doi: 10.1371/journal.pone.0155038. PubMed DOI PMC
Cresswell RC, Syrett PJ. Uptake of nitrate by the diatom Phaeodactylum tricornutum. J. Exp. Bot. 1981;32:19–25. doi: 10.1093/jxb/32.1.19. DOI
McCarthy James K., Smith Sarah R., McCrow John P., Tan Maxine, Zheng Hong, Beeri Karen, Roth Robyn, Lichtle Christian, Goodenough Ursula, Bowler Chris P., Dupont Christopher L., Allen Andrew E. Nitrate Reductase Knockout Uncouples Nitrate Transport from Nitrate Assimilation and Drives Repartitioning of Carbon Flux in a Model Pennate Diatom. The Plant Cell. 2017;29(8):2047–2070. doi: 10.1105/tpc.16.00910. PubMed DOI PMC
Sanz-Luque E, et al. THB1, a truncated hemoglobin, modulates nitric oxide levels and nitrate reductase activity. Plant J. 2015;81:467–479. doi: 10.1111/tpj.12744. PubMed DOI
Rayko, E., Maumus, F., Maheswari, U., Jabbari, K. & Bowler, C. Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. New Phytol. 188, 52–66 (2010). PubMed
Kang H-J, et al. A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem. J. 2014;457:391–400. doi: 10.1042/BJ20130862. PubMed DOI
Wang P, Du Y, Song C-P. Phosphorylation by MPK6. Plant Signal. Behav. 2011;6:889–891. doi: 10.4161/psb.6.6.15308. PubMed DOI PMC
Uhrig RG, Ng KKS, Moorhead GBG. PII in higher plants: a modern role for an ancient protein. Trends Plant Sci. 2009;14:505–511. doi: 10.1016/j.tplants.2009.07.003. PubMed DOI
Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J. Biol. Chem. 2008;283:32957–32967. doi: 10.1074/jbc.M804838200. PubMed DOI PMC
Vardi A, et al. A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr. Biol. 2008;18:895–899. doi: 10.1016/j.cub.2008.05.037. PubMed DOI
Higuera JJ, Fernandez E, Galvan A. Chlamydomonas NZF1, a tandem-repeated zinc finger factor involved in nitrate signalling by controlling the regulatory gene NIT 2. Plant. Cell Environ. 2014;37:2139–2150. doi: 10.1111/pce.12305. PubMed DOI
Vega-Palas MA, Flores E, Herrero A. NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol. Microbiol. 1992;6:1853–1859. doi: 10.1111/j.1365-2958.1992.tb01357.x. PubMed DOI
Imamura S, et al. R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae. Proc. Natl Acad. Sci. 2009;106:12548–12553. doi: 10.1073/pnas.0902790106. PubMed DOI PMC
Ghaemmaghami S, et al. Global analysis of protein expression in yeast. Nature. 2003;425:737–741. doi: 10.1038/nature02046. PubMed DOI
Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev. 1997;61:17–32. PubMed PMC
Marchive C, et al. Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat. Commun. 2013;4:1713. doi: 10.1038/ncomms2650. PubMed DOI
Pham J, Stam R, Heredia VM, Csukai M, Huitema E. An NMRA-like protein regulates gene expression in Phytophthora capsici to drive the infection cycle on tomato. Mol. Plant Microbe Interact. 2018;31:665–677. doi: 10.1094/MPMI-07-17-0193-R. PubMed DOI
Coschigano PW, Magasanik B. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione s-transferases. Mol. Cell. Biol. 1991;11:822–832. doi: 10.1128/MCB.11.2.822. PubMed DOI PMC
Stewart JJ, Coyne KJ. Analysis of raphidophyte assimilatory nitrate reductase reveals unique domain architecture incorporating a 2/2 hemoglobin. Plant Mol. Biol. 2011;77:565–575. doi: 10.1007/s11103-011-9831-8. PubMed DOI
de Mendoza A, et al. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc. Natl Acad. Sci. USA. 2013;110:E4858–E4866. doi: 10.1073/pnas.1311818110. PubMed DOI PMC
Matthijs M, Fabris M, Broos S, Vyverman W, Goossens A. Profiling of the early nitrogen stress response in the diatom Phaeodactylum tricornutum reveals a novel family of RING-domain transcription factors. Plant Physiol. 2016;170:489–498. doi: 10.1104/pp.15.01300. PubMed DOI PMC
Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble W. Quantifying similarity between motifs. Genome Biol. 2007;8:R24. doi: 10.1186/gb-2007-8-2-r24. PubMed DOI PMC
Khan A, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46:D260–D266. doi: 10.1093/nar/gkx1126. PubMed DOI PMC
Smith, S. Figshare: Nitrogen gene phylogenies. 10.6084/m9.figshare.6233198 (2018).
McDonald SM, Plant JN, Worden AZ. The mixed lineage nature of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a case study of micromonas. Mol. Biol. Evol. 2010;27:2268–2283. doi: 10.1093/molbev/msq113. PubMed DOI PMC
Fawcett S, Ward B. Phytoplankton succession and nitrogen utilization during the development of an upwelling bloom. Mar. Ecol. Prog. Ser. 2011;428:13–31. doi: 10.3354/meps09070. DOI
Carpenter EJ, Remsen CC, Schroeder BW. Comparison of laboratory and in situ measurements of urea decomposition by a marine diatom. J. Exp. Mar. Biol. Ecol. 1972;8:259–264. doi: 10.1016/0022-0981(72)90065-2. DOI
Antia NJ, Berland BR, Bonin DJ, Maestrini SY. Comparative evaluation of certain organic and inorganic sources of nitrogen for phototrophic growth of marine microalgae. J. Mar. Biol. Assoc. U. K. 1975;55:519–539. doi: 10.1017/S0025315400017239. DOI
Fisher NS, Cowdell RA. Growth of marine planktonic diatoms on inorganic and organic nitrogen. Mar. Biol. 1982;72:147–155. doi: 10.1007/BF00396915. DOI
Slocum RD. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol. Biochem. 2005;43:729–745. doi: 10.1016/j.plaphy.2005.06.007. PubMed DOI
Keeling PJ, et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889. doi: 10.1371/journal.pbio.1001889. PubMed DOI PMC
Prihoda J, et al. Chloroplast-mitochondria cross-talk in diatoms. J. Exp. Bot. 2012;63:1543–1557. doi: 10.1093/jxb/err441. PubMed DOI
Bailleul B, et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature. 2015;524:366–369. doi: 10.1038/nature14599. PubMed DOI
Smith SR, et al. Transcriptional orchestration of the global cellular response of a model pennate diatom to diel light cycling under iron limitation. PLoS Genet. 2016;12:e1006490. doi: 10.1371/journal.pgen.1006490. PubMed DOI PMC
Cresswell RC, Syrett PJ. Ammonium inhibition of nitrate uptake by the diatom, Phaeodactylum tricornutum. Plant Sci. Lett. 1979;14:321–325. doi: 10.1016/S0304-4211(79)90263-3. DOI
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Wang Y, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11:2019–2026. doi: 10.1002/pmic.201000722. PubMed DOI PMC
Kelly Ryan T., Page Jason S., Luo Quanzhou, Moore Ronald J., Orton Daniel J., Tang Keqi, Smith Richard D. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry. 2006;78(22):7796–7801. doi: 10.1021/ac061133r. PubMed DOI PMC
Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 1994;5:976–989. doi: 10.1016/1044-0305(94)80016-2. PubMed DOI
Kim S, et al. The generating function of CID, ETD, and CID/ETD pairs of tandem mass spectra: applications to database search. Mol. Cell. Proteomics. 2010;9:2840–2852. doi: 10.1074/mcp.M110.003731. PubMed DOI PMC
Monroe ME, Shaw JL, Daly DS, Adkins JN, Smith RD. MASIC: a software program for fast quantitation and flexible visualization of chromatographic profiles from detected LC–MS(/MS) features. Comput. Biol. Chem. 2008;32:215–217. doi: 10.1016/j.compbiolchem.2008.02.006. PubMed DOI PMC
Gschloessl B, Guermeur Y, Cock JM. HECTAR: A method to predict subcellular targeting in heterokonts. BMC Bioinformatics. 2008;9:393. doi: 10.1186/1471-2105-9-393. PubMed DOI PMC
Fukasawa Y, et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics. 2015;14:1113–1126. doi: 10.1074/mcp.M114.043083. PubMed DOI PMC
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 1996;241:779–786. doi: 10.1111/j.1432-1033.1996.00779.x. PubMed DOI
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007;2:953–971. doi: 10.1038/nprot.2007.131. PubMed DOI
Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–528. doi: 10.1111/tpj.12734. PubMed DOI PMC
Nielsen, H. in Predicting Secretory Proteins with SignalP 59–73 (Humana Press, New York, NY, 2017). PubMed
Siaut M, et al. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene. 2007;406:23–35. doi: 10.1016/j.gene.2007.05.022. PubMed DOI
Falciatore, Casotti, Leblanc, Abrescia, Bowler Transformation of nonselectable reporter genes in marine diatoms. Mar. Biotechnol. 1999;1:239–251. doi: 10.1007/PL00011773. PubMed DOI
Camacho C, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat. Protoc. 2006;1:387–396. doi: 10.1038/nprot.2006.59. PubMed DOI
Allen AE, et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA. 2008;105:10438–10443. doi: 10.1073/pnas.0711370105. PubMed DOI PMC
Schauer N, et al. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 2005;579:1332–1337. doi: 10.1016/j.febslet.2005.01.029. PubMed DOI
Heise R, et al. Flux profiling of photosynthetic carbon metabolism in intact plants. Nat. Protoc. 2014;9:1803–1824. doi: 10.1038/nprot.2014.115. PubMed DOI
Fernie AR, et al. Recommendations for reporting metabolite data. Plant Cell. 2011;23:2477–2482. doi: 10.1105/tpc.111.086272. PubMed DOI PMC
Broddrick JT, et al. Cross‐compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom Phaeodactylum tricornutum. New Phytol. 2019;222:1364–1379. doi: 10.1111/nph.15685. PubMed DOI PMC
Kleessen S, Irgang S, Klie S, Giavalisco P, Nikoloski Z. Integration of transcriptomics and metabolomics data specifies the metabolic response of Chlamydomonas to rapamycin treatment. Plant J. 2015;81:822–835. doi: 10.1111/tpj.12763. PubMed DOI
Bordbar A, et al. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics. Sci. Rep. 2017;7:46249. doi: 10.1038/srep46249. PubMed DOI PMC
Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol. 2013;7:74. doi: 10.1186/1752-0509-7-74. PubMed DOI PMC