Evolutionary and Molecular Aspects of Plastid Endosymbioses
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu úvodníky, úvodní články
PubMed
34827692
PubMed Central
PMC8615978
DOI
10.3390/biom11111694
PII: biom11111694
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- plastidy * metabolismus genetika MeSH
- symbióza * MeSH
- Publikační typ
- úvodní články MeSH
- úvodníky MeSH
Plastids are membrane-bound organelles that bestow phototrophic abilities to eukaryotes [...].
Faculty of Science BIOCEV Charles University 128 01 Prague Czech Republic
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Keeling P.J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Ann. Rev. Plant. Biol. 2013;64:583–607. doi: 10.1146/annurev-arplant-050312-120144. PubMed DOI
Archibald J.M. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 2015;25:R911–R921. doi: 10.1016/j.cub.2015.07.055. PubMed DOI
Oborník M. Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules. 2019;9:266. doi: 10.3390/biom9070266. PubMed DOI PMC
Larkum A.W.D., Lockhart P.J., Howe C.J. Shopping for plastids. Trends Plant Sci. 2007;12:189–195. doi: 10.1016/j.tplants.2007.03.011. PubMed DOI
Salomaki E.D., Kolísko M. There is treasure everywhere: Reductive plastid evolution in Apicomplexa in light of their close relatives. Biomolecules. 2019;9:378. doi: 10.3390/biom9080378. PubMed DOI PMC
Kwong W.K., del Campo J., Mathur V., Vermeij M.J.A., Keeling P.J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature. 2019;568:103–107. doi: 10.1038/s41586-019-1072-z. PubMed DOI
Keeling P.J., Mathur V., Kwong W.K. Corallicolids: The elusive coral-infecting apicomplexans. PLoS Pathog. 2021;17:e1009845. doi: 10.1371/journal.ppat.1009845. PubMed DOI PMC
Moore R.B., Oborník M., Janouškovec J., Chrudimský T., Vancová M., Green D.H., Wright S.W., Davies N.W., Bolch C.J.S., Heimann K., et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–963. doi: 10.1038/nature06635. PubMed DOI
Mathur V., Kolísko M., Hehenberger E., Irwin N.A.T., Leander B.S., Kristmudsson Á., Freeman M.A., Keeling P.J. Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 2019;29:2936–2941. doi: 10.1016/j.cub.2019.07.019. PubMed DOI
Hirakawa Y., Watanabe A. Organellar DNA polymerases in complex plastid-bearing algae. Biomolecules. 2019;9:140. doi: 10.3390/biom9040140. PubMed DOI PMC
Nonoyama T., Kazamia E., Nawaly H., Gao X., Tsuji Y., Matsuda Y., Bowler C., Tanaka T., Dorrell R.G. Metabolic innovations underpinning the origin and diversification of the diatom chloroplast. Biomolecules. 2019;9:322. doi: 10.3390/biom9080322. PubMed DOI PMC
Gruber A., Haferkamp I. Nucleotide transport and metabolism in diatoms. Biomolecules. 2019;9:761. doi: 10.3390/biom9120761. PubMed DOI PMC
Klinger C.M., Richardson E. Small genomes and big data: Adaptation of plastid genomics to the high-throughput era. Biomolecules. 2019;9:299. doi: 10.3390/biom9080299. PubMed DOI PMC
Green B.R. What happened to the phycobilisome? Biomolecules. 2019;9:748. doi: 10.3390/biom9110748. PubMed DOI PMC