Characterization of Aminoacyl-tRNA Synthetases in Chromerids

. 2019 Jul 31 ; 10 (8) : . [epub] 20190731

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31370303

Aminoacyl-tRNA synthetases (AaRSs) are enzymes that catalyze the ligation of tRNAs to amino acids. There are AaRSs specific for each amino acid in the cell. Each cellular compartment in which translation takes place (the cytosol, mitochondria, and plastids in most cases), needs the full set of AaRSs; however, individual AaRSs can function in multiple compartments due to dual (or even multiple) targeting of nuclear-encoded proteins to various destinations in the cell. We searched the genomes of the chromerids, Chromera velia and Vitrella brassicaformis, for AaRS genes: 48 genes encoding AaRSs were identified in C. velia, while only 39 AaRS genes were found in V. brassicaformis. In the latter alga, ArgRS and GluRS were each encoded by a single gene occurring in a single copy; only PheRS was found in three genes, while the remaining AaRSs were encoded by two genes. In contrast, there were nine cases for which C. velia contained three genes of a given AaRS (45% of the AaRSs), all of them representing duplicated genes, except AsnRS and PheRS, which are more likely pseudoparalogs (acquired via horizontal or endosymbiotic gene transfer). Targeting predictions indicated that AaRSs are not (or not exclusively), in most cases, used in the cellular compartment from which their gene originates. The molecular phylogenies of the AaRSs are variable between the specific types, and similar between the two investigated chromerids. While genes with eukaryotic origin are more frequently retained, there is no clear pattern of orthologous pairs between C. velia and V. brassicaformis.

Zobrazit více v PubMed

Moore R.B., Oborník M., Janouškovec J., Chrudimský T., Vancová M., Green D.H., Wright S.W., Davies N.W., Bolch C.J.S., Heimann K., et al. A photosynthetic alveolate closely related to apicomplexan parasites. Nature. 2008;451:959–963. doi: 10.1038/nature06635. PubMed DOI

Oborník M., Modrý D., Lukeš M., Černotíková-Stříbrná E., Cihlář J., Tesařová M., Kotabová E., Vancová M., Prášil O., Lukeš J. Morphology, Ultrastructure and Life Cycle of Vitrella brassicaformis n. sp., n. gen., a Novel Chromerid from the Great Barrier Reef. Protist. 2012;163:306–323. doi: 10.1016/j.protis.2011.09.001. PubMed DOI

Cumbo V.R., Baird A.H., Moore R.B., Negri A.P., Neilan B.A., Salih A., van Oppen M.J.H., Wang Y., Marquis C.P. Chromera velia is endosymbiotic in larvae of the reef corals Acropora digitifera and A. tenuis. Protist. 2013;164:237–244. doi: 10.1016/j.protis.2012.08.003. PubMed DOI

Janouškovec J., Horák A., Barott K.L., Rohwer F.L., Keeling P.J. Environmental distribution of coral-associated relatives of apicomplexan parasites. ISME J. 2013;7:444–447. doi: 10.1038/ismej.2012.129. PubMed DOI PMC

Füssy Z., Oborník M. Advances in Botanical Research. Volume 84. Academic Press; Cambridge, MA, USA: 2017. Chromerids and Their Plastids; pp. 187–218.

McFadden G.I., Waller R.F. Plastids in parasites of humans. Bioessays. 1997;19:1033–1040. doi: 10.1002/bies.950191114. PubMed DOI

Woo Y.H., Ansari H., Otto T.D., Linger C.M.K., Olisko M.K., Michálek J., Saxena A., Shanmugam D., Tayyrov A., Veluchamy A., et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife. 2015;4:e06974. doi: 10.7554/eLife.06974. PubMed DOI PMC

Flegontov P., Michálek J., Janouškovec J., Lai D.H., Jirků M., Hajdušková E., Tomčala A., Otto T.D., Keeling P.J., Pain A., et al. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol. Biol. Evol. 2015;32:1115–1131. doi: 10.1093/molbev/msv021. PubMed DOI

Oborník M., Janouškovec J., Chrudimský T., Lukeš J. Evolution of the apicoplast and its hosts: From heterotrophy to autotrophy and back again. Int. J. Parasitol. 2009;39:1–12. doi: 10.1016/j.ijpara.2008.07.010. PubMed DOI

Oborník M., Lukeš J. The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu. Rev. Microbiol. 2015;69:129–144. doi: 10.1146/annurev-micro-091014-104449. PubMed DOI

Oborník M., Lukeš J. International Review of Cell and Molecular Biology. Volume 306. Academic Press; Cambridge, MA, USA: 2013. Cell Biology of Chromerids: Autotrophic Relatives to Apicomplexan Parasites; pp. 333–369. PubMed

Oborník M., Kručinská J., Esson H. Life cycles of chromerids resemble those of colpodellids and apicomplexan parasites. Perspect. Phycol. 2016;3:21–27. doi: 10.1127/pip/2016/0038. DOI

Janouškovec J., Tikhonenkov D.V., Burki F., Howe A.T., Kolísko M., Mylnikov A.P., Keeling P.J. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. USA. 2015;112:10200–10207. doi: 10.1073/pnas.1423790112. PubMed DOI PMC

Füssy Z., Oborník M. Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts. Springer; Cham, Switzerland: 2017. Reductive Evolution of Apicomplexan Parasites from Phototrophic Ancestors; pp. 217–236.

Janouškovec J., Horák A., Oborník M., Lukeš J., Keeling P.J. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA. 2010;107:10949–10954. doi: 10.1073/pnas.1003335107. PubMed DOI PMC

Sobotka R., Esson H.J., Koník P., Trsková E., Moravcová L., Horák A., Dufková P., Oborník M. Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci. Rep. 2017;7:13214. doi: 10.1038/s41598-017-13575-x. PubMed DOI PMC

Füssy Z., Faitová T., Oborník M. Subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genome Biol. Evol. 2019 doi: 10.1093/gbe/evz123. PubMed DOI PMC

Ševcíková T., Horák A., Klimeš V., Zbránková V., Demir-Hilton E., Sudek S., Jenkins J., Schmutz J., Pribyl P., Fousek J., et al. Updating algal evolutionary relationships through plastid genome sequencing: Did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci. Rep. 2015;5:10134. doi: 10.1038/srep10134. PubMed DOI PMC

Kořený L., Sobotka R., Janouškovec J., Keeling P.J., Oborník M. Tetrapyrrole Synthesis of Photosynthetic Chromerids Is Likely Homologous to the Unusual Pathway of Apicomplexan Parasites. Plant Cell. 2011;23:3454–3462. doi: 10.1105/tpc.111.089102. PubMed DOI PMC

van Dooren G.G., Kennedy A.T., McFadden G.I. The Use and Abuse of Heme in Apicomplexan Parasites. Antioxid. Redox Signal. 2012;17:634–656. doi: 10.1089/ars.2012.4539. PubMed DOI

Patron N.J., Waller R.F., Archibald J.M., Keeling P.J. Complex protein targeting to dinoflagellate plastids. J. Mol. Biol. 2005;348:1015–1024. doi: 10.1016/j.jmb.2005.03.030. PubMed DOI

Slamovits C.H., Saldarriaga J.F., Larocque A., Keeling P.J. The Highly Reduced and Fragmented Mitochondrial Genome of the Early-branching Dinoflagellate Oxyrrhis marina Shares Characteristics with both Apicomplexan and Dinoflagellate Mitochondrial Genomes. J. Mol. Biol. 2007;372:356–368. doi: 10.1016/j.jmb.2007.06.085. PubMed DOI

Nash E.A., Nisbet R.E.R., Barbrook A.C., Howe C.J. Dinoflagellates: A mitochondrial genome all at sea. Trends Genet. 2008;24:328–335. doi: 10.1016/j.tig.2008.04.001. PubMed DOI

Waller R.F., Jackson C.J. Dinoflagellate mitochondrial genomes: Stretching the rules of molecular biology. BioEssays. 2009;31:237–245. doi: 10.1002/bies.200800164. PubMed DOI

Waller R.F., Kořený L. Advances in Botanical Research. Volume 84. Academic Press; Cambridge, MA, USA: 2017. Plastid Complexity in Dinoflagellates: A Picture of Gains, Losses, Replacements and Revisions; pp. 105–143.

John U., Lu Y., Wohlrab S., Groth M., Janouškovec J., Kohli G.S., Mark F.C., Bickmeyer U., Farhat S., Felder M., et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci. Adv. 2019;6:eaav1110. doi: 10.1126/sciadv.aav1110. PubMed DOI PMC

Zhou X.L., Du D.H., Tan M., Lei H.Y., Ruan L.L., Eriani G., Wang E.D. Role of tRNA amino acid-accepting end in aminoacylation and its quality control. Nucleic Acids Res. 2011;20:8857–8868. doi: 10.1093/nar/gkr595. PubMed DOI PMC

Chien C.-I., Chen Y.-W., Wu Y.-H., Chang C.-Y., Wang T.-L., Wang C.-C. Functional Substitution of a Eukaryotic Glycyl-tRNA Synthetase with an Evolutionarily Unrelated Bacterial Cognate Enzyme. PLoS ONE. 2014;9:e94659. doi: 10.1371/journal.pone.0094659. PubMed DOI PMC

Carter C.W., Jr. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 1993;62:715–748. doi: 10.1146/annurev.bi.62.070193.003435. PubMed DOI

Giege R., Sissler M., Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 1998;26:5017–5035. doi: 10.1093/nar/26.22.5017. PubMed DOI PMC

Schimmel P.R., Söll D. Aminoacyl-tRNA Synthetases: General Features and Recognition of Transfer RNAs. Annu. Rev. Biochem. 1979;48:601–648. doi: 10.1146/annurev.bi.48.070179.003125. PubMed DOI

Chaliotis A., Vlastaridis P., Mossialos D., Ibba M., Becker H.D., Stathopoulos C., Amoutzias G.D. The complex evolutionary history of aminoacyl-tRNA synthetases. Nucleic Acids Res. 2017;45:1059–1068. doi: 10.1093/nar/gkw1182. PubMed DOI PMC

Eriani G., Delarue M., Poch O., Gangloff J., Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990;347:203–206. doi: 10.1038/347203a0. PubMed DOI

Ludmerer S.W., Schimmel P. Gene for yeast glutamine tRNA synthetase encodes a large amino-terminal extension and provides a strong confirmation of the signature sequence for a group of the aminoacyl-tRNA synthetases. J. Biol. Chem. 1987;262:10801–10806. PubMed

Mazauric M.H., Keith G., Logan D., Kreutzer R., Giegé R., Kern D. Glycyl-tRNA synthetase from Thermus thermophilus--wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. Eur. J. Biochem. 1998;251:744–757. doi: 10.1046/j.1432-1327.1998.2510744.x. PubMed DOI

Ostrem D.L., Berg P. Glycyl transfer ribonucleic acid synthetase from Escherichia coli: Purification, properties, and substrate binding. Biochemistry. 1974;13:1338–1348. doi: 10.1021/bi00704a006. PubMed DOI

Surguchov A.P., Surguchov I.G. Two Enzymically Active Forms of Glycyl-tRNA Synthetase from Bacillus brevis Purification and Properties. Eur. J. Biochem. 1975;54:175–184. doi: 10.1111/j.1432-1033.1975.tb04127.x. PubMed DOI

Kern D., Giegé R., Ebel J.P. Purification and some properties of alanyl- and leucyl-tRNA synthetases from baker’s yeast. BBA Sect. Nucleic Acids Protein Synth. 1981;653:83–90. doi: 10.1016/0005-2787(81)90106-4. PubMed DOI

Shiba K., Schimmel P., Motegi H., Noda T. Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J. Biol. Chem. 1994;269:30049–30055. PubMed

Curnow A.W., Hong K.W., Yuan R., Kim S.I., Martins O., Winkler W., Henkin T.M., Söll D. Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl. Acad. Sci. USA. 1997;22:11819–11826. doi: 10.1073/pnas.94.22.11819. PubMed DOI PMC

Becker H.D., Kern D. Thermus thermophilus: A link in evolution of the tRNA-dependent amino acid amidation pathways. Proc. Natl. Acad. Sci. USA. 1998;22:12832–12837. doi: 10.1073/pnas.95.22.12832. PubMed DOI PMC

Ibba M., Curnow A.W., Söll D. Aminoacyl-tRNA synthesis: Divergent routes to a common goal. Trends Biochem. Sci. 1997;22:39–42. doi: 10.1016/S0968-0004(96)20033-7. PubMed DOI

Leinfelder W., Zehelein E., Mandrandberthelot M., Bock A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature. 1988;331:723–725. doi: 10.1038/331723a0. PubMed DOI

Sauerwald A., Zhu W., Major T.A., Roy H., Palioura S., Jahn D., Whitman W.B., Yates J.R., Ibba M., Söll D. RNA-dependent cysteine biosynthesis in archaea. Science. 2005;307:1969–1972. doi: 10.1126/science.1108329. PubMed DOI

Sheppard K., Yuan J., Hohn M.J., Jester B., Devine K.M., Söll D. From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res. 2008;36:1813–1825. doi: 10.1093/nar/gkn015. PubMed DOI PMC

Gile G.H., Moog D., Slamovits C.H., Maier U.G., Archibald J.M. Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol. Evol. 2015;7:1728–1742. doi: 10.1093/gbe/evv095. PubMed DOI PMC

Warrenfeltz S., Basenko E.Y., Crouch K., Harb O.S., Kissinger J.C., Roos D.S., Shanmugasundram A., Silva-Franco F. Eukaryotic Genomic Databases. Volume 1757. Humana Press; New York, NY, USA: 2018. EuPathDB: The eukaryotic pathogen genomics database resource; pp. 69–113. PubMed PMC

Woese C.R., Olsen G.J., Ibba M., Soll D. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. Microbiol. Mol. Biol. Rev. 2000;64:202–236. doi: 10.1128/MMBR.64.1.202-236.2000. PubMed DOI PMC

Brown J.R. Ancient horizontal gene transfer. Nat. Rev. Genet. 2003;4:121–132. doi: 10.1038/nrg1000. PubMed DOI

Bailey T.L., Johnson J., Grant C.E., Noble W.S. The MEME Suite. Nucleic Acids Res. 2015;43:39–49. doi: 10.1093/nar/gkv416. PubMed DOI PMC

Bendtsen J.D., Nielsen H., Von Heijne G., Brunak S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004;340:783–795. doi: 10.1016/j.jmb.2004.05.028. PubMed DOI

Petersen T.N., Brunak S., von Heijne G., Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. PubMed DOI

Gruber A., Rocap G., Kroth P.G., Armbrust E.V., Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–528. doi: 10.1111/tpj.12734. PubMed DOI PMC

Emanuelsson O., Brunak S., von Heijne G., Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007;2:953–971. doi: 10.1038/nprot.2007.131. PubMed DOI

Bannai H., Tamada Y., Maruyama O., Nakai K., Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics. 2002;18:298–305. doi: 10.1093/bioinformatics/18.2.298. PubMed DOI

Horton P., Park K.J., Obayashi T., Fujita N., Harada H., Adams-Collier C.J., Nakai K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007;35:585–587. doi: 10.1093/nar/gkm259. PubMed DOI PMC

Claros M.G., Vincens P. Computational Method to Predict Mitochondrially Imported Proteins and their Targeting Sequences. Eur. J. Biochem. 1996;241:779–786. doi: 10.1111/j.1432-1033.1996.00779.x. PubMed DOI

Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Darriba D., Taboada G.L., Doallo R., Posada D. ProtTest-HPC: Fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–1165. doi: 10.1093/bioinformatics/btr088. PubMed DOI PMC

de Juan D., Pazos F., Valencia A., Evaluation P.M., Rehbein P., Schwalbe H., Jones D.T., Buchan D.W.A., Cozzetto D., Pontil M., et al. ProtTest: Selection of best-fit models of protein evolution. Bioinformatics. 2015;21:2104–2105. PubMed

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Stamatakis A., Ludwig T., Meier H. RAxML-III: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005;21:456–463. doi: 10.1093/bioinformatics/bti191. PubMed DOI

Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI

Hopper A.K., Martinis S.A., Schimmel P., Kisselev L., Wolfson A., Melton D.A., De Robertis E.M., Cortese R., Popenko V.I., Wolfe C.L., et al. Nuclear functions charge ahead. Science. 1998;282:2003–2004. doi: 10.1126/science.282.5396.2003. PubMed DOI

Lund E. Proofreading and Aminoacylation of tRNAs Before Export from the Nucleus. Science. 1998;282:2082–2085. doi: 10.1126/science.282.5396.2082. PubMed DOI

Szymanski M., Deniziak M.A., Barciszewski J. Aminoacyl-tRNA synthetases database. Nucleic Acids Res. 2001;29:288–290. doi: 10.1093/nar/29.1.288. PubMed DOI PMC

Nathanson L., Deutscher M.P. Active aminoacyl-tRNA synthetases are present in nuclei as a high molecular weight multienzyme complex. J. Biol. Chem. 2000;275:31559–31562. doi: 10.1074/jbc.C000385200. PubMed DOI

Ko Y.G., Kang Y.S., Kim E.K., Park S.G., Kim S. Nucleolar localization of human methionyl-tRNA synthetase and its role in ribosomal RNA synthesis. J. Cell Biol. 2000;149:567–574. doi: 10.1083/jcb.149.3.567. PubMed DOI PMC

Kaminska M., Havrylenko S., Decottignies P., Le Maréchal P., Negrutskii B., Mirande M. Dynamic organization of aminoacyl-tRNA synthetase complexes in the cytoplasm of human cells. J. Biol. Chem. 2009;284:13746–13754. doi: 10.1074/jbc.M900480200. PubMed DOI PMC

Duchene A.-M., Giritch A., Hoffmann B., Cognat V., Lancelin D., Peeters N.M., Zaepfel M., Marechal-Drouard L., Small I.D. Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2005;102:16484–16489. doi: 10.1073/pnas.0504682102. PubMed DOI PMC

Ito J., Batth T.S., Petzold C.J., Redding-Johanson A.M., Mukhopadhyay A., Verboom R., Meyer E.H., Millar A.H., Heazlewood J.L. Analysis of the Arabidopsis cytosolic proteome highlights subcellular partitioning of central plant metabolism. J. Proteome Res. 2011;10:1571–1582. doi: 10.1021/pr1009433. PubMed DOI

Araiso Y., Huot J.L., Sekiguchi T., Frechin M., Fischer F., Enkler L., Senger B., Ishitani R., Becker H.D., Nureki O. Crystal structure of Saccharomyces cerevisiae mitochondrial GatFAB reveals a novel subunit assembly in tRNA-dependent amidotransferases. Nucleic Acids Res. 2014;42:6052–6063. doi: 10.1093/nar/gku234. PubMed DOI PMC

Frechin M., Duchêne A.-M., Becker H.D. Translating organellar glutamine codons: A case by case scenario? RNA Biol. 2009;6:31–34. doi: 10.4161/rna.6.1.7564. PubMed DOI

Freist W., Logan D.T., Gauss D.H. Glycyl-tRNA synthetase. Biol. Chem. Hoppe Seyler. 1996;377:343–356. PubMed

Hipps D., Shiba K., Henderson B., Schimmel P. Operational RNA code for amino acids: Species-specific aminoacylation of minihelices switched by a single nucleotide. Proc. Natl. Acad. Sci. USA. 1995;92:5550–5552. doi: 10.1073/pnas.92.12.5550. PubMed DOI PMC

Duchêne A.M., Peeters N., Dietrich A., Cosset A., Small I.D., Wintz H. Overlapping Destinations for Two Dual Targeted Glycyl-tRNA Synthetases in Arabidopsis thaliana and Phaseolus vulgaris. J. Biol. Chem. 2001;276:15275–15283. doi: 10.1074/jbc.M011525200. PubMed DOI

Halary S., McInerney J.O., Lopez P., Bapteste E. EGN: A wizard for construction of gene and genome similarity networks. BMC Evol. Biol. 2013;13:146. doi: 10.1186/1471-2148-13-146. PubMed DOI PMC

Brindefalk B., Viklund J., Larsson D., Thollesson M., Andersson S.G.E. Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases. Mol. Biol. Evol. 2007;24:743–756. doi: 10.1093/molbev/msl202. PubMed DOI

Makarova K.S. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 2005;33:4626–4638. doi: 10.1093/nar/gki775. PubMed DOI PMC

Ribas de Pouplana L., Brown J.R., Schimmel P. Structure-based phylogeny of class IIa tRNA synthetases in relation to an unusual biochemistry. J. Mol. Evol. 2001;53:261–268. doi: 10.1007/s002390010216. PubMed DOI

Roy H., Ling J., Alfonzo J., Ibba M. Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase. J. Biol. Chem. 2005;280:38186–38192. doi: 10.1074/jbc.M508281200. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...