Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets?

. 2021 May ; 7 (5) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid33956596

Grantová podpora
Wellcome Trust - United Kingdom
BB/L02229X/1 Biotechnology and Biological Sciences Research Council - United Kingdom
204515/Z/16/Z Wellcome Trust - United Kingdom

Fungal infections cause >1 million deaths annually and the emergence of antifungal resistance has prompted the exploration for novel antifungal targets. Quadruplexes are four-stranded nucleic acid secondary structures, which can regulate processes such as transcription, translation, replication and recombination. They are also found in genes linked to virulence in microbes, and ligands that bind to quadruplexes can eliminate drug-resistant pathogens. Using a computational approach, we quantified putative quadruplex-forming sequences (PQS) in 1359 genomes across the fungal kingdom and explored their presence in genes related to virulence, drug resistance and biological processes associated with pathogenicity in Aspergillus fumigatus. Here we present the largest analysis of PQS in fungi and identify significant heterogeneity of these sequences throughout phyla, genera and species. PQS were genetically conserved in Aspergillus spp. and frequently pathogenic species appeared to contain fewer PQS than their lesser/non-pathogenic counterparts. GO-term analysis identified that PQS-containing genes were involved in processes linked with virulence such as zinc ion binding, the biosynthesis of secondary metabolites and regulation of transcription in A. fumigatus. Although the genome frequency of PQS was lower in A. fumigatus, PQS could be found enriched in genes involved in virulence, and genes upregulated during germination and hypoxia. Moreover, PQS were found in genes involved in drug resistance. Quadruplexes could have important roles within fungal biology and virulence, but their roles require further elucidation.

Zobrazit více v PubMed

Correction Stop neglecting fungi. Nat Microbiol. 2017;2:17123. doi: 10.1038/nmicrobiol.2017.123. PubMed DOI

Skellam E. Strategies for engineering natural product biosynthesis in fungi. Trends Biotechnol. 2019;37:416–427. doi: 10.1016/j.tibtech.2018.09.003. PubMed DOI

Hernández VA, Machuca Ángela, Saavedra I, Chavez D, Astuya A, et al. Talaromyces australis and Penicillium murcianum pigment production in optimized liquid cultures and evaluation of their cytotoxicity in textile applications. World J Microbiol Biotechnol. 2019;35:160. doi: 10.1007/s11274-019-2738-2. PubMed DOI

Hooker CA, Lee KZ, Solomon KV. Leveraging anaerobic fungi for biotechnology. Curr Opin Biotechnol. 2019;59:103–110. doi: 10.1016/j.copbio.2019.03.013. PubMed DOI

Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, et al. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell. 2016;166:1397–1410. doi: 10.1016/j.cell.2016.08.020. PubMed DOI PMC

Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, et al. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13. doi: 10.1126/scitranslmed.3004404. PubMed DOI

Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, et al. Threats posed by the fungal Kingdom to humans, wildlife, and agriculture. mBio. 2020;11:e00449-20. doi: 10.1128/mBio.00449-20. 05 05 2020. PubMed DOI PMC

Köhler JR, Casadevall A, Perfect J. The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med. 2014;5:a019273. doi: 10.1101/cshperspect.a019273. PubMed DOI PMC

van Arkel ALE, Rijpstra TA, Belderbos HNA, van Wijngaarden P, Verweij PE, et al. COVID-19-associated pulmonary Aspergillosis . Am J Respir Crit Care Med. 2020;202:132–135. doi: 10.1164/rccm.202004-1038LE. PubMed DOI PMC

Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, et al. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol. 2018;56:102–125. doi: 10.1093/mmy/myx113. PubMed DOI

Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020;18:319–331. doi: 10.1038/s41579-019-0322-2. PubMed DOI PMC

World Health O. First Meeting of the WHO Antifungal Expert Group on Identifying Priority Fungal Pathogens: Meeting Report. Geneva: World Health Organization; 2020.

Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020;21:459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC

Abou Assi H, Garavís M, González C, Damha MJ. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res. 2018;46:8038–8056. doi: 10.1093/nar/gky735. PubMed DOI PMC

Marsico G, Chambers VS, Sahakyan AB, McCauley P, Boutell JM, et al. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019;47:3862–3874. doi: 10.1093/nar/gkz179. PubMed DOI PMC

Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC

Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, et al. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc. 2006;128:1096–1098. doi: 10.1021/ja055636a. PubMed DOI PMC

Víglaský V, Bauer L, Tlucková K. Structural features of intra- and intermolecular G-quadruplexes derived from telomeric repeats. Biochemistry. 2010;49:2110–2120. doi: 10.1021/bi902099u. PubMed DOI

Lane AN, Chaires JB, Gray RD, Trent JO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res. 2008;36:5482–5515. doi: 10.1093/nar/gkn517. PubMed DOI PMC

Brazier JA, Shah A, Brown GD. I-motif formation in gene promoters: unusually stable formation in sequences complementary to known G-quadruplexes. Chem Commun. 2012;48:10739–10741. doi: 10.1039/c2cc30863k. PubMed DOI

Gehring K, Leroy JL, Guéron M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993;363:561–565. doi: 10.1038/363561a0. PubMed DOI

Wright EP, Huppert JL, Waller ZAE. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res. 2017;45:2951–2959. doi: 10.1093/nar/gkx090. PubMed DOI PMC

Rajendran A, Nakano S-ichi, Sugimoto N. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem Commun. 2010;46:1299–1301. doi: 10.1039/b922050j. PubMed DOI

Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, et al. I-motif DNA structures are formed in the nuclei of human cells. Nat Chem. 2018;10:631–637. doi: 10.1038/s41557-018-0046-3. PubMed DOI

Saranathan N, Vivekanandan P. G-quadruplexes: more than just a kink in microbial genomes. Trends Microbiol. 2019;27:148–163. doi: 10.1016/j.tim.2018.08.011. PubMed DOI PMC

Balasubramanian S, Hurley LH, Neidle S. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat Rev Drug Discov. 2011;10:261–275. doi: 10.1038/nrd3428. PubMed DOI PMC

Zhang Y, Yang M, Duncan S, Yang X, Abdelhamid MAS, et al. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 2019;47:11746–11754. doi: 10.1093/nar/gkz978. PubMed DOI PMC

Bartas M, Čutová M, Brázda V, Kaura P, Šťastný J, et al. The presence and localization of G-quadruplex forming sequences in the domain of bacteria. Molecules. 2019;24:E1711. doi: 10.3390/molecules24091711. 02 May 2019. PubMed DOI PMC

Shankar U, Jain N, Mishra SK, Sharma TK, Kumar A. Conserved G-quadruplex motifs in gene promoter region reveals a novel therapeutic approach to target multi-drug resistance Klebsiella pneumoniae . Front Microbiol. 2020;11:1269. doi: 10.3389/fmicb.2020.01269. PubMed DOI PMC

Shankar U, Jain N, Majee P, Kodgire P, Sharma TK, et al. Exploring computational and biophysical tools to study the presence of G-quadruplex structures: a promising therapeutic solution for drug-resistant Vibrio cholerae . Front Genet. 2020;11:935. doi: 10.3389/fgene.2020.00935. PubMed DOI PMC

Jain N, Mishra SK, Shankar U, Jaiswal A, Sharma TK, et al. G-quadruplex stabilization in the ions and maltose transporters gene inhibit Salmonella enterica growth and virulence. Genomics. 2020;112:4863–4874. doi: 10.1016/j.ygeno.2020.09.010. PubMed DOI PMC

Majee P, Shankar U, Pasadi S, Muniyappa K, Nayak D, et al. Genome-wide analysis reveals a regulatory role for G-quadruplexes during Adenovirus multiplication. Virus Res. 2020;283:197960. doi: 10.1016/j.virusres.2020.197960. PubMed DOI

Majee P, Kumar Mishra S, Pandya N, Shankar U, Pasadi S, et al. Identification and characterization of two conserved G-quadruplex forming motifs in the Nipah virus genome and their interaction with G-quadruplex specific ligands. Sci Rep. 2020;10:1477. doi: 10.1038/s41598-020-58406-8. PubMed DOI PMC

Majee P, Pattnaik A, Sahoo BR, Shankar U, Pattnaik AK, et al. Inhibition of Zika virus replication by G-quadruplex-binding ligands. Mol Ther Nucleic Acids. 2021;23:691–701. doi: 10.1016/j.omtn.2020.12.030. PubMed DOI PMC

Li F, Mulyana Y, Feterl M, Warner JM, Collins JG, et al. The antimicrobial activity of inert oligonuclear polypyridylruthenium(II) complexes against pathogenic bacteria, including MRSA. Dalton Trans. 2011;40:5032–5038. doi: 10.1039/c1dt10250h. PubMed DOI

Li F, Collins JG, Keene FR. Ruthenium complexes as antimicrobial agents. Chem Soc Rev. 2015;44:2529–2542. doi: 10.1039/c4cs00343h. PubMed DOI

Ruggiero E, Lago S, Šket P, Nadai M, Frasson I, et al. A dynamic i-motif with a duplex stem-loop in the long terminal repeat promoter of the HIV-1 proviral genome modulates viral transcription. Nucleic Acids Res. 2019;47:11057–11068. doi: 10.1093/nar/gkz937. PubMed DOI PMC

Asamitsu S, Obata S, Yu Z, Bando T, Sugiyama H. Recent progress of targeted G-Quadruplex-Preferred ligands toward cancer therapy. Molecules. 2019;24:E429. doi: 10.3390/molecules24030429. 24 Jan 2019. PubMed DOI PMC

Ruggiero E, Richter SN. G-Quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 2018;46:3270–3283. doi: 10.1093/nar/gky187. PubMed DOI PMC

Tassinari M, Zuffo M, Nadai M, Pirota V, Sevilla Montalvo AC, et al. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model. Nucleic Acids Res. 2020;48:4627–4642. doi: 10.1093/nar/gkaa186. PubMed DOI PMC

Shen X-X, Steenwyk JL, LaBella AL, Opulente DA, Zhou X, et al. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota . Sci Adv. 2020;6 doi: 10.1126/sciadv.abd0079. 04 11 2020. PubMed DOI PMC

Brázda V, Kolomazník J, Lýsek J, Bartas M, Fojta M, et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC

Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. Panther version 14: more genomes, a new Panther GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47:D419–d426. doi: 10.1093/nar/gky1038. PubMed DOI PMC

Priebe S, Kreisel C, Horn F, Guthke R, Linde J. FungiFun2: a comprehensive online resource for systematic analysis of gene lists from fungal species. Bioinformatics. 2015;31:445–446. doi: 10.1093/bioinformatics/btu627. PubMed DOI PMC

Kikin O, D'Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34:W676–682. doi: 10.1093/nar/gkl253. PubMed DOI PMC

Tomasello G, Armenia I, Molla G. The Protein Imager: a full-featured online molecular viewer interface with server-side HQ-rendering capabilities. Bioinformatics. 2020;36:2909–2911. doi: 10.1093/bioinformatics/btaa009. PubMed DOI

Hagiwara D, Takahashi H, Kusuya Y, Kawamoto S, Kamei K, et al. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy. BMC Genomics. 2016;17:358. doi: 10.1186/s12864-016-2689-z. PubMed DOI PMC

Hillmann F, Linde J, Beckmann N, Cyrulies M, Strassburger M, et al. The novel globin protein fungoglobin is involved in low oxygen adaptation of Aspergillus fumigatus . Mol Microbiol. 2014;93:539–553. doi: 10.1111/mmi.12679. PubMed DOI

Kurucz V, Krüger T, Antal K, Dietl A-M, Haas H, et al. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion. BMC Genomics. 2018;19:357. doi: 10.1186/s12864-018-4730-x. PubMed DOI PMC

Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, et al. FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res. 2012;40:D675–681. doi: 10.1093/nar/gkr918. PubMed DOI PMC

Gibbons JG, Beauvais A, Beau R, McGary KL, Latgé J-P, et al. Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus . Eukaryot Cell. 2012;11:68–78. doi: 10.1128/EC.05102-11. PubMed DOI PMC

Steenwyk JL, Shen X-X, Lind AL, Goldman GH, Rokas A. A robust phylogenomic time tree for biotechnologically and medically important fungi in the genera Aspergillus and Penicillium . mBio. 2019;10:e00925-19. doi: 10.1128/mBio.00925-19. 09 07 2019. PubMed DOI PMC

Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC

Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC

Levdansky E, Romano J, Shadkchan Y, Sharon H, Verstrepen KJ, et al. Coding tandem repeats generate diversity in Aspergillus fumigatus genes. Eukaryot Cell. 2007;6:1380–1391. doi: 10.1128/EC.00229-06. PubMed DOI PMC

Jara-Espejo M, Fleming AM, Burrows CJ. Potential G-quadruplex forming sequences and N-Methyladenosine colocalize at human pre-mRNA intron splice sites. ACS Chem Biol. 2020;15:1292–1300. doi: 10.1021/acschembio.0c00260. PubMed DOI PMC

Mead ME, Knowles SL, Raja HA, Beattie SR, Kowalski CH, et al. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus . mSphere. 2019;4:e00018-19. doi: 10.1128/mSphere.00018-19. 20 02 2019. PubMed DOI PMC

Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, et al. G-quadruplex-induced instability during leading-strand replication. Embo J. 2011;30:4033–4046. doi: 10.1038/emboj.2011.316. PubMed DOI PMC

Guo JU, Bartel DP. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science, 2016;353 PubMed PMC

Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P, et al. Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae . Nucleic Acids Res. 2008;36:144–156. doi: 10.1093/nar/gkm986. PubMed DOI PMC

Čutová M, Manta J, Porubiaková O, Kaura P, Šťastný J, et al. Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae . Genomics. 2020;112:1897–1901. doi: 10.1016/j.ygeno.2019.11.002. PubMed DOI

Bartas M, Brázda V, Bohálová N, Cantara A, Volná A, et al. In-depth bioinformatic analyses of nidovirales including human SARS-CoV-2, SARS-CoV, MERS-CoV viruses suggest important roles of non-canonical nucleic acid structures in their lifecycles. Front Microbiol. 2020;11:1583. doi: 10.3389/fmicb.2020.01583. PubMed DOI PMC

Tosoni E, Frasson I, Scalabrin M, Perrone R, Butovskaya E, et al. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res. 2015;43:8884–8897. doi: 10.1093/nar/gkv897. PubMed DOI PMC

Wasylnka JA, Moore MM. Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Cell Sci. 2003;116:1579–1587. doi: 10.1242/jcs.00329. PubMed DOI

Coelho C, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans . Annu Rev Pathol. 2014;9:219–238. doi: 10.1146/annurev-pathol-012513-104653. PubMed DOI PMC

Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev. 2018;42 doi: 10.1093/femsre/fux050. 01 01 2018. PubMed DOI PMC

Ene IV, Brunke S, Brown AJP, Hube B. Metabolism in fungal pathogenesis. Cold Spring Harb Perspect Med. 2014;4:a019695. doi: 10.1101/cshperspect.a019695. PubMed DOI PMC

Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM, et al. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus . Nature. 2018;555:382–386. doi: 10.1038/nature25974. PubMed DOI PMC

Raffa N, Keller NP. A call to arms: Mustering secondary metabolites for success and survival of an opportunistic pathogen. PLoS Pathog. 2019;15:e1007606. doi: 10.1371/journal.ppat.1007606. PubMed DOI PMC

Rementeria A, López-Molina N, Ludwig A, Vivanco AB, Bikandi J, et al. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol. 2005;22:1–23. doi: 10.1016/s1130-1406(05)70001-2. PubMed DOI

Pradhan A, Ma Q, de Assis LJ, Leaves I, Larcombe DE, et al. Anticipatory stress responses and immune evasion in fungal pathogens. Trends Microbiol. 2020 doi: 10.1016/j.tim.2020.09.010. 12 Oct 2020. PubMed DOI

Brown AJP, Brown GD, Netea MG, Gow NAR. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 2014;22:614–622. doi: 10.1016/j.tim.2014.07.001. PubMed DOI PMC

Parente-Rocha JA, Bailão AM, Amaral AC, Taborda CP, Paccez JD, et al. Antifungal resistance, metabolic routes as drug targets, and new antifungal agents: an overview about endemic dimorphic fungi. Mediators Inflamm. 2017;2017:9870679. doi: 10.1155/2017/9870679. PubMed DOI PMC

Bignell E, Cairns TC, Throckmorton K, Nierman WC, Keller NP. Secondary metabolite arsenal of an opportunistic pathogenic fungus. Philos Trans R Soc Lond B Biol Sci. 2016;371 doi: 10.1098/rstb.2016.0023. 05 12 2016. PubMed DOI PMC

Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532:64–68. doi: 10.1038/nature17625. PubMed DOI PMC

Eddy J, Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006;34:3887–3896. doi: 10.1093/nar/gkl529. PubMed DOI PMC

Rawal P, Kummarasetti VBR, Ravindran J, Kumar N, Halder K, et al. Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res. 2006;16:644–655. doi: 10.1101/gr.4508806. PubMed DOI PMC

Mishra SK, Jain N, Shankar U, Tawani A, Sharma TK, et al. Characterization of highly conserved G-quadruplex motifs as potential drug targets in Streptococcus pneumoniae . Sci Rep. 2019;9:1791. doi: 10.1038/s41598-018-38400-x. PubMed DOI PMC

Harris LM, Monsell KR, Noulin F, Famodimu MT, Smargiasso N, et al. G-Quadruplex DNA motifs in the malaria parasite Plasmodium falciparum and their potential as novel antimalarial drug targets. Antimicrob Agents Chemother. 2018;62 doi: 10.1128/AAC.01828-17. 23 02 2018. PubMed DOI PMC

Mishra SK, Shankar U, Jain N, Sikri K, Tyagi JS, et al. Characterization of G-Quadruplex Motifs in espB, espK, and cyp51 genes of Mycobacterium tuberculosis as potential drug targets. Mol Ther Nucleic Acids. 2019;16:698–706. doi: 10.1016/j.omtn.2019.04.022. PubMed DOI PMC

Ruggiero E, Richter SN. Viral G-quadruplexes: New frontiers in virus pathogenesis and antiviral therapy. Annu Rep Med Chem. 2020;54:101–131. doi: 10.1016/bs.armc.2020.04.001. PubMed DOI PMC

da Silva AR, de Andrade Neto JB, da Silva CR, Campos RdeS, Costa Silva RA, et al. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob Agents Chemother. 2016;60:3551–3557. doi: 10.1128/AAC.01846-15. PubMed DOI PMC

Lestrade PPA, Meis JF, Melchers WJG, Verweij PE. Triazole resistance in Aspergillus fumigatus: recent insights and challenges for patient management. Clin Microbiol Infect. 2019;25:799–806. doi: 10.1016/j.cmi.2018.11.027. PubMed DOI

Gonzalez-Jimenez I, Lucio J, Amich J, Cuesta I, Sanchez Arroyo R, et al. A Cyp51B mutation contributes to azole resistance in Aspergillus fumigatus . J Fungi. 2020;6:e315. doi: 10.3390/jof6040315. 26 Nov 2020. PubMed DOI PMC

Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, et al. LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell. 2005;4:1574–1582. doi: 10.1128/EC.4.9.1574-1582.2005. PubMed DOI PMC

Bok JW, Keller NP. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell. 2004;3:527–535. doi: 10.1128/ec.3.2.527-535.2004. PubMed DOI PMC

Bultman KM, Kowalski CH, Cramer RA. Aspergillus fumigatus virulence through the lens of transcription factors. Med Mycol. 2017;55:24–38. doi: 10.1093/mmy/myw120. PubMed DOI PMC

Warner EF. Cross Kingdom analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets to ameliorate fungal pathogenicity? bioRxiv. 2020:p. 2020.09.23.310581. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...