G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS07/PrF/2020; SGS02/PrF/2021; SGS01/PrF/2020; SGS11/PrF/2021
University of Ostrava
18-23702S
Czech Science Foundation
QK1810391
National Agency for Agricultural Research (NAZV) of Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000797
SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions
PubMed
34299001
PubMed Central
PMC8306923
DOI
10.3390/ijms22147381
PII: ijms22147381
Knihovny.cz E-zdroje
- Klíčová slova
- UV light, circular dichroism, evolution, nucleic acids, plant science,
- MeSH
- Arabidopsis chemie genetika účinky záření MeSH
- cirkulární dichroismus MeSH
- fylogeneze MeSH
- G-kvadruplexy * účinky záření MeSH
- Glaucophyta chemie genetika účinky záření MeSH
- molekulární evoluce MeSH
- regulace genové exprese u rostlin genetika MeSH
- Rhodophyta chemie genetika účinky záření MeSH
- RNA-polymerasa II chemie genetika MeSH
- rostlinné proteiny chemie genetika účinky záření MeSH
- rostliny chemie genetika účinky záření MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- ultrafialové záření MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA-polymerasa II MeSH
- rostlinné proteiny MeSH
G-quadruplexes have long been perceived as rare and physiologically unimportant nucleic acid structures. However, several studies have revealed their importance in molecular processes, suggesting their possible role in replication and gene expression regulation. Pathways involving G-quadruplexes are intensively studied, especially in the context of human diseases, while their involvement in gene expression regulation in plants remains largely unexplored. Here, we conducted a bioinformatic study and performed a complex circular dichroism measurement to identify a stable G-quadruplex in the gene RPB1, coding for the RNA polymerase II large subunit. We found that this G-quadruplex-forming locus is highly evolutionarily conserved amongst plants sensu lato (Archaeplastida) that share a common ancestor more than one billion years old. Finally, we discussed a new hypothesis regarding G-quadruplexes interacting with UV light in plants to potentially form an additional layer of the regulatory network.
Department of Physics Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Global Change Research Institute Czech Academy of Sciences Bělidla 4a 603 00 Brno Czech Republic
Zobrazit více v PubMed
Watson J.D., Crick F.H. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI
Klug A. Rosalind Franklin and the Discovery of the Structure of DNA. Nature. 1968;219:808–810. doi: 10.1038/219808a0. PubMed DOI
Gellert M., Lipsett M.N., Davies D.R. Helix Formation by Guanylic Acid. Proc. Natl. Acad. Sci. USA. 1962;48:2013. doi: 10.1073/pnas.48.12.2013. PubMed DOI PMC
Yang X., Cheema J., Zhang Y., Deng H., Duncan S., Umar M.I., Zhao J., Liu Q., Cao X., Kwok C.K. RNA G-Quadruplex Structures Exist and Function in Vivo in Plants. Genome Biol. 2020;21:1–23. doi: 10.1186/s13059-020-02142-9. PubMed DOI PMC
Li X., Sánchez-Ferrer A., Bagnani M., Adamcik J., Azzari P., Hao J., Song A., Liu H., Mezzenga R. Metal Ions Confinement Defines the Architecture of G-Quartet, G-Quadruplex Fibrils and Their Assembly into Nematic Tactoids. Proc. Natl. Acad. Sci. USA. 2020;117:9832–9839. doi: 10.1073/pnas.1919777117. PubMed DOI PMC
Garg R., Aggarwal J., Thakkar B. Genome-Wide Discovery of G-Quadruplex Forming Sequences and Their Functional Relevance in Plants. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep28211. PubMed DOI PMC
Yang D. G-Quadruplex DNA and RNA. In: Yang D., Lin C., editors. G-Quadruplex Nucleic Acids: Methods and Protocols. Springer; New York, NY, USA: 2019. pp. 1–24. Methods in Molecular Biology.
Warner E.F., Bohálová N., Brázda V., Waller Z.A.E., Bidula S. Analysis of Putative Quadruplex-Forming Sequences in Fungal Genomes: Novel Antifungal Targets? Microb. Genom. 2021;7:000570. doi: 10.1099/mgen.0.000570. PubMed DOI PMC
Bartas M., Čutová M., Brázda V., Kaura P., Št’astný J., Kolomazník J., Coufal J., Goswami P., Červeň J., Pečinka P. The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria. Molecules. 2019;24:1711. doi: 10.3390/molecules24091711. PubMed DOI PMC
Brázda V., Luo Y., Bartas M., Kaura P., Porubiaková O., Št’astný J., Pečinka P., Verga D., Da Cunha V., Takahashi T.S. G-Quadruplexes in the Archaea Domain. Biomolecules. 2020;10:1349. doi: 10.3390/biom10091349. PubMed DOI PMC
Saranathan N., Vivekanandan P. G-Quadruplexes: More than Just a Kink in Microbial Genomes. Trends Microbiol. 2019;27:148–163. doi: 10.1016/j.tim.2018.08.011. PubMed DOI PMC
Bartas M., Brázda V., Bohálová N., Cantara A., Volná A., Stachurová T., Malachová K., Jagelská E.B., Porubiaková O., Červeň J. In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-Canonical Nucleic Acid Structures in Their Lifecycles. Front. Microbiol. 2020;11:1583. doi: 10.3389/fmicb.2020.01583. PubMed DOI PMC
Bohálová N., Cantara A., Bartas M., Kaura P., Šťastný J., Pečinka P., Fojta M., Mergny J.-L., Brázda V. Analyses of Viral Genomes for G-Quadruplex Forming Sequences Reveal Their Correlation with the Type of Infection. Biochimie. 2021;186:13–27. doi: 10.1016/j.biochi.2021.03.017. PubMed DOI
Métifiot M., Amrane S., Litvak S., Andreola M.-L. G-Quadruplexes in Viruses: Function and Potential Therapeutic Applications. Nucleic Acids Res. 2014;42:12352–12366. doi: 10.1093/nar/gku999. PubMed DOI PMC
Ruggiero E., Richter S.N. Viral G-Quadruplexes: New Frontiers in Virus Pathogenesis and Antiviral Therapy. Annu. Rep. Med. Chem. 2020;54:101–131. doi: 10.1016/bs.armc.2020.04.001. PubMed DOI PMC
Lopes J., Piazza A., Bermejo R., Kriegsman B., Colosio A., Teulade-Fichou M.-P., Foiani M., Nicolas A. G-Quadruplex-Induced Instability during Leading-Strand Replication. EMBO J. 2011;30:4033–4046. doi: 10.1038/emboj.2011.316. PubMed DOI PMC
Lerner L.K., Sale J.E. Replication of G Quadruplex DNA. Genes. 2019;10:95. doi: 10.3390/genes10020095. PubMed DOI PMC
Broxson C., Beckett J., Tornaletti S. Transcription Arrest by a G Quadruplex Forming-Trinucleotide Repeat Sequence from the Human c-Myb Gene. Biochemistry. 2011;50:4162–4172. doi: 10.1021/bi2002136. PubMed DOI
Carvalho J., Mergny J.-L., Salgado G.F., Queiroz J.A., Cruz C. G-Quadruplex, Friend or Foe: The Role of the G-Quartet in Anticancer Strategies. Trends Mol. Med. 2020;26:848–861. doi: 10.1016/j.molmed.2020.05.002. PubMed DOI
Szlachta K., Thys R.G., Atkin N.D., Pierce L.C.T., Bekiranov S., Wang Y.-H. Alternative DNA Secondary Structure Formation Affects RNA Polymerase II Promoter-Proximal Pausing in Human. Genome Biol. 2018;19:89. doi: 10.1186/s13059-018-1463-8. PubMed DOI PMC
Endoh T., Sugimoto N. Conformational Dynamics of the RNA G-Quadruplex and Its Effect on Translation Efficiency. Molecules. 2019;24:1613. doi: 10.3390/molecules24081613. PubMed DOI PMC
Wolna A.H., Fleming A.M., Burrows C.J. Single-Molecule Analysis of Thymine Dimer-Containing G-Quadruplexes Formed from the Human Telomere Sequence. Biochemistry. 2014;53:7484–7493. doi: 10.1021/bi501072m. PubMed DOI PMC
Su D.G.T., Fang H., Gross M.L., Taylor J.-S.A. Photocrosslinking of Human Telomeric G-Quadruplex Loops by Anti Cyclobutane Thymine Dimer Formation. Proc. Natl. Acad. Sci. USA. 2009;106:12861–12866. doi: 10.1073/pnas.0902386106. PubMed DOI PMC
Griffin B.D., Bass H.W. Plant G-Quadruplex (G4) Motifs in DNA and RNA.; Abundant, Intriguing Sequences of Unknown Function. Plant Sci. 2018;269:143–147. doi: 10.1016/j.plantsci.2018.01.011. PubMed DOI
Ream T.S., Haag J.R., Pontvianne F., Nicora C.D., Norbeck A.D., Paša-Tolić L., Pikaard C.S. Subunit Compositions of Arabidopsis RNA Polymerases I and III Reveal Pol I- and Pol III-Specific Forms of the AC40 Subunit and Alternative Forms of the C53 Subunit. Nucleic Acids Res. 2015;43:4163–4178. doi: 10.1093/nar/gkv247. PubMed DOI PMC
Wang Y., Ma H. Step-Wise and Lineage-Specific Diversification of Plant RNA Polymerase Genes and Origin of the Largest Plant-Specific Subunits. New Phytol. 2015;207:1198–1212. doi: 10.1111/nph.13432. PubMed DOI
Armache K.-J., Mitterweger S., Meinhart A., Cramer P. Structures of Complete RNA Polymerase II and Its Subcomplex, Rpb4/7. J. Biol. Chem. 2005;280:7131–7134. doi: 10.1074/jbc.M413038200. PubMed DOI
Schubert V., Weisshart K. Abundance and Distribution of RNA Polymerase II in Arabidopsis Interphase Nuclei. J. Exp. Bot. 2015;66:1687–1698. doi: 10.1093/jxb/erv091. PubMed DOI PMC
Haag J.R., Pikaard C.S. Multisubunit RNA Polymerases IV and V: Purveyors of Non-Coding RNA for Plant Gene Silencing. Nat. Rev. Mol. Cell Biol. 2011;12:483–492. doi: 10.1038/nrm3152. PubMed DOI
Thieme M., Lanciano S., Balzergue S., Daccord N., Mirouze M., Bucher E. Inhibition of RNA Polymerase II Allows Controlled Mobilisation of Retrotransposons for Plant Breeding. Genome Biol. 2017;18:134. doi: 10.1186/s13059-017-1265-4. PubMed DOI PMC
Core L., Adelman K. Promoter-Proximal Pausing of RNA Polymerase II: A Nexus of Gene Regulation. Genes Dev. 2019;33:960–982. doi: 10.1101/gad.325142.119. PubMed DOI PMC
Zhu J., Liu M., Liu X., Dong Z. RNA Polymerase II Activity Revealed by GRO-Seq and PNET-Seq in Arabidopsis. Nat. Plants. 2018;4:1112–1123. doi: 10.1038/s41477-018-0280-0. PubMed DOI
Ferrari C., Proost S., Janowski M., Becker J., Nikoloski Z., Bhattacharya D., Price D., Tohge T., Bar-Even A., Fernie A., et al. Kingdom-Wide Comparison Reveals the Evolution of Diurnal Gene Expression in Archaeplastida. Nat. Commun. 2019;10:737. doi: 10.1038/s41467-019-08703-2. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Okonechnikov K., Golosova O., Fursov M., Team U. Unipro UGENE: A Unified Bioinformatics Toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Kumar S., Stecher G., Suleski M., Hedges S.B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017;34:1812–1819. doi: 10.1093/molbev/msx116. PubMed DOI
Kikin O., D’Antonio L., Bagga P.S. QGRS Mapper: A Web-Based Server for Predicting G-Quadruplexes in Nucleotide Sequences. Nucleic Acids Res. 2006;34:W676–W682. doi: 10.1093/nar/gkl253. PubMed DOI PMC
Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Št’astný J., Mergny J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC
Garant J.-M., Perreault J.-P., Scott M.S. G4RNA Screener Web Server: User Focused Interface for RNA G-Quadruplex Prediction. Biochimie. 2018;151:115–118. doi: 10.1016/j.biochi.2018.06.002. PubMed DOI
Beaudoin J.-D., Jodoin R., Perreault J.-P. New Scoring System to Identify RNA G-Quadruplex Folding. Nucleic Acids Res. 2014;42:1209–1223. doi: 10.1093/nar/gkt904. PubMed DOI PMC
Garant J.-M., Perreault J.-P., Scott M.S. Motif Independent Identification of Potential RNA G-Quadruplexes by G4RNA Screener. Bioinformatics. 2017;33:3532–3537. doi: 10.1093/bioinformatics/btx498. PubMed DOI PMC
Sabouri N., Capra J.A., Zakian V.A. The Essential Schizosaccharomyces Pombe Pfh1 DNA Helicase Promotes Fork Movement Past G-Quadruplex Motifs to Prevent DNA Damage. BMC Biol. 2014;12:1–14. doi: 10.1186/s12915-014-0101-5. PubMed DOI PMC
Puig Lombardi E., Holmes A., Verga D., Teulade-Fichou M.-P., Nicolas A., Londoño-Vallejo A. Thermodynamically Stable and Genetically Unstable G-Quadruplexes Are Depleted in Genomes across Species. Nucleic Acids Res. 2019;47:6098–6113. doi: 10.1093/nar/gkz463. PubMed DOI PMC
Cramer P., Bushnell D.A., Fu J., Gnatt A.L., Maier-Davis B., Thompson N.E., Burgess R.R., Edwards A.M., David P.R., Kornberg R.D. Architecture of RNA Polymerase II and Implications for the Transcription Mechanism. Science. 2000;288:640–649. doi: 10.1126/science.288.5466.640. PubMed DOI
Siddiqui-Jain A., Grand C.L., Bearss D.J., Hurley L.H. Direct Evidence for a G-Quadruplex in a Promoter Region and Its Targeting with a Small Molecule to Repress c-MYC Transcription. Proc. Natl. Acad. Sci. USA. 2002;99:11593–11598. doi: 10.1073/pnas.182256799. PubMed DOI PMC
Cogoi S., Xodo L.E. G-Quadruplex Formation within the Promoter of the KRAS Proto-Oncogene and Its Effect on Transcription. Nucleic Acids Res. 2006;34:2536–2549. doi: 10.1093/nar/gkl286. PubMed DOI PMC
Yadav V., Kim N., Tuteja N., Yadav P. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance. Front. Plant Sci. 2017;8:1163. doi: 10.3389/fpls.2017.01163. PubMed DOI PMC
Marsico G., Chambers V.S., Sahakyan A.B., McCauley P., Boutell J.M., Antonio M.D., Balasubramanian S. Whole Genome Experimental Maps of DNA G-Quadruplexes in Multiple Species. Nucleic Acids Res. 2019;47:3862–3874. doi: 10.1093/nar/gkz179. PubMed DOI PMC
Bedrat A., Lacroix L., Mergny J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC
Thomas Q.A., Ard R., Liu J., Li B., Wang J., Pelechano V., Marquardt S. Transcript Isoform Sequencing Reveals Widespread Promoter-Proximal Transcriptional Termination in Arabidopsis. Nat. Commun. 2020;11:2589. doi: 10.1038/s41467-020-16390-7. PubMed DOI PMC
Zhang J., Zheng K., Xiao S., Hao Y., Tan Z. Mechanism and Manipulation of DNA: RNA Hybrid G-Quadruplex Formation in Transcription of G-Rich DNA. J. Am. Chem. Soc. 2014;136:1381–1390. doi: 10.1021/ja4085572. PubMed DOI
Frey K., Pucker B. Animal, Fungi, and Plant Genome Sequences Harbor Different Non-Canonical Splice Sites. Cells. 2020;9:458. doi: 10.3390/cells9020458. PubMed DOI PMC
Vinnarasi S., Radhika R., Vijayakumar S., Shankar R. Structural Insights into the Anti-Cancer Activity of Quercetin on G-Tetrad, Mixed G-Tetrad, and G-Quadruplex DNA Using Quantum Chemical and Molecular Dynamics Simulations. J. Biomol. Struct. Dyn. 2020;38:317–339. doi: 10.1080/07391102.2019.1574239. PubMed DOI
Brown R.V., Wang T., Chapetta V.R., Wu G., Onel B., Chawla R., Quijada H., Camp S.M., Chiang E.T., Lassiter Q.R., et al. The Consequences of Overlapping G-Quadruplexes and i-Motifs in the Platelet-Derived Growth Factor Receptor β Core Promoter Nuclease Hypersensitive Element Can Explain the Unexpected Effects of Mutations and Provide Opportunities for Selective Targeting of Both Structures by Small Molecules To Downregulate Gene Expression. J. Am. Chem. Soc. 2017;2017:7456–7475. doi: 10.1021/jacs.6b10028. PubMed DOI PMC
Megger D.A., Lax P.M., Paauwe J., Fonseca Guerra C., Lippert B. Mixed Guanine, Adenine Base Quartets: Possible Roles of Protons and Metal Ions in Their Stabilization. J. Biol. Inorg. Chem. 2018;23:41–49. doi: 10.1007/s00775-017-1507-7. PubMed DOI PMC
Patro L.P.P., Kumar A., Kolimi N., Rathinavelan T. 3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-Dimensional Nucleic Acid Structures. J. Mol. Biol. 2017;429:2438–2448. doi: 10.1016/j.jmb.2017.06.013. PubMed DOI
Guedin A., Gros J., Alberti P., Mergny J.-L. How Long Is Too Long? Effects of Loop Size on G-Quadruplex Stability. Nucleic Acids Res. 2010;38:7858–7868. doi: 10.1093/nar/gkq639. PubMed DOI PMC
Nisa M.-U., Huang Y., Benhamed M., Raynaud C. The Plant DNA Damage Response: Signaling Pathways Leading to Growth Inhibition and Putative Role in Response to Stress Conditions. Front. Plant Sci. 2019;10:653. doi: 10.3389/fpls.2019.00653. PubMed DOI PMC
Balanikas E., Banyasz A., Baldacchino G., Markovitsi D. Guanine Radicals Generated in Telomeric G-Quadruplexes by Direct Absorption of Low-Energy UV Photons: Effect of Potassium Ions. Molecules. 2020;25:2094. doi: 10.3390/molecules25092094. PubMed DOI PMC
Cooper G.M. The Cell: A Molecular Approach. 2nd ed. Sinauer Associates; Sunderland, MA, USA: 2000. DNA Repair.
Kimura S., Tahira Y., Ishibashi T., Mori Y., Mori T., Hashimoto J., Sakaguchi K. DNA Repair in Higher Plants; Photoreactivation Is the Major DNA Repair Pathway in Non-Proliferating Cells While Excision Repair (Nucleotide Excision Repair and Base Excision Repair) Is Active in Proliferating Cells. Nucleic Acids Res. 2004;32:2760–2767. doi: 10.1093/nar/gkh591. PubMed DOI PMC
Spampinato C.P. Protecting DNA from Errors and Damage: An Overview of DNA Repair Mechanisms in Plants Compared to Mammals. Cell. Mol. Life Sci. 2017;74:1693–1709. doi: 10.1007/s00018-016-2436-2. PubMed DOI PMC
Marquevielle J., Robert C., Lagrabette O., Wahid M., Bourdoncle A., Xodo L.E., Mergny J.-L., Salgado G.F. Structure of Two G-Quadruplexes in Equilibrium in the KRAS Promoter. Nucleic Acids Res. 2020;48:9336–9345. doi: 10.1093/nar/gkaa387. PubMed DOI PMC
Wang Y., Yang J., Wild A.T., Wu W.H., Shah R., Danussi C., Riggins G.J., Kannan K., Sulman E.P., Chan T.A. G-Quadruplex DNA Drives Genomic Instability and Represents a Targetable Molecular Abnormality in ATRX-Deficient Malignant Glioma. Nat. Commun. 2019;10:1–14. doi: 10.1038/s41467-019-08905-8. PubMed DOI PMC
Wu Y., Shin-Ya K., Brosh R.M., Jr. FANCJ Helicase Defective in Fanconia Anemia and Breast Cancer Unwinds G-Quadruplex DNA to Defend Genomic Stability. Mol. Cell. Biol. 2008;28:4116–4128. doi: 10.1128/MCB.02210-07. PubMed DOI PMC
Armas P., David A., Calcaterra N.B. Transcriptional Control by G-Quadruplexes: In Vivo Roles and Perspectives for Specific Intervention. Transcription. 2017;8:21–25. doi: 10.1080/21541264.2016.1243505. PubMed DOI PMC
Shen J., Varshney D., Simeone A., Zhang X., Adhikari S., Tannahill D., Balasubramanian S. Promoter G-Quadruplex Folding Precedes Transcription and Is Controlled by Chromatin. Genome Biol. 2021;22:143. doi: 10.1186/s13059-021-02346-7. PubMed DOI PMC
Bolduc F., Garant J.-M., Allard F., Perreault J.-P. Irregular G-Quadruplexes Found in the Untranslated Regions of Human MRNAs Influence Translation. J. Biol. Chem. 2016;291:21751–21760. doi: 10.1074/jbc.M116.744839. PubMed DOI PMC
Kanoh Y., Matsumoto S., Fukatsu R., Kakusho N., Kono N., Renard-Guillet C., Masuda K., Iida K., Nagasawa K., Shirahige K., et al. Rif1 Binds to G Quadruplexes and Suppresses Replication over Long Distances. Nat. Struct. Mol. Biol. 2015;22:889–897. doi: 10.1038/nsmb.3102. PubMed DOI
Poggi L., Richard G.-F. Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol. Mol. Biol. Rev. 2020;85:e00110-20. doi: 10.1128/MMBR.00110-20. PubMed DOI PMC
Schiavone D., Guilbaud G., Murat P., Papadopoulou C., Sarkies P., Prioleau M.-N., Balasubramanian S., Sale J.E. Determinants of G Quadruplex-Induced Epigenetic Instability in REV1-Deficient Cells. EMBO J. 2014;33:2507–2520. doi: 10.15252/embj.201488398. PubMed DOI PMC
Di Antonio M., Ponjavic A., Radzevičius A., Ranasinghe R.T., Catalano M., Zhang X., Shen J., Needham L.-M., Lee S.F., Klenerman D., et al. Single-Molecule Visualization of DNA G-Quadruplex Formation in Live Cells. Nat. Chem. 2020;12:832–837. doi: 10.1038/s41557-020-0506-4. PubMed DOI PMC
Buma A.G.J., Engelen A.H., Gieskes W.W.C. Wavelength-Dependent Induction of Thymine Dimers and Growth Rate Reduction in the Marine Diatom Cyclotella Sp. Exposed to Ultraviolet Radiation. Mar. Ecol. Prog. Ser. 1997;153:91–97. doi: 10.3354/meps153091. DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Bartas M., Brázda V., Karlický V., Červeň J., Pečinka P. Bioinformatics Analyses and in Vitro Evidence for Five and Six Stacked G-Quadruplex Forming Sequences. Biochimie. 2018;150:70–75. doi: 10.1016/j.biochi.2018.05.002. PubMed DOI
Brazda V., Kolomaznik J., Mergny J.-L., Stastny J. G4Killer Web Application: A Tool to Design G-Quadruplex Mutations. Bioinformatics. 2020;36:3246–3247. doi: 10.1093/bioinformatics/btaa057. PubMed DOI PMC
Renaud de la Faverie A., Guédin A., Bedrat A., Yatsunyk L.A., Mergny J.-L. Thioflavin T as a Fluorescence Light-up Probe for G4 Formation. Nucleic Acids Res. 2014;42:e65. doi: 10.1093/nar/gku111. PubMed DOI PMC
Impacts of Molecular Structure on Nucleic Acid-Protein Interactions