Analysis of G-Quadruplex-Forming Sequences in Drought Stress-Responsive Genes, and Synthesis Genes of Phenolic Compounds in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36676148
PubMed Central
PMC9865073
DOI
10.3390/life13010199
PII: life13010199
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, G-quadruplex, PQS, drought stress, phenolic compounds,
- Publikační typ
- časopisecké články MeSH
Sequences of nucleic acids with the potential to form four-stranded G-quadruplex structures are intensively studied mainly in the context of human diseases, pathogens, or extremophile organisms; nonetheless, the knowledge about their occurrence and putative role in plants is still limited. This work is focused on G-quadruplex-forming sites in two gene sets of interest: drought stress-responsive genes, and genes related to the production/biosynthesis of phenolic compounds in the model plant organism Arabidopsis thaliana. In addition, 20 housekeeping genes were analyzed as well, where the constitutive gene expression was expected (with no need for precise regulation depending on internal or external factors). The results have shown that none of the tested gene sets differed significantly in the content of G-quadruplex-forming sites, however, the highest frequency of G-quadruplex-forming sites was found in the 5'-UTR regions of phenolic compounds' biosynthesis genes, which indicates the possibility of their regulation at the mRNA level. In addition, mainly within the introns and 1000 bp flanks downstream gene regions, G-quadruplex-forming sites were highly underrepresented. Finally, cluster analysis allowed us to observe similarities between particular genes in terms of their PQS characteristics. We believe that the original approach used in this study may become useful for further and more comprehensive bioinformatic studies in the field of G-quadruplex genomics.
Department of Biology and Ecology University of Ostrava 70833 Ostrava Czech Republic
Department of Physics University of Ostrava 70833 Ostrava Czech Republic
Zobrazit více v PubMed
Watson J.D., Crick F.H. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI
Poggi L., Richard G.-F. Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol. Mol. Biol. Rev. 2020;85:e00110-20. doi: 10.1128/MMBR.00110-20. PubMed DOI PMC
Ghosh A., Bansal M. A Glossary of DNA Structures from A to Z. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003;59:620–626. doi: 10.1107/S0907444903003251. PubMed DOI
Griffin B.D., Bass H.W. Plant G-Quadruplex (G4) Motifs in DNA and RNA.; Abundant, Intriguing Sequences of Unknown Function. Plant Sci. 2018;269:143–147. doi: 10.1016/j.plantsci.2018.01.011. PubMed DOI
Kim J.-M., Sasaki T., Ueda M., Sako K., Seki M. Chromatin Changes in Response to Drought, Salinity, Heat, and Cold Stresses in Plants. Front. Plant Sci. 2015;6:114. doi: 10.3389/fpls.2015.00114. PubMed DOI PMC
Bartas M., Čutová M., Brázda V., Kaura P., Šťastný J., Kolomazník J., Coufal J., Goswami P., Červeň J., Pečinka P. The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria. Molecules. 2019;24:1711. doi: 10.3390/molecules24091711. PubMed DOI PMC
Brázda V., Luo Y., Bartas M., Kaura P., Porubiaková O., Št’astnỳ J., Pečinka P., Verga D., Da Cunha V., Takahashi T.S. G-Quadruplexes in the Archaea Domain. Biomolecules. 2020;10:1349. doi: 10.3390/biom10091349. PubMed DOI PMC
Bedrat A., Lacroix L., Mergny J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC
Gellert M., Lipsett M.N., Davies D.R. Helix Formation by Guanylic Acid. Proc. Natl. Acad. Sci. USA. 1962;48:2013. doi: 10.1073/pnas.48.12.2013. PubMed DOI PMC
Bartas M., Brázda V., Karlický V., Červeň J., Pečinka P. Bioinformatics Analyses and in Vitro Evidence for Five and Six Stacked G-Quadruplex Forming Sequences. Biochimie. 2018;150:70–75. doi: 10.1016/j.biochi.2018.05.002. PubMed DOI
Li X., Sánchez-Ferrer A., Bagnani M., Adamcik J., Azzari P., Hao J., Song A., Liu H., Mezzenga R. Metal Ions Confinement Defines the Architecture of G-Quartet, G-Quadruplex Fibrils and Their Assembly into Nematic Tactoids. Proc. Natl. Acad. Sci. USA. 2020;117:9832–9839. doi: 10.1073/pnas.1919777117. PubMed DOI PMC
Havlová K., Fajkus J. G4 Structures in Control of Replication and Transcription of RRNA Genes. Front. Plant Sci. 2020;11:593692. doi: 10.3389/fpls.2020.593692. PubMed DOI PMC
Kim N. The Interplay between G-Quadruplex and Transcription. Curr. Med. Chem. 2019;26:2898–2917. doi: 10.2174/0929867325666171229132619. PubMed DOI PMC
Cho H., Cho H.S., Nam H., Jo H., Yoon J., Park C., Dang T.V.T., Kim E., Jeong J., Park S., et al. Translational Control of Phloem Development by RNA G-Quadruplex–JULGI Determines Plant Sink Strength. Nat. Plants. 2018;4:376–390. doi: 10.1038/s41477-018-0157-2. PubMed DOI
Bugaut A., Balasubramanian S. 5′-UTR RNA G-Quadruplexes: Translation Regulation and Targeting. Nucleic Acids Res. 2012;40:4727–4741. doi: 10.1093/nar/gks068. PubMed DOI PMC
Feng Y., Tao S., Zhang P., Sperti F.R., Liu G., Cheng X., Zhang T., Yu H., Wang X., Chen C. Epigenomic Features of DNA G-Quadruplexes and Their Roles in Regulating Rice Gene Transcription. Plant Physiol. 2022;188:1632–1648. doi: 10.1093/plphys/kiab566. PubMed DOI PMC
Lejault P., Mitteaux J., Sperti F.R., Monchaud D. How to Untie G-Quadruplex Knots and Why? Cell Chem. Biol. 2021;28:436–455. doi: 10.1016/j.chembiol.2021.01.015. PubMed DOI
Król A., Amarowicz R., Weidner S. Changes in the Composition of Phenolic Compounds and Antioxidant Properties of Grapevine Roots and Leaves (Vitis Vinifera L.) under Continuous of Long-Term Drought Stress. Acta Physiol. Plant. 2014;36:1491–1499. doi: 10.1007/s11738-014-1526-8. DOI
Varela M.C., Arslan I., Reginato M.A., Cenzano A.M., Luna M.V. Phenolic Compounds as Indicators of Drought Resistance in Shrubs from Patagonian Shrublands (Argentina) Plant Physiol. Biochem. 2016;104:81–91. doi: 10.1016/j.plaphy.2016.03.014. PubMed DOI
Sarker U., Oba S. Drought Stress Enhances Nutritional and Bioactive Compounds, Phenolic Acids and Antioxidant Capacity of Amaranthus Leafy Vegetable. BMC Plant Biol. 2018;18:258. doi: 10.1186/s12870-018-1484-1. PubMed DOI PMC
Alter S., Bader K.C., Spannagl M., Wang Y., Bauer E., Schön C.-C., Mayer K.F.X. DroughtDB: An Expert-Curated Compilation of Plant Drought Stress Genes and Their Homologs in Nine Species. Database. 2015;2015:bav046. doi: 10.1093/database/bav046. PubMed DOI PMC
Brázda V., Kolomazník J., Lỳsek J., Bartas M., Fojta M., Št’astnỳ J., Mergny J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC
Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. Heatmapper: Web-Enabled Heat Mapping for All. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419. PubMed DOI PMC
Pasha A., Subramaniam S., Cleary A., Chen X., Berardini T., Farmer A., Town C., Provart N. Araport Lives: An Updated Framework for Arabidopsis Bioinformatics. Plant Cell. 2020;32:2683–2686. doi: 10.1105/tpc.20.00358. PubMed DOI PMC
Dobrovolná M., Bohálová N., Peška V., Wang J., Luo Y., Bartas M., Volná A., Mergny J.-L., Brázda V. The Newly Sequenced Genome of Pisum Sativum Is Replete with Potential G-Quadruplex-Forming Sequences—Implications for Evolution and Biological Regulation. Int. J. Mol. Sci. 2022;23:8482. doi: 10.3390/ijms23158482. PubMed DOI PMC
Bohálová N., Dobrovolná M., Brázda V., Bidula S. Conservation and Over-Representation of G-Quadruplex Sequences in Regulatory Regions of Mitochondrial DNA across Distinct Taxonomic Sub-Groups. Biochimie. 2022;194:28–34. doi: 10.1016/j.biochi.2021.12.006. PubMed DOI
Vannutelli A., Perreault J.-P., Ouangraoua A. G-Quadruplex Occurrence and Conservation: More than Just a Question of Guanine–Cytosine Content. NAR Genom. Bioinform. 2022;4:lqac010. doi: 10.1093/nargab/lqac010. PubMed DOI PMC
Chang N., Sun Q., Hu J., An C., Gao H. Large Introns of 5 to 10 Kilo Base Pairs Can Be Spliced out in Arabidopsis. Genes. 2017;8:200. doi: 10.3390/genes8080200. PubMed DOI PMC
Bryan T.M. G-Quadruplexes at Telomeres: Friend or Foe? Molecules. 2020;25:3686. doi: 10.3390/molecules25163686. PubMed DOI PMC
Yadav V., Kim N., Tuteja N., Yadav P. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance. Front. Plant Sci. 2017;8:1163. doi: 10.3389/fpls.2017.01163. PubMed DOI PMC
Kwok C.K., Ding Y., Shahid S., Assmann S.M., Bevilacqua P.C. A Stable RNA G-Quadruplex within the 5′-UTR of Arabidopsis Thaliana ATR MRNA Inhibits Translation. Biochem. J. 2015;467:91–102. doi: 10.1042/BJ20141063. PubMed DOI
Liu H., Chu Z., Yang X. A Key Molecular Regulator, RNA G-Quadruplex and Its Function in Plants. Front Plant Sci. 2022;13:926953. doi: 10.3389/fpls.2022.926953. PubMed DOI PMC
Volná A., Bartas M., Karlický V., Nezval J., Kundrátová K., Pečinka P., Špunda V., Červeň J. G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story. Int. J. Mol. Sci. 2021;22:7381. doi: 10.3390/ijms22147381. PubMed DOI PMC