Analysis of G-Quadruplex-Forming Sequences in Drought Stress-Responsive Genes, and Synthesis Genes of Phenolic Compounds in Arabidopsis thaliana

. 2023 Jan 10 ; 13 (1) : . [epub] 20230110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36676148

Sequences of nucleic acids with the potential to form four-stranded G-quadruplex structures are intensively studied mainly in the context of human diseases, pathogens, or extremophile organisms; nonetheless, the knowledge about their occurrence and putative role in plants is still limited. This work is focused on G-quadruplex-forming sites in two gene sets of interest: drought stress-responsive genes, and genes related to the production/biosynthesis of phenolic compounds in the model plant organism Arabidopsis thaliana. In addition, 20 housekeeping genes were analyzed as well, where the constitutive gene expression was expected (with no need for precise regulation depending on internal or external factors). The results have shown that none of the tested gene sets differed significantly in the content of G-quadruplex-forming sites, however, the highest frequency of G-quadruplex-forming sites was found in the 5'-UTR regions of phenolic compounds' biosynthesis genes, which indicates the possibility of their regulation at the mRNA level. In addition, mainly within the introns and 1000 bp flanks downstream gene regions, G-quadruplex-forming sites were highly underrepresented. Finally, cluster analysis allowed us to observe similarities between particular genes in terms of their PQS characteristics. We believe that the original approach used in this study may become useful for further and more comprehensive bioinformatic studies in the field of G-quadruplex genomics.

Zobrazit více v PubMed

Watson J.D., Crick F.H. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI

Poggi L., Richard G.-F. Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol. Mol. Biol. Rev. 2020;85:e00110-20. doi: 10.1128/MMBR.00110-20. PubMed DOI PMC

Ghosh A., Bansal M. A Glossary of DNA Structures from A to Z. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003;59:620–626. doi: 10.1107/S0907444903003251. PubMed DOI

Griffin B.D., Bass H.W. Plant G-Quadruplex (G4) Motifs in DNA and RNA.; Abundant, Intriguing Sequences of Unknown Function. Plant Sci. 2018;269:143–147. doi: 10.1016/j.plantsci.2018.01.011. PubMed DOI

Kim J.-M., Sasaki T., Ueda M., Sako K., Seki M. Chromatin Changes in Response to Drought, Salinity, Heat, and Cold Stresses in Plants. Front. Plant Sci. 2015;6:114. doi: 10.3389/fpls.2015.00114. PubMed DOI PMC

Bartas M., Čutová M., Brázda V., Kaura P., Šťastný J., Kolomazník J., Coufal J., Goswami P., Červeň J., Pečinka P. The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria. Molecules. 2019;24:1711. doi: 10.3390/molecules24091711. PubMed DOI PMC

Brázda V., Luo Y., Bartas M., Kaura P., Porubiaková O., Št’astnỳ J., Pečinka P., Verga D., Da Cunha V., Takahashi T.S. G-Quadruplexes in the Archaea Domain. Biomolecules. 2020;10:1349. doi: 10.3390/biom10091349. PubMed DOI PMC

Bedrat A., Lacroix L., Mergny J.-L. Re-Evaluation of G-Quadruplex Propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC

Gellert M., Lipsett M.N., Davies D.R. Helix Formation by Guanylic Acid. Proc. Natl. Acad. Sci. USA. 1962;48:2013. doi: 10.1073/pnas.48.12.2013. PubMed DOI PMC

Bartas M., Brázda V., Karlický V., Červeň J., Pečinka P. Bioinformatics Analyses and in Vitro Evidence for Five and Six Stacked G-Quadruplex Forming Sequences. Biochimie. 2018;150:70–75. doi: 10.1016/j.biochi.2018.05.002. PubMed DOI

Li X., Sánchez-Ferrer A., Bagnani M., Adamcik J., Azzari P., Hao J., Song A., Liu H., Mezzenga R. Metal Ions Confinement Defines the Architecture of G-Quartet, G-Quadruplex Fibrils and Their Assembly into Nematic Tactoids. Proc. Natl. Acad. Sci. USA. 2020;117:9832–9839. doi: 10.1073/pnas.1919777117. PubMed DOI PMC

Havlová K., Fajkus J. G4 Structures in Control of Replication and Transcription of RRNA Genes. Front. Plant Sci. 2020;11:593692. doi: 10.3389/fpls.2020.593692. PubMed DOI PMC

Kim N. The Interplay between G-Quadruplex and Transcription. Curr. Med. Chem. 2019;26:2898–2917. doi: 10.2174/0929867325666171229132619. PubMed DOI PMC

Cho H., Cho H.S., Nam H., Jo H., Yoon J., Park C., Dang T.V.T., Kim E., Jeong J., Park S., et al. Translational Control of Phloem Development by RNA G-Quadruplex–JULGI Determines Plant Sink Strength. Nat. Plants. 2018;4:376–390. doi: 10.1038/s41477-018-0157-2. PubMed DOI

Bugaut A., Balasubramanian S. 5′-UTR RNA G-Quadruplexes: Translation Regulation and Targeting. Nucleic Acids Res. 2012;40:4727–4741. doi: 10.1093/nar/gks068. PubMed DOI PMC

Feng Y., Tao S., Zhang P., Sperti F.R., Liu G., Cheng X., Zhang T., Yu H., Wang X., Chen C. Epigenomic Features of DNA G-Quadruplexes and Their Roles in Regulating Rice Gene Transcription. Plant Physiol. 2022;188:1632–1648. doi: 10.1093/plphys/kiab566. PubMed DOI PMC

Lejault P., Mitteaux J., Sperti F.R., Monchaud D. How to Untie G-Quadruplex Knots and Why? Cell Chem. Biol. 2021;28:436–455. doi: 10.1016/j.chembiol.2021.01.015. PubMed DOI

Król A., Amarowicz R., Weidner S. Changes in the Composition of Phenolic Compounds and Antioxidant Properties of Grapevine Roots and Leaves (Vitis Vinifera L.) under Continuous of Long-Term Drought Stress. Acta Physiol. Plant. 2014;36:1491–1499. doi: 10.1007/s11738-014-1526-8. DOI

Varela M.C., Arslan I., Reginato M.A., Cenzano A.M., Luna M.V. Phenolic Compounds as Indicators of Drought Resistance in Shrubs from Patagonian Shrublands (Argentina) Plant Physiol. Biochem. 2016;104:81–91. doi: 10.1016/j.plaphy.2016.03.014. PubMed DOI

Sarker U., Oba S. Drought Stress Enhances Nutritional and Bioactive Compounds, Phenolic Acids and Antioxidant Capacity of Amaranthus Leafy Vegetable. BMC Plant Biol. 2018;18:258. doi: 10.1186/s12870-018-1484-1. PubMed DOI PMC

Alter S., Bader K.C., Spannagl M., Wang Y., Bauer E., Schön C.-C., Mayer K.F.X. DroughtDB: An Expert-Curated Compilation of Plant Drought Stress Genes and Their Homologs in Nine Species. Database. 2015;2015:bav046. doi: 10.1093/database/bav046. PubMed DOI PMC

Brázda V., Kolomazník J., Lỳsek J., Bartas M., Fojta M., Št’astnỳ J., Mergny J.-L. G4Hunter Web Application: A Web Server for G-Quadruplex Prediction. Bioinformatics. 2019;35:3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC

Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. Heatmapper: Web-Enabled Heat Mapping for All. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419. PubMed DOI PMC

Pasha A., Subramaniam S., Cleary A., Chen X., Berardini T., Farmer A., Town C., Provart N. Araport Lives: An Updated Framework for Arabidopsis Bioinformatics. Plant Cell. 2020;32:2683–2686. doi: 10.1105/tpc.20.00358. PubMed DOI PMC

Dobrovolná M., Bohálová N., Peška V., Wang J., Luo Y., Bartas M., Volná A., Mergny J.-L., Brázda V. The Newly Sequenced Genome of Pisum Sativum Is Replete with Potential G-Quadruplex-Forming Sequences—Implications for Evolution and Biological Regulation. Int. J. Mol. Sci. 2022;23:8482. doi: 10.3390/ijms23158482. PubMed DOI PMC

Bohálová N., Dobrovolná M., Brázda V., Bidula S. Conservation and Over-Representation of G-Quadruplex Sequences in Regulatory Regions of Mitochondrial DNA across Distinct Taxonomic Sub-Groups. Biochimie. 2022;194:28–34. doi: 10.1016/j.biochi.2021.12.006. PubMed DOI

Vannutelli A., Perreault J.-P., Ouangraoua A. G-Quadruplex Occurrence and Conservation: More than Just a Question of Guanine–Cytosine Content. NAR Genom. Bioinform. 2022;4:lqac010. doi: 10.1093/nargab/lqac010. PubMed DOI PMC

Chang N., Sun Q., Hu J., An C., Gao H. Large Introns of 5 to 10 Kilo Base Pairs Can Be Spliced out in Arabidopsis. Genes. 2017;8:200. doi: 10.3390/genes8080200. PubMed DOI PMC

Bryan T.M. G-Quadruplexes at Telomeres: Friend or Foe? Molecules. 2020;25:3686. doi: 10.3390/molecules25163686. PubMed DOI PMC

Yadav V., Kim N., Tuteja N., Yadav P. G Quadruplex in Plants: A Ubiquitous Regulatory Element and Its Biological Relevance. Front. Plant Sci. 2017;8:1163. doi: 10.3389/fpls.2017.01163. PubMed DOI PMC

Kwok C.K., Ding Y., Shahid S., Assmann S.M., Bevilacqua P.C. A Stable RNA G-Quadruplex within the 5′-UTR of Arabidopsis Thaliana ATR MRNA Inhibits Translation. Biochem. J. 2015;467:91–102. doi: 10.1042/BJ20141063. PubMed DOI

Liu H., Chu Z., Yang X. A Key Molecular Regulator, RNA G-Quadruplex and Its Function in Plants. Front Plant Sci. 2022;13:926953. doi: 10.3389/fpls.2022.926953. PubMed DOI PMC

Volná A., Bartas M., Karlický V., Nezval J., Kundrátová K., Pečinka P., Špunda V., Červeň J. G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story. Int. J. Mol. Sci. 2021;22:7381. doi: 10.3390/ijms22147381. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace