Searching for G-Quadruplex-Binding Proteins in Plants: New Insight into Possible G-Quadruplex Regulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS02/PrF/2021
Ostravská Univerzita v Ostravě
SGS11/PrF/2021
Ostravská Univerzita v Ostravě
21-18532S
Grantová Agentura České Republiky
QK1810391
National Agency for Agricultural Research (NAZV)
PubMed
35822794
PubMed Central
PMC9245464
DOI
10.3390/biotech10040020
PII: biotech10040020
Knihovny.cz E-zdroje
- Klíčová slova
- G-quadruplex folding, G-quadruplex resolving, G-quadruplex-binding proteins, NIQI, RGG motif, regulation of gene expression,
- Publikační typ
- časopisecké články MeSH
G-quadruplexes are four-stranded nucleic acid structures occurring in the genomes of all living organisms and viruses. It is increasingly evident that these structures play important molecular roles; generally, by modulating gene expression and overall genome integrity. For a long period, G-quadruplexes have been studied specifically in the context of human promoters, telomeres, and associated diseases (cancers, neurological disorders). Several of the proteins for binding G-quadruplexes are known, providing promising targets for influencing G-quadruplex-related processes in organisms. Nonetheless, in plants, only a small number of G-quadruplex binding proteins have been described to date. Thus, we aimed to bioinformatically inspect the available protein sequences to find the best protein candidates with the potential to bind G-quadruplexes. Two similar glycine and arginine-rich G-quadruplex-binding motifs were described in humans. The first is the so-called "RGG motif"-RRGDGRRRGGGGRGQGGRGRGGGFKG, and the second (which has been recently described) is known as the "NIQI motif"-RGRGRGRGGGSGGSGGRGRG. Using this general knowledge, we searched for plant proteins containing the above mentioned motifs, using two independent approaches (BLASTp and FIMO scanning), and revealed many proteins containing the G4-binding motif(s). Our research also revealed the core proteins involved in G4 folding and resolving in green plants, algae, and the key plant model organism, Arabidopsis thaliana. The discovered protein candidates were annotated using STRINGdb and sorted by their molecular and physiological roles in simple schemes. Our results point to the significant role of G4-binding proteins in the regulation of gene expression in plants.
Department of Physics Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
Global Change Research Institute Czech Academy of Sciences Bělidla 4a 603 00 Brno Czech Republic
Zobrazit více v PubMed
Rhodes D., Lipps H.J. G-Quadruplexes and Their Regulatory Roles in Biology. Nucleic Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC
Fujii T., Podbevšek P., Plavec J., Sugimoto N. Effects of Metal Ions and Cosolutes on G-Quadruplex Topology. J. Inorg. Biochem. 2017;166:190–198. doi: 10.1016/j.jinorgbio.2016.09.001. PubMed DOI
Bartas M., Brázda V., Karlický V., Červeň J., Pečinka P. Bioinformatics Analyses and In Vitro Evidence for Five and Six Stacked G-Quadruplex Forming Sequences. Biochimie. 2018;150:70–75. doi: 10.1016/j.biochi.2018.05.002. PubMed DOI
Guedin A., Gros J., Alberti P., Mergny J.-L. How Long Is Too Long? Effects of Loop Size on G-Quadruplex Stability. Nucleic Acids Res. 2010;38:7858–7868. doi: 10.1093/nar/gkq639. PubMed DOI PMC
Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006;34:5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC
Patro L.P.P., Kumar A., Kolimi N., Rathinavelan T. 3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-Dimensional Nucleic Acid Structures. J. Mol. Biol. 2017;429:2438–2448. doi: 10.1016/j.jmb.2017.06.013. PubMed DOI
Hänsel-Hertsch R., Simeone A., Shea A., Hui W.W., Zyner K.G., Marsico G., Rueda O.M., Bruna A., Martin A., Zhang X. Landscape of G-Quadruplex DNA Structural Regions in Breast Cancer. Nat. Genet. 2020;52:878–883. doi: 10.1038/s41588-020-0672-8. PubMed DOI
Simone R., Fratta P., Neidle S., Parkinson G.N., Isaacs A.M. G-Quadruplexes: Emerging Roles in Neurodegenerative Diseases and the Non-Coding Transcriptome. FEBS Lett. 2015;589:1653–1668. doi: 10.1016/j.febslet.2015.05.003. PubMed DOI
Wang E., Thombre R., Shah Y., Latanich R., Wang J. G-Quadruplexes as Pathogenic Drivers in Neurodegenerative Disorders. Nucleic Acids Res. 2021;49:4816–4830. doi: 10.1093/nar/gkab164. PubMed DOI PMC
Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A.R., Richter S.N., Toppo S. G-Quadruplex Forming Sequences in the Genome of All Known Human Viruses: A Comprehensive Guide. PLoS Comput. Biol. 2018;14:e1006675. doi: 10.1371/journal.pcbi.1006675. PubMed DOI PMC
Bartas M., Brázda V., Bohálová N., Cantara A., Volná A., Stachurová T., Malachová K., Jagelská E.B., Porubiaková O., Červeň J. In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-Canonical Nucleic Acid Structures in Their Lifecycles. Front. Microbiol. 2020;11:1583. doi: 10.3389/fmicb.2020.01583. PubMed DOI PMC
Brázda V., Hároníková L., Liao J.C., Fojta M. DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC
Mishra S.K., Tawani A., Mishra A., Kumar A. G4IPDB: A Database for G-Quadruplex Structure Forming Nucleic Acid Interacting Proteins. Sci. Rep. 2016;6:38144. doi: 10.1038/srep38144. PubMed DOI PMC
Cagirici H.B., Budak H., Sen T.Z. Genome-Wide Discovery of G-Quadruplexes in Barley. Sci. Rep. 2021;11:7876. doi: 10.1038/s41598-021-86838-3. PubMed DOI PMC
Cagirici H.B., Sen T.Z. Genome-Wide Discovery of G-Quadruplexes in Wheat: Distribution and Putative Functional Roles. G3 Genes Genomes Genet. 2020;10:2021–2032. doi: 10.1534/g3.120.401288. PubMed DOI PMC
Stefos G.C., Theodorou G., Politis I. DNA G-Quadruplexes: Functional Significance in Plant and Farm Animal Science. Anim. Biotechnol. 2021;32:262–271. doi: 10.1080/10495398.2019.1679823. PubMed DOI
Volná A., Bartas M., Karlický V., Nezval J., Kundrátová K., Pečinka P., Špunda V., Červeň J. G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story. Int. J. Mol. Sci. 2021;22:7381. doi: 10.3390/ijms22147381. PubMed DOI PMC
Zhang Y., Yang M., Duncan S., Yang X., Abdelhamid M.A.S., Huang L., Zhang H., Benfey P.N., Waller Z.A.E., Ding Y. G-Quadruplex Structures Trigger RNA Phase Separation. Nucleic Acids Res. 2019;47:11746–11754. doi: 10.1093/nar/gkz978. PubMed DOI PMC
Andorf C.M., Kopylov M., Dobbs D., Koch K.E., Stroupe M.E., Lawrence C.J., Bass H.W. G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation. J. Genet. Genom. 2014;41:627–647. doi: 10.1016/j.jgg.2014.10.004. PubMed DOI
Cho H., Cho H.S., Nam H., Jo H., Yoon J., Park C., Dang T.V.T., Kim E., Jeong J., Park S., et al. Translational Control of Phloem Development by RNA G-Quadruplex–JULGI Determines Plant Sink Strength. Nat. Plants. 2018;4:376–390. doi: 10.1038/s41477-018-0157-2. PubMed DOI
Sjakste T., Leonova E., Petrovs R., Trapina I., Röder M.S., Sjakste N. Tight DNA-Protein Complexes Isolated from Barley Seedlings Are Rich in Potential Guanine Quadruplex Sequences. PeerJ. 2020;8:e8569. doi: 10.7717/peerj.8569. PubMed DOI PMC
Vasilyev N., Polonskaia A., Darnell J.C., Darnell R.B., Patel D.J., Serganov A. Crystal Structure Reveals Specific Recognition of a G-Quadruplex RNA by a β-Turn in the RGG Motif of FMRP. Proc. Natl. Acad. Sci. USA. 2015;112:E5391–E5400. doi: 10.1073/pnas.1515737112. PubMed DOI PMC
Brázda V., Červeň J., Bartas M., Mikysková N., Coufal J., Pečinka P. The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors. Molecules. 2018;23:2341. doi: 10.3390/molecules23092341. PubMed DOI PMC
Grant C.E., Bailey T.L., Noble W.S. FIMO: Scanning for Occurrences of a given Motif. Bioinformatics. 2011;27:1017–1018. doi: 10.1093/bioinformatics/btr064. PubMed DOI PMC
Bailey T.L., Johnson J., Grant C.E., Noble W.S. The MEME Suite. Nucleic Acids Res. 2015;43:W39–W49. doi: 10.1093/nar/gkv416. PubMed DOI PMC
O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC
Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. NCBI BLAST: A Better Web Interface. Nucleic Acids Res. 2008;36:W5–W9. doi: 10.1093/nar/gkn201. PubMed DOI PMC
Zhang Y., Gaetano C.M., Williams K.R., Bassell G.J., Mihailescu M.R. FMRP Interacts with G-Quadruplex Structures in the 3′-UTR of Its Dendritic Target Shank1 MRNA. RNA Biol. 2014;11:1364–1374. doi: 10.1080/15476286.2014.996464. PubMed DOI PMC
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P. STRING V10: Protein–Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003. PubMed DOI PMC
Källberg M., Wang H., Wang S., Peng J., Wang Z., Lu H., Xu J. Template-Based Protein Structure Modeling Using the RaptorX Web Server. Nat. Protoc. 2012;7:1511–1522. doi: 10.1038/nprot.2012.085. PubMed DOI PMC
Lambert C., Leonard N., De Bolle X., Depiereux E. ESyPred3D: Prediction of Proteins 3D Structures. Bioinformatics. 2002;18:1250–1256. doi: 10.1093/bioinformatics/18.9.1250. PubMed DOI
Yan Y., Tao H., He J., Huang S.-Y. The HDOCK Server for Integrated Protein–Protein Docking. Nat. Protoc. 2020;15:1829–1852. doi: 10.1038/s41596-020-0312-x. PubMed DOI
Mullen M.A., Olson K.J., Dallaire P., Major F., Assmann S.M., Bevilacqua P.C. RNA G-Quadruplexes in the Model Plant Species Arabidopsis thaliana: Prevalence and Possible Functional Roles. Nucleic Acids Res. 2010;38:8149–8163. doi: 10.1093/nar/gkq804. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Costa-Silva H.M., Resende B.C., Umaki A.C.S., Prado W., da Silva M.S., Virgílio S., Macedo A.M., Pena S.D.J., Tahara E.B., Tosi L.R.O., et al. DNA Topoisomerase 3α Is Involved in Homologous Recombination Repair and Replication Stress Response in Trypanosoma Cruzi. Front. Cell Dev. Biol. 2021;9:849. doi: 10.3389/fcell.2021.633195. PubMed DOI PMC
Goto C., Tamura K., Fukao Y., Shimada T., Hara-Nishimura I. The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in Arabidopsis. Plant Cell. 2014;26:2143–2155. doi: 10.1105/tpc.113.122168. PubMed DOI PMC
Long J.C., Caceres J.F. The SR Protein Family of Splicing Factors: Master Regulators of Gene Expression. Biochem. J. 2009;417:15–27. doi: 10.1042/BJ20081501. PubMed DOI
Sasaki K., Liu Y., Kim M.-H., Imai R. An RNA Chaperone, AtCSP2, Negatively Regulates Salt Stress Tolerance. Plant Signal. Behav. 2015;10:e1042637. doi: 10.1080/15592324.2015.1042637. PubMed DOI PMC
Köster T., Meyer K., Weinholdt C., Smith L.M., Lummer M., Speth C., Grosse I., Weigel D., Staiger D. Regulation of Pri-MiRNA Processing by the HnRNP-like Protein AtGRP7 in Arabidopsis. Nucleic Acids Res. 2014;42:9925–9936. doi: 10.1093/nar/gku716. PubMed DOI PMC
Cao J.-Y., Xu Y.-P., Cai X.-Z. Integrated MiRNAome and Transcriptome Analysis Reveals Argonaute 2-Mediated Defense Responses Against the Devastating Phytopathogen Sclerotinia Sclerotiorum. Front. Plant Sci. 2020;11:500. doi: 10.3389/fpls.2020.00500. PubMed DOI PMC
Pontvianne F., Matía I., Douet J., Tourmente S., Medina F.J., Echeverria M., Sáez-Vásquez J. Characterization of AtNUC-L1 Reveals a Central Role of Nucleolin in Nucleolus Organization and Silencing of AtNUC-L2 Gene in Arabidopsis. Mol. Biol. Cell. 2007;18:369–379. doi: 10.1091/mbc.e06-08-0751. PubMed DOI PMC
Lange H., Zuber H., Sement F.M., Chicher J., Kuhn L., Hammann P., Brunaud V., Bérard C., Bouteiller N., Balzergue S., et al. The RNA Helicases AtMTR4 and HEN2 Target Specific Subsets of Nuclear Transcripts for Degradation by the Nuclear Exosome in Arabidopsis thaliana. PLoS Genet. 2014;10:e1004564. doi: 10.1371/journal.pgen.1004564. PubMed DOI PMC
Western T.L., Cheng Y., Liu J., Chen X. HUA ENHANCER2, a Putative DExH-Box RNA Helicase, Maintains Homeotic B and C Gene Expression in Arabidopsis. Development. 2002;129:1569–1581. doi: 10.1242/dev.129.7.1569. PubMed DOI PMC
Larochelle M., Lemay J.-F., Bachand F. The THO Complex Cooperates with the Nuclear RNA Surveillance Machinery to Control Small Nucleolar RNA Expression. Nucleic Acids Res. 2012;40:10240–10253. doi: 10.1093/nar/gks838. PubMed DOI PMC
Shukla K., Thakur R.S., Ganguli D., Rao D.N., Nagaraju G. Escherichia coli and Neisseria gonorrhoeae UvrD Helicase Unwinds G4 DNA Structures. Biochem. J. 2017;474:3579–3597. doi: 10.1042/BCJ20170587. PubMed DOI
Shubina M.Y., Musinova Y.R., Sheval E.V. Nucleolar Methyltransferase Fibrillarin: Evolution of Structure and Functions. Biochem. Mosc. 2016;81:941–950. doi: 10.1134/S0006297916090030. PubMed DOI
Fleurdépine S., Deragon J.-M., Devic M., Guilleminot J., Bousquet-Antonelli C. A Bona Fide La Protein Is Required for Embryogenesis in Arabidopsis thaliana. Nucleic Acids Res. 2007;35:3306–3321. doi: 10.1093/nar/gkm200. PubMed DOI PMC
Goyal M., Banerjee C., Nag S., Bandyopadhyay U. The Alba Protein Family: Structure and Function. Biochim. Biophys. Acta (BBA)—Prot. Proteom. 2016;1864:570–583. doi: 10.1016/j.bbapap.2016.02.015. PubMed DOI
Li X., Gao X., Wei Y., Deng L., Ouyang Y., Chen G., Li X., Zhang Q., Wu C. Rice APOPTOSIS INHIBITOR5 Coupled with Two DEAD-Box Adenosine 5′-Triphosphate-Dependent RNA Helicases Regulates Tapetum Degeneration. Plant Cell. 2011;23:1416–1434. doi: 10.1105/tpc.110.082636. PubMed DOI PMC
Garcia-Ruiz H., Carbonell A., Hoyer J.S., Fahlgren N., Gilbert K.B., Takeda A., Giampetruzzi A., Ruiz M.T.G., McGinn M.G., Lowery N., et al. Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLoS Pathog. 2015;11:e1004755. doi: 10.1371/journal.ppat.1004755. PubMed DOI PMC
Kim J.S., Jung H.J., Lee H.J., Kim K.A., Goh C.-H., Woo Y., Oh S.H., Han Y.S., Kang H. Glycine-Rich RNA-Binding Protein7 Affects Abiotic Stress Responses by Regulating Stomata Opening and Closing in Arabidopsis thaliana. Plant J. 2008;55:455–466. doi: 10.1111/j.1365-313X.2008.03518.x. PubMed DOI
Kim J.Y., Park S.J., Jang B., Jung C.-H., Ahn S.J., Goh C.-H., Cho K., Han O., Kang H. Functional Characterization of a Glycine-Rich RNA-Binding Protein 2 in Arabidopsis thaliana under Abiotic Stress Conditions. Plant J. 2007;50:439–451. doi: 10.1111/j.1365-313X.2007.03057.x. PubMed DOI
Ciuzan O., Ladomery M., Wilson I., Hancock J., Pamfil D. The Arabidopsis thaliana Glycine-Rich RNA Binding Proteins AtGRP7 and AtGRP2 Are Involved in Early Development. ProEnviron. Promediu. 2013;6:72–76.
Chen M.C., Murat P., Abecassis K., Ferré-D’Amaré A.R., Balasubramanian S. Insights into the Mechanism of a G-Quadruplex-Unwinding DEAH-Box Helicase. Nucleic Acids Res. 2015;43:2223–2231. doi: 10.1093/nar/gkv051. PubMed DOI PMC
Chen M.C., Tippana R., Demeshkina N.A., Murat P., Balasubramanian S., Myong S., Ferré-D’Amaré A.R. Structural Basis of G-Quadruplex Unfolding by the DEAH/RHA Helicase DHX36. Nature. 2018;558:465–469. doi: 10.1038/s41586-018-0209-9. PubMed DOI PMC
Tosoni E., Frasson I., Scalabrin M., Perrone R., Butovskaya E., Nadai M., Palù G., Fabris D., Richter S.N. Nucleolin Stabilizes G-Quadruplex Structures Folded by the LTR Promoter and Silences HIV-1 Viral Transcription. Nucleic Acids Res. 2015;43:8884–8897. doi: 10.1093/nar/gkv897. PubMed DOI PMC
Di Antonio M., Ponjavic A., Radzevičius A., Ranasinghe R.T., Catalano M., Zhang X., Shen J., Needham L.-M., Lee S.F., Klenerman D., et al. Single-Molecule Visualization of DNA G-Quadruplex Formation in Live Cells. Nat. Chem. 2020;12:832–837. doi: 10.1038/s41557-020-0506-4. PubMed DOI PMC
Ravichandran S., Ahn J.-H., Kim K.K. Unraveling the Regulatory G-Quadruplex Puzzle: Lessons from Genome and Transcriptome-Wide Studies. Front. Genet. 2019;10:1002. doi: 10.3389/fgene.2019.01002. PubMed DOI PMC
Serikawa T., Spanos C., von Hacht A., Budisa N., Rappsilber J., Kurreck J. Comprehensive Identification of Proteins Binding to RNA G-Quadruplex Motifs in the 5′ UTR of Tumor-Associated MRNAs. Biochimie. 2018;144:169–184. doi: 10.1016/j.biochi.2017.11.003. PubMed DOI