Searching for G-Quadruplex-Binding Proteins in Plants: New Insight into Possible G-Quadruplex Regulation

. 2021 Sep 22 ; 10 (4) : . [epub] 20210922

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35822794

Grantová podpora
SGS02/PrF/2021 Ostravská Univerzita v Ostravě
SGS11/PrF/2021 Ostravská Univerzita v Ostravě
21-18532S Grantová Agentura České Republiky
QK1810391 National Agency for Agricultural Research (NAZV)

G-quadruplexes are four-stranded nucleic acid structures occurring in the genomes of all living organisms and viruses. It is increasingly evident that these structures play important molecular roles; generally, by modulating gene expression and overall genome integrity. For a long period, G-quadruplexes have been studied specifically in the context of human promoters, telomeres, and associated diseases (cancers, neurological disorders). Several of the proteins for binding G-quadruplexes are known, providing promising targets for influencing G-quadruplex-related processes in organisms. Nonetheless, in plants, only a small number of G-quadruplex binding proteins have been described to date. Thus, we aimed to bioinformatically inspect the available protein sequences to find the best protein candidates with the potential to bind G-quadruplexes. Two similar glycine and arginine-rich G-quadruplex-binding motifs were described in humans. The first is the so-called "RGG motif"-RRGDGRRRGGGGRGQGGRGRGGGFKG, and the second (which has been recently described) is known as the "NIQI motif"-RGRGRGRGGGSGGSGGRGRG. Using this general knowledge, we searched for plant proteins containing the above mentioned motifs, using two independent approaches (BLASTp and FIMO scanning), and revealed many proteins containing the G4-binding motif(s). Our research also revealed the core proteins involved in G4 folding and resolving in green plants, algae, and the key plant model organism, Arabidopsis thaliana. The discovered protein candidates were annotated using STRINGdb and sorted by their molecular and physiological roles in simple schemes. Our results point to the significant role of G4-binding proteins in the regulation of gene expression in plants.

Zobrazit více v PubMed

Rhodes D., Lipps H.J. G-Quadruplexes and Their Regulatory Roles in Biology. Nucleic Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC

Fujii T., Podbevšek P., Plavec J., Sugimoto N. Effects of Metal Ions and Cosolutes on G-Quadruplex Topology. J. Inorg. Biochem. 2017;166:190–198. doi: 10.1016/j.jinorgbio.2016.09.001. PubMed DOI

Bartas M., Brázda V., Karlický V., Červeň J., Pečinka P. Bioinformatics Analyses and In Vitro Evidence for Five and Six Stacked G-Quadruplex Forming Sequences. Biochimie. 2018;150:70–75. doi: 10.1016/j.biochi.2018.05.002. PubMed DOI

Guedin A., Gros J., Alberti P., Mergny J.-L. How Long Is Too Long? Effects of Loop Size on G-Quadruplex Stability. Nucleic Acids Res. 2010;38:7858–7868. doi: 10.1093/nar/gkq639. PubMed DOI PMC

Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006;34:5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC

Patro L.P.P., Kumar A., Kolimi N., Rathinavelan T. 3D-NuS: A Web Server for Automated Modeling and Visualization of Non-Canonical 3-Dimensional Nucleic Acid Structures. J. Mol. Biol. 2017;429:2438–2448. doi: 10.1016/j.jmb.2017.06.013. PubMed DOI

Hänsel-Hertsch R., Simeone A., Shea A., Hui W.W., Zyner K.G., Marsico G., Rueda O.M., Bruna A., Martin A., Zhang X. Landscape of G-Quadruplex DNA Structural Regions in Breast Cancer. Nat. Genet. 2020;52:878–883. doi: 10.1038/s41588-020-0672-8. PubMed DOI

Simone R., Fratta P., Neidle S., Parkinson G.N., Isaacs A.M. G-Quadruplexes: Emerging Roles in Neurodegenerative Diseases and the Non-Coding Transcriptome. FEBS Lett. 2015;589:1653–1668. doi: 10.1016/j.febslet.2015.05.003. PubMed DOI

Wang E., Thombre R., Shah Y., Latanich R., Wang J. G-Quadruplexes as Pathogenic Drivers in Neurodegenerative Disorders. Nucleic Acids Res. 2021;49:4816–4830. doi: 10.1093/nar/gkab164. PubMed DOI PMC

Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A.R., Richter S.N., Toppo S. G-Quadruplex Forming Sequences in the Genome of All Known Human Viruses: A Comprehensive Guide. PLoS Comput. Biol. 2018;14:e1006675. doi: 10.1371/journal.pcbi.1006675. PubMed DOI PMC

Bartas M., Brázda V., Bohálová N., Cantara A., Volná A., Stachurová T., Malachová K., Jagelská E.B., Porubiaková O., Červeň J. In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-Canonical Nucleic Acid Structures in Their Lifecycles. Front. Microbiol. 2020;11:1583. doi: 10.3389/fmicb.2020.01583. PubMed DOI PMC

Brázda V., Hároníková L., Liao J.C., Fojta M. DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC

Mishra S.K., Tawani A., Mishra A., Kumar A. G4IPDB: A Database for G-Quadruplex Structure Forming Nucleic Acid Interacting Proteins. Sci. Rep. 2016;6:38144. doi: 10.1038/srep38144. PubMed DOI PMC

Cagirici H.B., Budak H., Sen T.Z. Genome-Wide Discovery of G-Quadruplexes in Barley. Sci. Rep. 2021;11:7876. doi: 10.1038/s41598-021-86838-3. PubMed DOI PMC

Cagirici H.B., Sen T.Z. Genome-Wide Discovery of G-Quadruplexes in Wheat: Distribution and Putative Functional Roles. G3 Genes Genomes Genet. 2020;10:2021–2032. doi: 10.1534/g3.120.401288. PubMed DOI PMC

Stefos G.C., Theodorou G., Politis I. DNA G-Quadruplexes: Functional Significance in Plant and Farm Animal Science. Anim. Biotechnol. 2021;32:262–271. doi: 10.1080/10495398.2019.1679823. PubMed DOI

Volná A., Bartas M., Karlický V., Nezval J., Kundrátová K., Pečinka P., Špunda V., Červeň J. G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story. Int. J. Mol. Sci. 2021;22:7381. doi: 10.3390/ijms22147381. PubMed DOI PMC

Zhang Y., Yang M., Duncan S., Yang X., Abdelhamid M.A.S., Huang L., Zhang H., Benfey P.N., Waller Z.A.E., Ding Y. G-Quadruplex Structures Trigger RNA Phase Separation. Nucleic Acids Res. 2019;47:11746–11754. doi: 10.1093/nar/gkz978. PubMed DOI PMC

Andorf C.M., Kopylov M., Dobbs D., Koch K.E., Stroupe M.E., Lawrence C.J., Bass H.W. G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation. J. Genet. Genom. 2014;41:627–647. doi: 10.1016/j.jgg.2014.10.004. PubMed DOI

Cho H., Cho H.S., Nam H., Jo H., Yoon J., Park C., Dang T.V.T., Kim E., Jeong J., Park S., et al. Translational Control of Phloem Development by RNA G-Quadruplex–JULGI Determines Plant Sink Strength. Nat. Plants. 2018;4:376–390. doi: 10.1038/s41477-018-0157-2. PubMed DOI

Sjakste T., Leonova E., Petrovs R., Trapina I., Röder M.S., Sjakste N. Tight DNA-Protein Complexes Isolated from Barley Seedlings Are Rich in Potential Guanine Quadruplex Sequences. PeerJ. 2020;8:e8569. doi: 10.7717/peerj.8569. PubMed DOI PMC

Vasilyev N., Polonskaia A., Darnell J.C., Darnell R.B., Patel D.J., Serganov A. Crystal Structure Reveals Specific Recognition of a G-Quadruplex RNA by a β-Turn in the RGG Motif of FMRP. Proc. Natl. Acad. Sci. USA. 2015;112:E5391–E5400. doi: 10.1073/pnas.1515737112. PubMed DOI PMC

Brázda V., Červeň J., Bartas M., Mikysková N., Coufal J., Pečinka P. The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors. Molecules. 2018;23:2341. doi: 10.3390/molecules23092341. PubMed DOI PMC

Grant C.E., Bailey T.L., Noble W.S. FIMO: Scanning for Occurrences of a given Motif. Bioinformatics. 2011;27:1017–1018. doi: 10.1093/bioinformatics/btr064. PubMed DOI PMC

Bailey T.L., Johnson J., Grant C.E., Noble W.S. The MEME Suite. Nucleic Acids Res. 2015;43:W39–W49. doi: 10.1093/nar/gkv416. PubMed DOI PMC

O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D. Reference Sequence (RefSeq) Database at NCBI: Current Status, Taxonomic Expansion, and Functional Annotation. Nucleic Acids Res. 2016;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC

Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. NCBI BLAST: A Better Web Interface. Nucleic Acids Res. 2008;36:W5–W9. doi: 10.1093/nar/gkn201. PubMed DOI PMC

Zhang Y., Gaetano C.M., Williams K.R., Bassell G.J., Mihailescu M.R. FMRP Interacts with G-Quadruplex Structures in the 3′-UTR of Its Dendritic Target Shank1 MRNA. RNA Biol. 2014;11:1364–1374. doi: 10.1080/15476286.2014.996464. PubMed DOI PMC

Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., Tsafou K.P. STRING V10: Protein–Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res. 2015;43:D447–D452. doi: 10.1093/nar/gku1003. PubMed DOI PMC

Källberg M., Wang H., Wang S., Peng J., Wang Z., Lu H., Xu J. Template-Based Protein Structure Modeling Using the RaptorX Web Server. Nat. Protoc. 2012;7:1511–1522. doi: 10.1038/nprot.2012.085. PubMed DOI PMC

Lambert C., Leonard N., De Bolle X., Depiereux E. ESyPred3D: Prediction of Proteins 3D Structures. Bioinformatics. 2002;18:1250–1256. doi: 10.1093/bioinformatics/18.9.1250. PubMed DOI

Yan Y., Tao H., He J., Huang S.-Y. The HDOCK Server for Integrated Protein–Protein Docking. Nat. Protoc. 2020;15:1829–1852. doi: 10.1038/s41596-020-0312-x. PubMed DOI

Mullen M.A., Olson K.J., Dallaire P., Major F., Assmann S.M., Bevilacqua P.C. RNA G-Quadruplexes in the Model Plant Species Arabidopsis thaliana: Prevalence and Possible Functional Roles. Nucleic Acids Res. 2010;38:8149–8163. doi: 10.1093/nar/gkq804. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Costa-Silva H.M., Resende B.C., Umaki A.C.S., Prado W., da Silva M.S., Virgílio S., Macedo A.M., Pena S.D.J., Tahara E.B., Tosi L.R.O., et al. DNA Topoisomerase 3α Is Involved in Homologous Recombination Repair and Replication Stress Response in Trypanosoma Cruzi. Front. Cell Dev. Biol. 2021;9:849. doi: 10.3389/fcell.2021.633195. PubMed DOI PMC

Goto C., Tamura K., Fukao Y., Shimada T., Hara-Nishimura I. The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in Arabidopsis. Plant Cell. 2014;26:2143–2155. doi: 10.1105/tpc.113.122168. PubMed DOI PMC

Long J.C., Caceres J.F. The SR Protein Family of Splicing Factors: Master Regulators of Gene Expression. Biochem. J. 2009;417:15–27. doi: 10.1042/BJ20081501. PubMed DOI

Sasaki K., Liu Y., Kim M.-H., Imai R. An RNA Chaperone, AtCSP2, Negatively Regulates Salt Stress Tolerance. Plant Signal. Behav. 2015;10:e1042637. doi: 10.1080/15592324.2015.1042637. PubMed DOI PMC

Köster T., Meyer K., Weinholdt C., Smith L.M., Lummer M., Speth C., Grosse I., Weigel D., Staiger D. Regulation of Pri-MiRNA Processing by the HnRNP-like Protein AtGRP7 in Arabidopsis. Nucleic Acids Res. 2014;42:9925–9936. doi: 10.1093/nar/gku716. PubMed DOI PMC

Cao J.-Y., Xu Y.-P., Cai X.-Z. Integrated MiRNAome and Transcriptome Analysis Reveals Argonaute 2-Mediated Defense Responses Against the Devastating Phytopathogen Sclerotinia Sclerotiorum. Front. Plant Sci. 2020;11:500. doi: 10.3389/fpls.2020.00500. PubMed DOI PMC

Pontvianne F., Matía I., Douet J., Tourmente S., Medina F.J., Echeverria M., Sáez-Vásquez J. Characterization of AtNUC-L1 Reveals a Central Role of Nucleolin in Nucleolus Organization and Silencing of AtNUC-L2 Gene in Arabidopsis. Mol. Biol. Cell. 2007;18:369–379. doi: 10.1091/mbc.e06-08-0751. PubMed DOI PMC

Lange H., Zuber H., Sement F.M., Chicher J., Kuhn L., Hammann P., Brunaud V., Bérard C., Bouteiller N., Balzergue S., et al. The RNA Helicases AtMTR4 and HEN2 Target Specific Subsets of Nuclear Transcripts for Degradation by the Nuclear Exosome in Arabidopsis thaliana. PLoS Genet. 2014;10:e1004564. doi: 10.1371/journal.pgen.1004564. PubMed DOI PMC

Western T.L., Cheng Y., Liu J., Chen X. HUA ENHANCER2, a Putative DExH-Box RNA Helicase, Maintains Homeotic B and C Gene Expression in Arabidopsis. Development. 2002;129:1569–1581. doi: 10.1242/dev.129.7.1569. PubMed DOI PMC

Larochelle M., Lemay J.-F., Bachand F. The THO Complex Cooperates with the Nuclear RNA Surveillance Machinery to Control Small Nucleolar RNA Expression. Nucleic Acids Res. 2012;40:10240–10253. doi: 10.1093/nar/gks838. PubMed DOI PMC

Shukla K., Thakur R.S., Ganguli D., Rao D.N., Nagaraju G. Escherichia coli and Neisseria gonorrhoeae UvrD Helicase Unwinds G4 DNA Structures. Biochem. J. 2017;474:3579–3597. doi: 10.1042/BCJ20170587. PubMed DOI

Shubina M.Y., Musinova Y.R., Sheval E.V. Nucleolar Methyltransferase Fibrillarin: Evolution of Structure and Functions. Biochem. Mosc. 2016;81:941–950. doi: 10.1134/S0006297916090030. PubMed DOI

Fleurdépine S., Deragon J.-M., Devic M., Guilleminot J., Bousquet-Antonelli C. A Bona Fide La Protein Is Required for Embryogenesis in Arabidopsis thaliana. Nucleic Acids Res. 2007;35:3306–3321. doi: 10.1093/nar/gkm200. PubMed DOI PMC

Goyal M., Banerjee C., Nag S., Bandyopadhyay U. The Alba Protein Family: Structure and Function. Biochim. Biophys. Acta (BBA)—Prot. Proteom. 2016;1864:570–583. doi: 10.1016/j.bbapap.2016.02.015. PubMed DOI

Li X., Gao X., Wei Y., Deng L., Ouyang Y., Chen G., Li X., Zhang Q., Wu C. Rice APOPTOSIS INHIBITOR5 Coupled with Two DEAD-Box Adenosine 5′-Triphosphate-Dependent RNA Helicases Regulates Tapetum Degeneration. Plant Cell. 2011;23:1416–1434. doi: 10.1105/tpc.110.082636. PubMed DOI PMC

Garcia-Ruiz H., Carbonell A., Hoyer J.S., Fahlgren N., Gilbert K.B., Takeda A., Giampetruzzi A., Ruiz M.T.G., McGinn M.G., Lowery N., et al. Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip Mosaic Virus Infection. PLoS Pathog. 2015;11:e1004755. doi: 10.1371/journal.ppat.1004755. PubMed DOI PMC

Kim J.S., Jung H.J., Lee H.J., Kim K.A., Goh C.-H., Woo Y., Oh S.H., Han Y.S., Kang H. Glycine-Rich RNA-Binding Protein7 Affects Abiotic Stress Responses by Regulating Stomata Opening and Closing in Arabidopsis thaliana. Plant J. 2008;55:455–466. doi: 10.1111/j.1365-313X.2008.03518.x. PubMed DOI

Kim J.Y., Park S.J., Jang B., Jung C.-H., Ahn S.J., Goh C.-H., Cho K., Han O., Kang H. Functional Characterization of a Glycine-Rich RNA-Binding Protein 2 in Arabidopsis thaliana under Abiotic Stress Conditions. Plant J. 2007;50:439–451. doi: 10.1111/j.1365-313X.2007.03057.x. PubMed DOI

Ciuzan O., Ladomery M., Wilson I., Hancock J., Pamfil D. The Arabidopsis thaliana Glycine-Rich RNA Binding Proteins AtGRP7 and AtGRP2 Are Involved in Early Development. ProEnviron. Promediu. 2013;6:72–76.

Chen M.C., Murat P., Abecassis K., Ferré-D’Amaré A.R., Balasubramanian S. Insights into the Mechanism of a G-Quadruplex-Unwinding DEAH-Box Helicase. Nucleic Acids Res. 2015;43:2223–2231. doi: 10.1093/nar/gkv051. PubMed DOI PMC

Chen M.C., Tippana R., Demeshkina N.A., Murat P., Balasubramanian S., Myong S., Ferré-D’Amaré A.R. Structural Basis of G-Quadruplex Unfolding by the DEAH/RHA Helicase DHX36. Nature. 2018;558:465–469. doi: 10.1038/s41586-018-0209-9. PubMed DOI PMC

Tosoni E., Frasson I., Scalabrin M., Perrone R., Butovskaya E., Nadai M., Palù G., Fabris D., Richter S.N. Nucleolin Stabilizes G-Quadruplex Structures Folded by the LTR Promoter and Silences HIV-1 Viral Transcription. Nucleic Acids Res. 2015;43:8884–8897. doi: 10.1093/nar/gkv897. PubMed DOI PMC

Di Antonio M., Ponjavic A., Radzevičius A., Ranasinghe R.T., Catalano M., Zhang X., Shen J., Needham L.-M., Lee S.F., Klenerman D., et al. Single-Molecule Visualization of DNA G-Quadruplex Formation in Live Cells. Nat. Chem. 2020;12:832–837. doi: 10.1038/s41557-020-0506-4. PubMed DOI PMC

Ravichandran S., Ahn J.-H., Kim K.K. Unraveling the Regulatory G-Quadruplex Puzzle: Lessons from Genome and Transcriptome-Wide Studies. Front. Genet. 2019;10:1002. doi: 10.3389/fgene.2019.01002. PubMed DOI PMC

Serikawa T., Spanos C., von Hacht A., Budisa N., Rappsilber J., Kurreck J. Comprehensive Identification of Proteins Binding to RNA G-Quadruplex Motifs in the 5′ UTR of Tumor-Associated MRNAs. Biochimie. 2018;144:169–184. doi: 10.1016/j.biochi.2017.11.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...