Characterization of G-Quadruplex Motifs in espB, espK, and cyp51 Genes of Mycobacterium tuberculosis as Potential Drug Targets
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31128421
PubMed Central
PMC6531831
DOI
10.1016/j.omtn.2019.04.022
PII: S2162-2531(19)30095-2
Knihovny.cz E-zdroje
- Klíčová slova
- G-quadruplex, G-quadruplex binder, G-quadruplex mediated inhibition, Mycobacterium tuberculosis, anti-tuberculosis compounds, drug targets,
- Publikační typ
- časopisecké články MeSH
G-quadruplex structure forming motifs are among the most studied evolutionarily conserved drug targets that are present throughout the genome of different organisms and susceptible to influencing various biological processes. Here we report highly conserved potential G-quadruplex motifs (PGQs) in three essential genes (espK, espB, and cyp51) among 160 strains of the Mycobacterium tuberculosis genome. Products of these genes are involved in pathways that are responsible for virulence determination of bacteria inside the host cell and its survival by maintaining membrane fluidity. The espK and espB genes are essential players that prevent the formation of mature phagolysosome and antigen presentation by host macrophages. The cyp51 is another PGQ-possessing gene involved in sterol biosynthesis pathway and membrane formation. In the present study, we revealed the formation of stable intramolecular parallel G-quadruplex structures by Mycobacterium PGQs using a combination of techniques (NMR, circular dichroism [CD], and gel electrophoresis). Next, isothermal titration calorimetry (ITC) and CD melting analysis demonstrated that a well-known G-quadruplex ligand, TMPyP4, binds to and stabilizes these PGQ motifs. Finally, polymerase inhibition and qRT-PCR assays highlight the biological relevance of PGQ-possessing genes in this pathogen and demonstrate that G-quadruplexes are potential drug targets for the development of effective anti-tuberculosis therapeutics.
Zobrazit více v PubMed
Silva D.R., Mello F.C.Q., Kritski A., Dalcolmo M., Zumla A., Migliori G.B. Tuberculosis series. J. Bras. Pneumol. 2018;44:71–72. PubMed PMC
Silva, D.R., Mello, F.C.Q., Kritski, A., Dalcolmo, M., Zumla, A., and Migliori, G.B. (2018). Tuberculosis series. J. Bras. Pneumol. 44, 71-72. PubMed PMC
Ogundipe T., Otolorin A., Ogundipe F., Sran G., Abbas G., Filani O. Multidrug-resistant Tuberculosis Lymphadenitis as the Initial Presentation of Secondary Multidrug-resistant Tuberculosis: A Case Report. Cureus. 2018;10:e2363. PubMed PMC
Ogundipe, T., Otolorin, A., Ogundipe, F., Sran, G., Abbas, G., and Filani, O. (2018). Multidrug-resistant Tuberculosis Lymphadenitis as the Initial Presentation of Secondary Multidrug-resistant Tuberculosis: A Case Report. Cureus 10, e2363. PubMed PMC
Rawal P., Kummarasetti V.B.R., Ravindran J., Kumar N., Halder K., Sharma R., Mukerji M., Das S.K., Chowdhury S. Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res. 2006;16:644–655. PubMed PMC
Rawal, P., Kummarasetti, V.B.R., Ravindran, J., Kumar, N., Halder, K., Sharma, R., Mukerji, M., Das, S.K., and Chowdhury, S. (2006). Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res. 16, 644-655. PubMed PMC
Murat P., Balasubramanian S. Existence and consequences of G-quadruplex structures in DNA. Curr. Opin. Genet. Dev. 2014;25:22–29. PubMed
Murat, P., and Balasubramanian, S. (2014). Existence and consequences of G-quadruplex structures in DNA. Curr. Opin. Genet. Dev. 25, 22-29. PubMed
Hänsel-Hertsch R., Di Antonio M., Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 2017;18:279–284. PubMed
Hansel-Hertsch, R., Di Antonio, M., and Balasubramanian, S. (2017). DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol. 18, 279-284. PubMed
Jafri M.A., Ansari S.A., Alqahtani M.H., Shay J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8:69. PubMed PMC
Jafri, M.A., Ansari, S.A., Alqahtani, M.H., and Shay, J.W. (2016). Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 8, 69. PubMed PMC
Tawani A., Kumar A. Structural insight into the interaction of flavonoids with human telomeric sequence. Sci. Rep. 2015;5:17574. PubMed PMC
Tawani, A., and Kumar, A. (2015). Structural insight into the interaction of flavonoids with human telomeric sequence. Sci. Rep. 5, 17574. PubMed PMC
Tawani A., Amanullah A., Mishra A., Kumar A. Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences. Sci. Rep. 2016;6:39239. PubMed PMC
Tawani, A., Amanullah, A., Mishra, A., and Kumar, A. (2016). Evidences for Piperine inhibiting cancer by targeting human G-quadruplex DNA sequences. Sci. Rep. 6, 39239. PubMed PMC
Tawani A., Mishra S.K., Kumar A. Structural insight for the recognition of G-quadruplex structure at human c-myc promoter sequence by flavonoid Quercetin. Sci. Rep. 2017;7:3600. PubMed PMC
Tawani, A., Mishra, S.K., and Kumar, A. (2017). Structural insight for the recognition of G-quadruplex structure at human c-myc promoter sequence by flavonoid Quercetin. Sci. Rep. 7, 3600. PubMed PMC
Bonsignore R., Trippodo E., Barone G. Targeting G-quadruplex DNA as potential anti-cancer therapy: from hybrid DNA nanostructures to functional devices. In: Arrabito G., Wang L., editors. DNA Nanotechnology for Bioanalysis. World Scientific; 2017. pp. 129–162.
Bonsignore, R., Trippodo, E., and Barone, G. (2017). Targeting G-quadruplex DNA as potential anti-cancer therapy: from hybrid DNA nanostructures to functional devices. In DNA Nanotechnology for Bioanalysis, Arrabito G, Wang L, eds. (World Scientific), pp. 129-162.
Ruggiero E., Richter S.N. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 2018;46:3270–3283. PubMed PMC
Ruggiero, E., and Richter, S.N. (2018). G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 46, 3270-3283. PubMed PMC
Kota S., Dhamodharan V., Pradeepkumar P.I., Misra H.S. G-quadruplex forming structural motifs in the genome of Deinococcus radiodurans and their regulatory roles in promoter functions. Appl. Microbiol. Biotechnol. 2015;99:9761–9769. PubMed
Kota, S., Dhamodharan, V., Pradeepkumar, P.I., and Misra, H.S. (2015). G-quadruplex forming structural motifs in the genome of Deinococcus radiodurans and their regulatory roles in promoter functions. Appl. Microbiol. Biotechnol. 99, 9761-9769. PubMed
Endoh T., Kawasaki Y., Sugimoto N. Suppression of gene expression by G-quadruplexes in open reading frames depends on G-quadruplex stability. Angew. Chem. Int. Ed. Engl. 2013;52:5522–5526. PubMed
Endoh, T., Kawasaki, Y., and Sugimoto, N. (2013). Suppression of gene expression by G-quadruplexes in open reading frames depends on G-quadruplex stability. Angew. Chem. Int. Ed. Engl. 52, 5522-5526. PubMed
Cahoon L.A., Seifert H.S. An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science. 2009;325:764–767. PubMed PMC
Cahoon, L.A., and Seifert, H.S. (2009). An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. Science 325, 764-767. PubMed PMC
Giacani L., Brandt S.L., Puray-Chavez M., Reid T.B., Godornes C., Molini B.J., Benzler M., Hartig J.S., Lukehart S.A., Centurion-Lara A. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J. Bacteriol. 2012;194:4208–4225. PubMed PMC
Giacani, L., Brandt, S.L., Puray-Chavez, M., Reid, T.B., Godornes, C., Molini, B.J., Benzler, M., Hartig, J.S., Lukehart, S.A., and Centurion-Lara, A. (2012). Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J. Bacteriol. 194, 4208-4225. PubMed PMC
Thakur R.S., Desingu A., Basavaraju S., Subramanya S., Rao D.N., Nagaraju G. Mycobacterium tuberculosis DinG is a structure-specific helicase that unwinds G4 DNA: implications for targeting G4 DNA as a novel therapeutic approach. J. Biol. Chem. 2014;289:25112–25136. PubMed PMC
Thakur, R.S., Desingu, A., Basavaraju, S., Subramanya, S., Rao, D.N., and Nagaraju, G. (2014). Mycobacterium tuberculosis DinG is a structure-specific helicase that unwinds G4 DNA: implications for targeting G4 DNA as a novel therapeutic approach. J. Biol. Chem. 289, 25112-25136. PubMed PMC
Perrone R., Lavezzo E., Riello E., Manganelli R., Palù G., Toppo S., Provvedi R., Richter S.N. Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci. Rep. 2017;7:5743. PubMed PMC
Perrone, R., Lavezzo, E., Riello, E., Manganelli, R., Palu, G., Toppo, S., Provvedi, R., and Richter, S.N. (2017). Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci. Rep. 7, 5743. PubMed PMC
Solomonson M., Setiaputra D., Makepeace K.A.T., Lameignere E., Petrotchenko E.V., Conrady D.G., Bergeron J.R., Vuckovic M., DiMaio J., Borchers C.H. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure. 2015;23:571–583. PubMed
Solomonson, M., Setiaputra, D., Makepeace, K.A.T., Lameignere, E., Petrotchenko, E.V., Conrady, D.G., Bergeron, J.R., Vuckovic, M., DiMaio, J., Borchers, C.H., et al. (2015). Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure 23, 571-583. PubMed
Huang D., Bao L. Mycobacterium tuberculosis EspB protein suppresses interferon-γ-induced autophagy in murine macrophages. J. Microbiol. Immunol. Infect. 2016;49:859–865. PubMed
Huang, D., and Bao, L. (2016). Mycobacterium tuberculosis EspB protein suppresses interferon-γ-induced autophagy in murine macrophages. J. Microbiol. Immunol. Infect. 49, 859-865. PubMed
McLaughlin B., Chon J.S., MacGurn J.A., Carlsson F., Cheng T.L., Cox J.S., Brown E.J. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog. 2007;3:e105. PubMed PMC
McLaughlin, B., Chon, J.S., MacGurn, J.A., Carlsson, F., Cheng, T.L., Cox, J.S., and Brown, E.J. (2007). A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog. 3, e105. PubMed PMC
Sreejit G., Ahmed A., Parveen N., Jha V., Valluri V.L., Ghosh S., Mukhopadhyay S. The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (β2M) affecting antigen presentation function of macrophage. PLoS Pathog. 2014;10:e1004446. PubMed PMC
Sreejit, G., Ahmed, A., Parveen, N., Jha, V., Valluri, V.L., Ghosh, S., and Mukhopadhyay, S. (2014). The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (β2M) affecting antigen presentation function of macrophage. PLoS Pathog. 10, e1004446. PubMed PMC
Chen J.M., Zhang M., Rybniker J., Boy-Röttger S., Dhar N., Pojer F., Cole S.T. Mycobacterium tuberculosis EspB binds phospholipids and mediates EsxA-independent virulence. Mol. Microbiol. 2013;89:1154–1166. PubMed
Chen, J.M., Zhang, M., Rybniker, J., Boy-Rottger, S., Dhar, N., Pojer, F., and Cole, S.T. (2013). Mycobacterium tuberculosis EspB binds phospholipids and mediates EsxA-independent virulence. Mol. Microbiol. 89, 1154-1166. PubMed
Jackson C.J., Lamb D.C., Marczylo T.H., Parker J.E., Manning N.L., Kelly D.E., Kelly S.L. Conservation and cloning of CYP51: a sterol 14 alpha-demethylase from Mycobacterium smegmatis. Biochem. Biophys. Res. Commun. 2003;301:558–563. PubMed
Jackson, C.J., Lamb, D.C., Marczylo, T.H., Parker, J.E., Manning, N.L., Kelly, D.E., and Kelly, S.L. (2003). Conservation and cloning of CYP51: a sterol 14 alpha-demethylase from Mycobacterium smegmatis. Biochem. Biophys. Res. Commun. 301, 558-563. PubMed
Sagatova A.A., Keniya M.V., Wilson R.K., Monk B.C., Tyndall J.D. Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase. Antimicrob. Agents Chemother. 2015;59:4982–4989. PubMed PMC
Sagatova, A.A., Keniya, M.V., Wilson, R.K., Monk, B.C., and Tyndall, J.D. (2015). Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase. Antimicrob. Agents Chemother. 59, 4982-4989. PubMed PMC
Trösken E.R., Adamska M., Arand M., Zarn J.A., Patten C., Völkel W., Lutz W.K. Comparison of lanosterol-14 alpha-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles. Toxicology. 2006;228:24–32. PubMed
Trosken, E.R., Adamska, M., Arand, M., Zarn, J.A., Patten, C., Volkel, W., and Lutz, W.K. (2006). Comparison of lanosterol-14 alpha-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles. Toxicology 228, 24-32. PubMed
Warrilow A.G., Martel C.M., Parker J.E., Melo N., Lamb D.C., Nes W.D., Kelly D.E., Kelly S.L. Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51) Antimicrob. Agents Chemother. 2010;54:4235–4245. PubMed PMC
Warrilow, A.G., Martel, C.M., Parker, J.E., Melo, N., Lamb, D.C., Nes, W.D., Kelly, D.E., and Kelly, S.L. (2010). Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51). Antimicrob. Agents Chemother. 54, 4235-4245. PubMed PMC
Pontali E., Sotgiu G., D’Ambrosio L., Centis R., Migliori G.B. Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical analysis of the evidence. Eur. Respir. J. 2016;47:394–402. PubMed
Pontali, E., Sotgiu, G., D’Ambrosio, L., Centis, R., and Migliori, G.B. (2016). Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical analysis of the evidence. Eur. Respir. J. 47, 394-402. PubMed
Getahun H., Matteelli A., Abubakar I., Aziz M.A., Baddeley A., Barreira D., Den Boon S., Borroto Gutierrez S.M., Bruchfeld J., Burhan E. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur. Respir. J. 2015;46:1563–1576. PubMed PMC
Getahun, H., Matteelli, A., Abubakar, I., Aziz, M.A., Baddeley, A., Barreira, D., Den Boon, S., Borroto Gutierrez, S.M., Bruchfeld, J., Burhan, E., et al. (2015). Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur. Respir. J. 46, 1563-1576. PubMed PMC
Burge S., Parkinson G.N., Hazel P., Todd A.K., Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. PubMed PMC
Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K., and Neidle, S. (2006). Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402-5415. PubMed PMC
Mishra S.K., Tawani A., Mishra A., Kumar A. G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins. Sci. Rep. 2016;6:38144. PubMed PMC
Mishra, S.K., Tawani, A., Mishra, A., and Kumar, A. (2016). G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins. Sci. Rep. 6, 38144. PubMed PMC
Kikin O., D’Antonio L., Bagga P.S. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34:W676–W682. PubMed PMC
Kikin, O., D’Antonio, L., and Bagga, P.S. (2006). QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 34, W676-W682. PubMed PMC
Bedrat A., Lacroix L., Mergny J.L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. PubMed PMC
Bedrat, A., Lacroix, L., and Mergny, J.L. (2016). Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 44, 1746-1759. PubMed PMC
Matsen F.A., 4th, Evans S.N. Edge principal components and squash clustering: using the special structure of phylogenetic placement data for sample comparison. PLoS ONE. 2013;8:e56859. PubMed PMC
Matsen, F.A., 4th, and Evans, S.N. (2013). Edge principal components and squash clustering: using the special structure of phylogenetic placement data for sample comparison. PLoS ONE 8, e56859. PubMed PMC
Kypr J., Kejnovská I., Renčiuk D., Vorlícková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009;37:1713–1725. PubMed PMC
Kypr, J., Kejnovska, I., Renčiuk, D., and Vorlickova, M. (2009). Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 37, 1713-1725. PubMed PMC
Largy E., Marchand A., Amrane S., Gabelica V., Mergny J.-L. Quadruplex Turncoats: Cation-Dependent Folding and Stability of Quadruplex-DNA Double Switches. J. Am. Chem. Soc. 2016;138:2780–2792. PubMed
Largy, E., Marchand, A., Amrane, S., Gabelica, V., and Mergny, J.-L. (2016). Quadruplex Turncoats: Cation-Dependent Folding and Stability of Quadruplex-DNA Double Switches. J. Am. Chem. Soc. 138, 2780-2792. PubMed
Víglaský V., Bauer L., Tlucková K. Structural features of intra- and intermolecular G-quadruplexes derived from telomeric repeats. Biochemistry. 2010;49:2110–2120. PubMed
Viglaský, V., Bauer, L., and Tluckova, K. (2010). Structural features of intra- and intermolecular G-quadruplexes derived from telomeric repeats. Biochemistry 49, 2110-2120. PubMed
Wang Y., Zhao M., Zhang Q., Zhu G.F., Li F.F., Du L.F. Genomic distribution and possible functional roles of putative G-quadruplex motifs in two subspecies of Oryza sativa. Comput. Biol. Chem. 2015;56:122–130. PubMed
Wang, Y., Zhao, M., Zhang, Q., Zhu, G.F., Li, F.F., and Du, L.F. (2015). Genomic distribution and possible functional roles of putative G-quadruplex motifs in two subspecies of Oryza sativa. Comput. Biol. Chem. 56, 122-130. PubMed
Garg R., Aggarwal J., Thakkar B. Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants. Sci. Rep. 2016;6:28211. PubMed PMC
Garg, R., Aggarwal, J., and Thakkar, B. (2016). Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants. Sci. Rep. 6, 28211. PubMed PMC
Weldon C., Eperon I.C., Dominguez C. Do we know whether potential G-quadruplexes actually form in long functional RNA molecules? Biochem. Soc. Trans. 2016;44:1761–1768. PubMed PMC
Weldon, C., Eperon, I.C., and Dominguez, C. (2016). Do we know whether potential G-quadruplexes actually form in long functional RNA molecules? Biochem. Soc. Trans. 44, 1761-1768. PubMed PMC
Adrian M., Heddi B., Phan A.T. NMR spectroscopy of G-quadruplexes. Methods. 2012;57:11–24. PubMed
Adrian, M., Heddi, B., and Phan, A.T. (2012). NMR spectroscopy of G-quadruplexes. Methods 57, 11-24. PubMed
Wang S.R., Zhang Q.Y., Wang J.Q., Ge X.Y., Song Y.Y., Wang Y.F., Li X.D., Fu B.S., Xu G.H., Shu B. Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene. Cell Chem. Biol. 2016;23:1113–1122. PubMed
Wang, S.R., Zhang, Q.Y., Wang, J.Q., Ge, X.Y., Song, Y.Y., Wang, Y.F., Li, X.D., Fu, B.S., Xu, G.H., Shu, B., et al. (2016). Chemical Targeting of a G-Quadruplex RNA in the Ebola Virus L Gene. Cell Chem. Biol. 23, 1113-1122. PubMed
Kleideiter E., Piotrowska K., Klotz U. Screening of telomerase inhibitors. Methods Mol. Biol. 2007;405:167–180. PubMed
Kleideiter, E., Piotrowska, K., and Klotz, U. (2007). Screening of telomerase inhibitors. Methods Mol. Biol. 405, 167-180. PubMed
Zheng X.H., Nie X., Liu H.Y., Fang Y.M., Zhao Y., Xia L.X. TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses. Sci. Rep. 2016;6:26592. PubMed PMC
Zheng, X.H., Nie, X., Liu, H.Y., Fang, Y.M., Zhao, Y., and Xia, L.X. (2016). TMPyP4 promotes cancer cell migration at low doses, but induces cell death at high doses. Sci. Rep. 6, 26592. PubMed PMC
Du X., Li Y., Xia Y.-L., Ai S.-M., Liang J., Sang P., Ji X.L., Liu S.Q. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci. 2016;17:144. PubMed PMC
Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.L., and Liu, S.Q. (2016). Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci. 17, 144. PubMed PMC
Brito H., Martins A.C., Lavrado J., Mendes E., Francisco A.P., Santos S.A., Ohnmacht S.A., Kim N.S., Rodrigues C.M., Moreira R. Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline Tri-Alkylamine Derivatives. PLoS ONE. 2015;10:e0126891. PubMed PMC
Brito, H., Martins, A.C., Lavrado, J., Mendes, E., Francisco, A.P., Santos, S.A., Ohnmacht, S.A., Kim, N.S., Rodrigues, C.M., Moreira, R., et al. (2015). Targeting KRAS Oncogene in Colon Cancer Cells with 7-Carboxylate Indolo[3,2-b]quinoline Tri-Alkylamine Derivatives. PLoS ONE 10, e0126891. PubMed PMC
Guittat L., Lacroix L., Gomez D., Arimondo P.B., De Cian A., Pennarun G., Amrane S., Alberti P., Lemarteleur T., Aouali N. Quadruplex structures and quadruplex ligands. In: Parisi V., Fonzo V.D., Aluffi-Pentini F., editors. Dynamical Genetics. Research Signpost; 2004. pp. 199–236.
Guittat, L., Lacroix, L., Gomez, D., Arimondo, P.B., De Cian, A., Pennarun, G., Amrane, S., Alberti, P., Lemarteleur, T., Aouali, N., et al. (2004). Quadruplex structures and quadruplex ligands. In Dynamical Genetics, V. Parisi, V.D. Fonzo, F. Aluffi-Pentini, eds. (Research Signpost) pp. 199-236
Harris L.M., Merrick C.J. G-quadruplexes in pathogens: a common route to virulence control? PLoS Pathog. 2015;11:e1004562. PubMed PMC
Harris, L.M., and Merrick, C.J. (2015). G-quadruplexes in pathogens: a common route to virulence control? PLoS Pathog. 11, e1004562. PubMed PMC
Biswas B., Kandpal M., Vivekanandan P. A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Res. 2017;45:11268–11280. PubMed PMC
Biswas, B., Kandpal, M., and Vivekanandan, P. (2017). A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Res. 45, 11268-11280. PubMed PMC
Fleming A.M., Ding Y., Alenko A., Burrows C.J. Zika Virus Genomic RNA Possesses Conserved G-Quadruplexes Characteristic of the Flaviviridae Family. ACS Infect. Dis. 2016;2:674–681. PubMed PMC
Fleming, A.M., Ding, Y., Alenko, A., and Burrows, C.J. (2016). Zika Virus Genomic RNA Possesses Conserved G-Quadruplexes Characteristic of the Flaviviridae Family. ACS Infect. Dis. 2, 674-681. PubMed PMC
Madireddy A., Purushothaman P., Loosbroock C.P., Robertson E.S., Schildkraut C.L., Verma S.C. G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV. Nucleic Acids Res. 2016;44:3675–3694. PubMed PMC
Madireddy, A., Purushothaman, P., Loosbroock, C.P., Robertson, E.S., Schildkraut, C.L., and Verma, S.C. (2016). G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV. Nucleic Acids Res. 44, 3675-3694. PubMed PMC
Perrone R., Butovskaya E., Daelemans D., Palù G., Pannecouque C., Richter S.N. Anti-HIV-1 activity of the G-quadruplex ligand BRACO-19. J. Antimicrob. Chemother. 2014;69:3248–3258. PubMed
Perrone, R., Butovskaya, E., Daelemans, D., Palu, G., Pannecouque, C., and Richter, S.N. (2014). Anti-HIV-1 activity of the G-quadruplex ligand BRACO-19. J. Antimicrob. Chemother. 69, 3248-3258. PubMed
Biswas B., Kumari P., Vivekanandan P. Pac1 Signals of Human Herpesviruses Contain a Highly Conserved G-Quadruplex Motif. ACS Infect. Dis. 2018;4:744–751. PubMed
Biswas, B., Kumari, P., and Vivekanandan, P. (2018). Pac1 Signals of Human Herpesviruses Contain a Highly Conserved G-Quadruplex Motif. ACS Infect. Dis. 4, 744-751. PubMed
Endoh T., Kawasaki Y., Sugimoto N. Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor α. Nucleic Acids Res. 2013;41:6222–6231. PubMed PMC
Endoh, T., Kawasaki, Y., and Sugimoto, N. (2013). Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor α. Nucleic Acids Res. 41, 6222-6231. PubMed PMC