Genomic Analysis of Non-B Nucleic Acids Structures in SARS-CoV-2: Potential Key Roles for These Structures in Mutability, Translation, and Replication?

. 2023 Jan 06 ; 14 (1) : . [epub] 20230106

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36672896

Non-B nucleic acids structures have arisen as key contributors to genetic variation in SARS-CoV-2. Herein, we investigated the presence of defining spike protein mutations falling within inverted repeats (IRs) for 18 SARS-CoV-2 variants, discussed the potential roles of G-quadruplexes (G4s) in SARS-CoV-2 biology, and identified potential pseudoknots within the SARS-CoV-2 genome. Surprisingly, there was a large variation in the number of defining spike protein mutations arising within IRs between variants and these were more likely to occur in the stem region of the predicted hairpin stem-loop secondary structure. Notably, mutations implicated in ACE2 binding and propagation (e.g., ΔH69/V70, N501Y, and D614G) were likely to occur within IRs, whilst mutations involved in antibody neutralization and reduced vaccine efficacy (e.g., T19R, ΔE156, ΔF157, R158G, and G446S) were rarely found within IRs. We also predicted that RNA pseudoknots could predominantly be found within, or next to, 29 mutations found in the SARS-CoV-2 spike protein. Finally, the Omicron variants BA.2, BA.4, BA.5, BA.2.12.1, and BA.2.75 appear to have lost two of the predicted G4-forming sequences found in other variants. These were found in nsp2 and the sequence complementary to the conserved stem-loop II-like motif (S2M) in the 3' untranslated region (UTR). Taken together, non-B nucleic acids structures likely play an integral role in SARS-CoV-2 evolution and genetic diversity.

Zobrazit více v PubMed

Skourti-Stathaki K., Proudfoot N.J. A Double-Edged Sword: R Loops as Threats to Genome Integrity and Powerful Regulators of Gene Expression. Genes Dev. 2014;28:1384–1396. doi: 10.1101/gad.242990.114. PubMed DOI PMC

Voineagu I., Narayanan V., Lobachev K.S., Mirkin S.M. Replication Stalling at Unstable Inverted Repeats: Interplay between DNA Hairpins and Fork Stabilizing Proteins. Proc. Natl. Acad. Sci. USA. 2008;105:9936–9941. doi: 10.1073/pnas.0804510105. PubMed DOI PMC

Saranathan N., Vivekanandan P. G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol. 2019;27:148–163. doi: 10.1016/j.tim.2018.08.011. PubMed DOI PMC

Griffin B.D., Bass H.W. Review: Plant G-Quadruplex (G4) Motifs in DNA and RNA; Abundant, Intriguing Sequences of Unknown Function. Plant Sci. 2018;269:143–147. doi: 10.1016/j.plantsci.2018.01.011. PubMed DOI

Brierley I., Pennell S., Gilbert R.J.C. Viral RNA Pseudoknots: Versatile Motifs in Gene Expression and Replication. Nat. Rev. Microbiol. 2007;5:598–610. doi: 10.1038/nrmicro1704. PubMed DOI PMC

Pearson C.E., Zorbas H., Price G.B., Zannis-Hadjopoulos M. Inverted Repeats, Stem-Loops, and Cruciforms: Significance for Initiation of DNA Replication. J. Cell. Biochem. 1996;63:1–22. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.0.CO;2-3. PubMed DOI

del Solar G., Giraldo R., Ruiz-Echevarría M.J., Espinosa M., Díaz-Orejas R. Replication and Control of Circular Bacterial Plasmids. Microbiol. Mol. Biol. Rev. 1998;62:434–464. doi: 10.1128/MMBR.62.2.434-464.1998. PubMed DOI PMC

Lu S., Wang G., Bacolla A., Zhao J., Spitser S., Vasquez K.M. Short Inverted Repeats Are Hotspots for Genetic Instability: Relevance to Cancer Genomes. Cell Rep. 2015;10:1674–1680. doi: 10.1016/j.celrep.2015.02.039. PubMed DOI PMC

Sadler J.R., Sasmor H., Betz J.L. A Perfectly Symmetric Lac Operator Binds the Lac Repressor Very Tightly. Proc. Natl. Acad. Sci. USA. 1983;80:6785–6789. doi: 10.1073/pnas.80.22.6785. PubMed DOI PMC

Butler D.K., Yasuda L.E., Yao M.C. Induction of Large DNA Palindrome Formation in Yeast: Implications for Gene Amplification and Genome Stability in Eukaryotes. Cell. 1996;87:1115–1122. doi: 10.1016/S0092-8674(00)81805-X. PubMed DOI

Okamura K., Chung W.-J., Lai E.C. The Long and Short of Inverted Repeat Genes in Animals: MicroRNAs, Mirtrons and Hairpin RNAs. Cell Cycle. 2008;7:2840–2845. doi: 10.4161/cc.7.18.6734. PubMed DOI PMC

Wroblewski T., Matvienko M., Piskurewicz U., Xu H., Martineau B., Wong J., Govindarajulu M., Kozik A., Michelmore R.W. Distinctive Profiles of Small RNA Couple Inverted Repeat-Induced Post-Transcriptional Gene Silencing with Endogenous RNA Silencing Pathways in Arabidopsis. RNA. 2014;20:1987–1999. doi: 10.1261/rna.046532.114. PubMed DOI PMC

Staple D.W., Butcher S.E. Pseudoknots: RNA Structures with Diverse Functions. PLoS Biol. 2005;3:e213. doi: 10.1371/journal.pbio.0030213. PubMed DOI PMC

Neupane K., Munshi S., Zhao M., Ritchie D.B., Ileperuma S.M., Woodside M.T. Anti-Frameshifting Ligand Active against SARS Coronavirus-2 Is Resistant to Natural Mutations of the Frameshift-Stimulatory Pseudoknot. J. Mol. Biol. 2020;432:5843–5847. doi: 10.1016/j.jmb.2020.09.006. PubMed DOI PMC

Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020;21:459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC

Cebrián R., Belmonte-Reche E., Pirota V., de Jong A., Morales J.C., Freccero M., Doria F., Kuipers O.P. G-Quadruplex DNA as a Target in Pathogenic Bacteria: Efficacy of an Extended Naphthalene Diimide Ligand and Its Mode of Action. J. Med. Chem. 2022;65:4752–4766. doi: 10.1021/acs.jmedchem.1c01905. PubMed DOI PMC

Abiri A., Lavigne M., Rezaei M., Nikzad S., Zare P., Mergny J.-L., Rahimi H.-R. Unlocking G-Quadruplexes as Antiviral Targets. Pharmacol. Rev. 2021;73:897–923. doi: 10.1124/pharmrev.120.000230. PubMed DOI

Cantara A., Luo Y., Dobrovolná M., Bohalova N., Fojta M., Verga D., Guittat L., Cucchiarini A., Savrimoutou S., Häberli C., et al. G-Quadruplexes in Helminth Parasites. Nucleic Acids Res. 2022;50:2719–2735. doi: 10.1093/nar/gkac129. PubMed DOI PMC

Warner E.F., Bohálová N., Brázda V., Waller Z.A.E., Bidula S. Analysis of Putative Quadruplex-Forming Sequences in Fungal Genomes: Novel Antifungal Targets? Microb. Genom. 2021;7:000570. doi: 10.1099/mgen.0.000570. PubMed DOI PMC

Goswami P., Bartas M., Lexa M., Bohálová N., Volná A., Červeň J., Červeňová V., Pečinka P., Špunda V., Fojta M., et al. SARS-CoV-2 Hot-Spot Mutations Are Significantly Enriched within Inverted Repeats and CpG Island Loci. Brief. Bioinform. 2021;22:1338–1345. doi: 10.1093/bib/bbaa385. PubMed DOI PMC

Bartas M., Goswami P., Lexa M., Červeň J., Volná A., Fojta M., Brázda V., Pečinka P. Letter to the Editor: Significant Mutation Enrichment in Inverted Repeat Sites of New SARS-CoV-2 Strains. Brief. Bioinform. 2021;22:bbab129. doi: 10.1093/bib/bbab129. PubMed DOI PMC

Zhao C., Qin G., Niu J., Wang Z., Wang C., Ren J., Qu X. Targeting RNA G-Quadruplex in SARS-CoV-2: A Promising Therapeutic Target for COVID-19? Angew. Chem. Int. Ed. 2021;60:432–438. doi: 10.1002/anie.202011419. PubMed DOI

Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Štastný J. Palindrome Analyser—A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI

Hodcroft E.B. CoVariants: SARS-CoV-2 Mutations and Variants of Interest. [(accessed on 19 December 2022)]. Available online: https://covariants.org/

Shu Y., McCauley J. GISAID: Global Initiative on Sharing All Influenza Data—From Vision to Reality. Euro Surveill. 2017;22:30494. doi: 10.2807/1560-7917.ES.2017.22.13.30494. PubMed DOI PMC

Smit S., Rother K., Heringa J., Knight R. From Knotted to Nested RNA Structures: A Variety of Computational Methods for Pseudoknot Removal. RNA. 2008;14:410–416. doi: 10.1261/rna.881308. PubMed DOI PMC

Bellaousov S., Mathews D.H. ProbKnot: Fast Prediction of RNA Secondary Structure Including Pseudoknots. RNA. 2010;16:1870–1880. doi: 10.1261/rna.2125310. PubMed DOI PMC

Kikin O., D’Antonio L., Bagga P.S. QGRS Mapper: A Web-Based Server for Predicting G-Quadruplexes in Nucleotide Sequences. Nucleic Acids Res. 2006;34:W676–W682. doi: 10.1093/nar/gkl253. PubMed DOI PMC

Yang T.-J., Yu P.-Y., Chang Y.-C., Liang K.-H., Tso H.-C., Ho M.-R., Chen W.-Y., Lin H.-T., Wu H.-C., Hsu S.-T.D. Effect of SARS-CoV-2 B.1.1.7 Mutations on Spike Protein Structure and Function. Nat. Struct. Mol. Biol. 2021;28:731–739. doi: 10.1038/s41594-021-00652-z. PubMed DOI

Hirabara S.M., Serdan T.D.A., Gorjao R., Masi L.N., Pithon-Curi T.C., Covas D.T., Curi R., Durigon E.L. SARS-CoV-2 Variants: Differences and Potential of Immune Evasion. Front. Cell. Infect. Microbiol. 2021;11:781429. doi: 10.3389/fcimb.2021.781429. PubMed DOI PMC

Harvey W.T., Carabelli A.M., Jackson B., Gupta R.K., Thomson E.C., Harrison E.M., Ludden C., Reeve R., Rambaut A., Peacock S.J., et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021;19:409–424. doi: 10.1038/s41579-021-00573-0. PubMed DOI PMC

McCallum M., Walls A.C., Sprouse K.R., Bowen J.E., Rosen L.E., Dang H.V., De Marco A., Franko N., Tilles S.W., Logue J., et al. Molecular Basis of Immune Evasion by the Delta and Kappa SARS-CoV-2 Variants. Science. 2021;374:1621–1626. doi: 10.1126/science.abl8506. PubMed DOI

Chen R.E., Zhang X., Case J.B., Winkler E.S., Liu Y., VanBlargan L.A., Liu J., Errico J.M., Xie X., Suryadevara N., et al. Resistance of SARS-CoV-2 Variants to Neutralization by Monoclonal and Serum-Derived Polyclonal Antibodies. Nat. Med. 2021;27:717–726. doi: 10.1038/s41591-021-01294-w. PubMed DOI PMC

Barton M.I., MacGowan S.A., Kutuzov M.A., Dushek O., Barton G.J., van der Merwe P.A. Effects of Common Mutations in the SARS-CoV-2 Spike RBD and Its Ligand, the Human ACE2 Receptor on Binding Affinity and Kinetics. Elife. 2021;10:e70658. doi: 10.7554/eLife.70658. PubMed DOI PMC

Imperatore J.A., Cunningham C.L., Pellegrene K.A., Brinson R.G., Marino J.P., Evanseck J.D., Mihailescu M.R. Highly Conserved S2m Element of SARS-CoV-2 Dimerizes via a Kissing Complex and Interacts with Host MiRNA-1307-3p. Nucleic Acids Res. 2022;50:1017–1032. doi: 10.1093/nar/gkab1226. PubMed DOI PMC

Tandel D., Gupta D., Sah V., Harshan K.H. N440K Variant of SARS-CoV-2 Has Higher Infectious Fitness. bioRxiv. 2021 doi: 10.1101/2021.04.30.441434. DOI

Bate N., Savva C.G., Moody P.C.E., Brown E.A., Evans S.E., Ball J.K., Schwabe J.W.R., Sale J.E., Brindle N.P.J. In Vitro Evolution Predicts Emerging SARS-CoV-2 Mutations with High Affinity for ACE2 and Cross-Species Binding. PLoS Pathog. 2022;18:e1010733. doi: 10.1371/journal.ppat.1010733. PubMed DOI PMC

Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E.E., Bhattacharya T., Foley B., et al. Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182:812–827.e19. doi: 10.1016/j.cell.2020.06.043. PubMed DOI PMC

Tian F., Tong B., Sun L., Shi S., Zheng B., Wang Z., Dong X., Zheng P. N501Y Mutation of Spike Protein in SARS-CoV-2 Strengthens Its Binding to Receptor ACE2. Elife. 2021;10:e69091. doi: 10.7554/eLife.69091. PubMed DOI PMC

Meng B., Kemp S.A., Papa G., Datir R., Ferreira I.A.T.M., Marelli S., Harvey W.T., Lytras S., Mohamed A., Gallo G., et al. Recurrent Emergence of SARS-CoV-2 Spike Deletion H69/V70 and Its Role in the Alpha Variant B.1.1.7. Cell Rep. 2021;35:109292. doi: 10.1016/j.celrep.2021.109292. PubMed DOI PMC

Iketani S., Liu L., Guo Y., Liu L., Chan J.F.-W., Huang Y., Wang M., Luo Y., Yu J., Chu H., et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages. Nature. 2022;604:553–556. doi: 10.1038/s41586-022-04594-4. PubMed DOI PMC

Zhou H., Dcosta B.M., Landau N.R., Tada T. Resistance of SARS-CoV-2 Omicron BA.1 and BA.2 Variants to Vaccine-Elicited Sera and Therapeutic Monoclonal Antibodies. Viruses. 2022;14:1334. doi: 10.3390/v14061334. PubMed DOI PMC

Yamasoba D., Kosugi Y., Kimura I., Fujita S., Uriu K., Ito J., Sato K. Neutralisation Sensitivity of SARS-CoV-2 Omicron Subvariants to Therapeutic Monoclonal Antibodies. Lancet Infect. Dis. 2022;22:942–943. doi: 10.1016/S1473-3099(22)00365-6. PubMed DOI PMC

Cao Y., Yisimayi A., Jian F., Song W., Xiao T., Wang L., Du S., Wang J., Li Q., Chen X., et al. BA.2.12.1, BA.4 and BA.5 Escape Antibodies Elicited by Omicron Infection. Nature. 2022;608:593–602. doi: 10.1038/s41586-022-04980-y. PubMed DOI PMC

Weisblum Y., Schmidt F., Zhang F., DaSilva J., Poston D., Lorenzi J.C., Muecksch F., Rutkowska M., Hoffmann H.-H., Michailidis E., et al. Escape from Neutralizing Antibodies by SARS-CoV-2 Spike Protein Variants. Elife. 2020;9:e61312. doi: 10.7554/eLife.61312. PubMed DOI PMC

Williams G.D., Chang R.Y., Brian D.A. A Phylogenetically Conserved Hairpin-Type 3’ Untranslated Region Pseudoknot Functions in Coronavirus RNA Replication. J. Virol. 1999;73:8349–8355. doi: 10.1128/JVI.73.10.8349-8355.1999. PubMed DOI PMC

Belmonte-Reche E., Serrano-Chacón I., Gonzalez C., Gallo J., Bañobre-López M. Potential G-Quadruplexes and i-Motifs in the SARS-CoV-2. PLoS ONE. 2021;16:e0250654. doi: 10.1371/journal.pone.0250654. PubMed DOI PMC

Cui H., Zhang L. G-Quadruplexes Are Present in Human Coronaviruses Including SARS-CoV-2. Front. Microbiol. 2020;11:567317. doi: 10.3389/fmicb.2020.567317. PubMed DOI PMC

Dinan A.M., Lukhovitskaya N.I., Olendraite I., Firth A.E. A Case for a Negative-Strand Coding Sequence in a Group of Positive-Sense RNA Viruses. Virus Evol. 2020;6:veaa007. doi: 10.1093/ve/veaa007. PubMed DOI PMC

Liu G., Du W., Sang X., Tong Q., Wang Y., Chen G., Yuan Y., Jiang L., Cheng W., Liu D., et al. RNA G-Quadruplex in TMPRSS2 Reduces SARS-CoV-2 Infection. Nat. Commun. 2022;13:1444. doi: 10.1038/s41467-022-29135-5. PubMed DOI PMC

Moraca F., Marzano S., D’Amico F., Lupia A., Di Fonzo S., Vertecchi E., Salvati E., Di Porzio A., Catalanotti B., Randazzo A., et al. Ligand-Based Drug Repurposing Strategy Identified SARS-CoV-2 RNA G-Quadruplex Binders. Chem. Commun. 2022;58:11913–11916. doi: 10.1039/D2CC03135C. PubMed DOI

Qin G., Zhao C., Liu Y., Zhang C., Yang G., Yang J., Wang Z., Wang C., Tu C., Guo Z., et al. RNA G-Quadruplex Formed in SARS-CoV-2 Used for COVID-19 Treatment in Animal Models. Cell Discov. 2022;8:86. doi: 10.1038/s41421-022-00450-x. PubMed DOI PMC

Vora S.M., Fontana P., Mao T., Leger V., Zhang Y., Fu T.-M., Lieberman J., Gehrke L., Shi M., Wang L., et al. Targeting Stem-Loop 1 of the SARS-CoV-2 5’ UTR to Suppress Viral Translation and Nsp1 Evasion. Proc. Natl. Acad. Sci. USA. 2022;119:e2117198119. doi: 10.1073/pnas.2117198119. PubMed DOI PMC

Chowdhury S., Wang J., Nuccio S.P., Mao H., Di Antonio M. Short LNA-Modified Oligonucleotide Probes as Efficient Disruptors of DNA G-Quadruplexes. Nucleic Acids Res. 2022;50:7247–7259. doi: 10.1093/nar/gkac569. PubMed DOI PMC

Yeh T.-Y., Contreras G.P. Emerging Viral Mutants in Australia Suggest RNA Recombination Event in the SARS-CoV-2 Genome. Med. J. Aust. 2020;213:44–44.e1. doi: 10.5694/mja2.50657. PubMed DOI PMC

Xu Z., Choi J.-H., Dai D.L., Luo J., Ladak R.J., Li Q., Wang Y., Zhang C., Wiebe S., Liu A.C.H., et al. SARS-CoV-2 Impairs Interferon Production via NSP2-Induced Repression of MRNA Translation. Proc. Natl. Acad. Sci. USA. 2022;119:e2204539119. doi: 10.1073/pnas.2204539119. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace