Genomic Analysis of Non-B Nucleic Acids Structures in SARS-CoV-2: Potential Key Roles for These Structures in Mutability, Translation, and Replication?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36672896
PubMed Central
PMC9859294
DOI
10.3390/genes14010157
PII: genes14010157
Knihovny.cz E-zdroje
- Klíčová slova
- G-quadruplex, SARS-CoV-2, adaptation, inverted repeats, mutation, pseudoknot, spike protein,
- MeSH
- 3' nepřekládaná oblast MeSH
- COVID-19 * genetika MeSH
- genomika MeSH
- glykoprotein S, koronavirus genetika MeSH
- lidé MeSH
- nukleové kyseliny * MeSH
- SARS-CoV-2 genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- glykoprotein S, koronavirus MeSH
- nukleové kyseliny * MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
Non-B nucleic acids structures have arisen as key contributors to genetic variation in SARS-CoV-2. Herein, we investigated the presence of defining spike protein mutations falling within inverted repeats (IRs) for 18 SARS-CoV-2 variants, discussed the potential roles of G-quadruplexes (G4s) in SARS-CoV-2 biology, and identified potential pseudoknots within the SARS-CoV-2 genome. Surprisingly, there was a large variation in the number of defining spike protein mutations arising within IRs between variants and these were more likely to occur in the stem region of the predicted hairpin stem-loop secondary structure. Notably, mutations implicated in ACE2 binding and propagation (e.g., ΔH69/V70, N501Y, and D614G) were likely to occur within IRs, whilst mutations involved in antibody neutralization and reduced vaccine efficacy (e.g., T19R, ΔE156, ΔF157, R158G, and G446S) were rarely found within IRs. We also predicted that RNA pseudoknots could predominantly be found within, or next to, 29 mutations found in the SARS-CoV-2 spike protein. Finally, the Omicron variants BA.2, BA.4, BA.5, BA.2.12.1, and BA.2.75 appear to have lost two of the predicted G4-forming sequences found in other variants. These were found in nsp2 and the sequence complementary to the conserved stem-loop II-like motif (S2M) in the 3' untranslated region (UTR). Taken together, non-B nucleic acids structures likely play an integral role in SARS-CoV-2 evolution and genetic diversity.
Institute of Biophysics of the Czech Academy of Sciences 61265 Brno Czech Republic
School of Pharmacy University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
Zobrazit více v PubMed
Skourti-Stathaki K., Proudfoot N.J. A Double-Edged Sword: R Loops as Threats to Genome Integrity and Powerful Regulators of Gene Expression. Genes Dev. 2014;28:1384–1396. doi: 10.1101/gad.242990.114. PubMed DOI PMC
Voineagu I., Narayanan V., Lobachev K.S., Mirkin S.M. Replication Stalling at Unstable Inverted Repeats: Interplay between DNA Hairpins and Fork Stabilizing Proteins. Proc. Natl. Acad. Sci. USA. 2008;105:9936–9941. doi: 10.1073/pnas.0804510105. PubMed DOI PMC
Saranathan N., Vivekanandan P. G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol. 2019;27:148–163. doi: 10.1016/j.tim.2018.08.011. PubMed DOI PMC
Griffin B.D., Bass H.W. Review: Plant G-Quadruplex (G4) Motifs in DNA and RNA; Abundant, Intriguing Sequences of Unknown Function. Plant Sci. 2018;269:143–147. doi: 10.1016/j.plantsci.2018.01.011. PubMed DOI
Brierley I., Pennell S., Gilbert R.J.C. Viral RNA Pseudoknots: Versatile Motifs in Gene Expression and Replication. Nat. Rev. Microbiol. 2007;5:598–610. doi: 10.1038/nrmicro1704. PubMed DOI PMC
Pearson C.E., Zorbas H., Price G.B., Zannis-Hadjopoulos M. Inverted Repeats, Stem-Loops, and Cruciforms: Significance for Initiation of DNA Replication. J. Cell. Biochem. 1996;63:1–22. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.0.CO;2-3. PubMed DOI
del Solar G., Giraldo R., Ruiz-Echevarría M.J., Espinosa M., Díaz-Orejas R. Replication and Control of Circular Bacterial Plasmids. Microbiol. Mol. Biol. Rev. 1998;62:434–464. doi: 10.1128/MMBR.62.2.434-464.1998. PubMed DOI PMC
Lu S., Wang G., Bacolla A., Zhao J., Spitser S., Vasquez K.M. Short Inverted Repeats Are Hotspots for Genetic Instability: Relevance to Cancer Genomes. Cell Rep. 2015;10:1674–1680. doi: 10.1016/j.celrep.2015.02.039. PubMed DOI PMC
Sadler J.R., Sasmor H., Betz J.L. A Perfectly Symmetric Lac Operator Binds the Lac Repressor Very Tightly. Proc. Natl. Acad. Sci. USA. 1983;80:6785–6789. doi: 10.1073/pnas.80.22.6785. PubMed DOI PMC
Butler D.K., Yasuda L.E., Yao M.C. Induction of Large DNA Palindrome Formation in Yeast: Implications for Gene Amplification and Genome Stability in Eukaryotes. Cell. 1996;87:1115–1122. doi: 10.1016/S0092-8674(00)81805-X. PubMed DOI
Okamura K., Chung W.-J., Lai E.C. The Long and Short of Inverted Repeat Genes in Animals: MicroRNAs, Mirtrons and Hairpin RNAs. Cell Cycle. 2008;7:2840–2845. doi: 10.4161/cc.7.18.6734. PubMed DOI PMC
Wroblewski T., Matvienko M., Piskurewicz U., Xu H., Martineau B., Wong J., Govindarajulu M., Kozik A., Michelmore R.W. Distinctive Profiles of Small RNA Couple Inverted Repeat-Induced Post-Transcriptional Gene Silencing with Endogenous RNA Silencing Pathways in Arabidopsis. RNA. 2014;20:1987–1999. doi: 10.1261/rna.046532.114. PubMed DOI PMC
Staple D.W., Butcher S.E. Pseudoknots: RNA Structures with Diverse Functions. PLoS Biol. 2005;3:e213. doi: 10.1371/journal.pbio.0030213. PubMed DOI PMC
Neupane K., Munshi S., Zhao M., Ritchie D.B., Ileperuma S.M., Woodside M.T. Anti-Frameshifting Ligand Active against SARS Coronavirus-2 Is Resistant to Natural Mutations of the Frameshift-Stimulatory Pseudoknot. J. Mol. Biol. 2020;432:5843–5847. doi: 10.1016/j.jmb.2020.09.006. PubMed DOI PMC
Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020;21:459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC
Cebrián R., Belmonte-Reche E., Pirota V., de Jong A., Morales J.C., Freccero M., Doria F., Kuipers O.P. G-Quadruplex DNA as a Target in Pathogenic Bacteria: Efficacy of an Extended Naphthalene Diimide Ligand and Its Mode of Action. J. Med. Chem. 2022;65:4752–4766. doi: 10.1021/acs.jmedchem.1c01905. PubMed DOI PMC
Abiri A., Lavigne M., Rezaei M., Nikzad S., Zare P., Mergny J.-L., Rahimi H.-R. Unlocking G-Quadruplexes as Antiviral Targets. Pharmacol. Rev. 2021;73:897–923. doi: 10.1124/pharmrev.120.000230. PubMed DOI
Cantara A., Luo Y., Dobrovolná M., Bohalova N., Fojta M., Verga D., Guittat L., Cucchiarini A., Savrimoutou S., Häberli C., et al. G-Quadruplexes in Helminth Parasites. Nucleic Acids Res. 2022;50:2719–2735. doi: 10.1093/nar/gkac129. PubMed DOI PMC
Warner E.F., Bohálová N., Brázda V., Waller Z.A.E., Bidula S. Analysis of Putative Quadruplex-Forming Sequences in Fungal Genomes: Novel Antifungal Targets? Microb. Genom. 2021;7:000570. doi: 10.1099/mgen.0.000570. PubMed DOI PMC
Goswami P., Bartas M., Lexa M., Bohálová N., Volná A., Červeň J., Červeňová V., Pečinka P., Špunda V., Fojta M., et al. SARS-CoV-2 Hot-Spot Mutations Are Significantly Enriched within Inverted Repeats and CpG Island Loci. Brief. Bioinform. 2021;22:1338–1345. doi: 10.1093/bib/bbaa385. PubMed DOI PMC
Bartas M., Goswami P., Lexa M., Červeň J., Volná A., Fojta M., Brázda V., Pečinka P. Letter to the Editor: Significant Mutation Enrichment in Inverted Repeat Sites of New SARS-CoV-2 Strains. Brief. Bioinform. 2021;22:bbab129. doi: 10.1093/bib/bbab129. PubMed DOI PMC
Zhao C., Qin G., Niu J., Wang Z., Wang C., Ren J., Qu X. Targeting RNA G-Quadruplex in SARS-CoV-2: A Promising Therapeutic Target for COVID-19? Angew. Chem. Int. Ed. 2021;60:432–438. doi: 10.1002/anie.202011419. PubMed DOI
Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Štastný J. Palindrome Analyser—A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI
Hodcroft E.B. CoVariants: SARS-CoV-2 Mutations and Variants of Interest. [(accessed on 19 December 2022)]. Available online: https://covariants.org/
Shu Y., McCauley J. GISAID: Global Initiative on Sharing All Influenza Data—From Vision to Reality. Euro Surveill. 2017;22:30494. doi: 10.2807/1560-7917.ES.2017.22.13.30494. PubMed DOI PMC
Smit S., Rother K., Heringa J., Knight R. From Knotted to Nested RNA Structures: A Variety of Computational Methods for Pseudoknot Removal. RNA. 2008;14:410–416. doi: 10.1261/rna.881308. PubMed DOI PMC
Bellaousov S., Mathews D.H. ProbKnot: Fast Prediction of RNA Secondary Structure Including Pseudoknots. RNA. 2010;16:1870–1880. doi: 10.1261/rna.2125310. PubMed DOI PMC
Kikin O., D’Antonio L., Bagga P.S. QGRS Mapper: A Web-Based Server for Predicting G-Quadruplexes in Nucleotide Sequences. Nucleic Acids Res. 2006;34:W676–W682. doi: 10.1093/nar/gkl253. PubMed DOI PMC
Yang T.-J., Yu P.-Y., Chang Y.-C., Liang K.-H., Tso H.-C., Ho M.-R., Chen W.-Y., Lin H.-T., Wu H.-C., Hsu S.-T.D. Effect of SARS-CoV-2 B.1.1.7 Mutations on Spike Protein Structure and Function. Nat. Struct. Mol. Biol. 2021;28:731–739. doi: 10.1038/s41594-021-00652-z. PubMed DOI
Hirabara S.M., Serdan T.D.A., Gorjao R., Masi L.N., Pithon-Curi T.C., Covas D.T., Curi R., Durigon E.L. SARS-CoV-2 Variants: Differences and Potential of Immune Evasion. Front. Cell. Infect. Microbiol. 2021;11:781429. doi: 10.3389/fcimb.2021.781429. PubMed DOI PMC
Harvey W.T., Carabelli A.M., Jackson B., Gupta R.K., Thomson E.C., Harrison E.M., Ludden C., Reeve R., Rambaut A., Peacock S.J., et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021;19:409–424. doi: 10.1038/s41579-021-00573-0. PubMed DOI PMC
McCallum M., Walls A.C., Sprouse K.R., Bowen J.E., Rosen L.E., Dang H.V., De Marco A., Franko N., Tilles S.W., Logue J., et al. Molecular Basis of Immune Evasion by the Delta and Kappa SARS-CoV-2 Variants. Science. 2021;374:1621–1626. doi: 10.1126/science.abl8506. PubMed DOI
Chen R.E., Zhang X., Case J.B., Winkler E.S., Liu Y., VanBlargan L.A., Liu J., Errico J.M., Xie X., Suryadevara N., et al. Resistance of SARS-CoV-2 Variants to Neutralization by Monoclonal and Serum-Derived Polyclonal Antibodies. Nat. Med. 2021;27:717–726. doi: 10.1038/s41591-021-01294-w. PubMed DOI PMC
Barton M.I., MacGowan S.A., Kutuzov M.A., Dushek O., Barton G.J., van der Merwe P.A. Effects of Common Mutations in the SARS-CoV-2 Spike RBD and Its Ligand, the Human ACE2 Receptor on Binding Affinity and Kinetics. Elife. 2021;10:e70658. doi: 10.7554/eLife.70658. PubMed DOI PMC
Imperatore J.A., Cunningham C.L., Pellegrene K.A., Brinson R.G., Marino J.P., Evanseck J.D., Mihailescu M.R. Highly Conserved S2m Element of SARS-CoV-2 Dimerizes via a Kissing Complex and Interacts with Host MiRNA-1307-3p. Nucleic Acids Res. 2022;50:1017–1032. doi: 10.1093/nar/gkab1226. PubMed DOI PMC
Tandel D., Gupta D., Sah V., Harshan K.H. N440K Variant of SARS-CoV-2 Has Higher Infectious Fitness. bioRxiv. 2021 doi: 10.1101/2021.04.30.441434. DOI
Bate N., Savva C.G., Moody P.C.E., Brown E.A., Evans S.E., Ball J.K., Schwabe J.W.R., Sale J.E., Brindle N.P.J. In Vitro Evolution Predicts Emerging SARS-CoV-2 Mutations with High Affinity for ACE2 and Cross-Species Binding. PLoS Pathog. 2022;18:e1010733. doi: 10.1371/journal.ppat.1010733. PubMed DOI PMC
Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E.E., Bhattacharya T., Foley B., et al. Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182:812–827.e19. doi: 10.1016/j.cell.2020.06.043. PubMed DOI PMC
Tian F., Tong B., Sun L., Shi S., Zheng B., Wang Z., Dong X., Zheng P. N501Y Mutation of Spike Protein in SARS-CoV-2 Strengthens Its Binding to Receptor ACE2. Elife. 2021;10:e69091. doi: 10.7554/eLife.69091. PubMed DOI PMC
Meng B., Kemp S.A., Papa G., Datir R., Ferreira I.A.T.M., Marelli S., Harvey W.T., Lytras S., Mohamed A., Gallo G., et al. Recurrent Emergence of SARS-CoV-2 Spike Deletion H69/V70 and Its Role in the Alpha Variant B.1.1.7. Cell Rep. 2021;35:109292. doi: 10.1016/j.celrep.2021.109292. PubMed DOI PMC
Iketani S., Liu L., Guo Y., Liu L., Chan J.F.-W., Huang Y., Wang M., Luo Y., Yu J., Chu H., et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages. Nature. 2022;604:553–556. doi: 10.1038/s41586-022-04594-4. PubMed DOI PMC
Zhou H., Dcosta B.M., Landau N.R., Tada T. Resistance of SARS-CoV-2 Omicron BA.1 and BA.2 Variants to Vaccine-Elicited Sera and Therapeutic Monoclonal Antibodies. Viruses. 2022;14:1334. doi: 10.3390/v14061334. PubMed DOI PMC
Yamasoba D., Kosugi Y., Kimura I., Fujita S., Uriu K., Ito J., Sato K. Neutralisation Sensitivity of SARS-CoV-2 Omicron Subvariants to Therapeutic Monoclonal Antibodies. Lancet Infect. Dis. 2022;22:942–943. doi: 10.1016/S1473-3099(22)00365-6. PubMed DOI PMC
Cao Y., Yisimayi A., Jian F., Song W., Xiao T., Wang L., Du S., Wang J., Li Q., Chen X., et al. BA.2.12.1, BA.4 and BA.5 Escape Antibodies Elicited by Omicron Infection. Nature. 2022;608:593–602. doi: 10.1038/s41586-022-04980-y. PubMed DOI PMC
Weisblum Y., Schmidt F., Zhang F., DaSilva J., Poston D., Lorenzi J.C., Muecksch F., Rutkowska M., Hoffmann H.-H., Michailidis E., et al. Escape from Neutralizing Antibodies by SARS-CoV-2 Spike Protein Variants. Elife. 2020;9:e61312. doi: 10.7554/eLife.61312. PubMed DOI PMC
Williams G.D., Chang R.Y., Brian D.A. A Phylogenetically Conserved Hairpin-Type 3’ Untranslated Region Pseudoknot Functions in Coronavirus RNA Replication. J. Virol. 1999;73:8349–8355. doi: 10.1128/JVI.73.10.8349-8355.1999. PubMed DOI PMC
Belmonte-Reche E., Serrano-Chacón I., Gonzalez C., Gallo J., Bañobre-López M. Potential G-Quadruplexes and i-Motifs in the SARS-CoV-2. PLoS ONE. 2021;16:e0250654. doi: 10.1371/journal.pone.0250654. PubMed DOI PMC
Cui H., Zhang L. G-Quadruplexes Are Present in Human Coronaviruses Including SARS-CoV-2. Front. Microbiol. 2020;11:567317. doi: 10.3389/fmicb.2020.567317. PubMed DOI PMC
Dinan A.M., Lukhovitskaya N.I., Olendraite I., Firth A.E. A Case for a Negative-Strand Coding Sequence in a Group of Positive-Sense RNA Viruses. Virus Evol. 2020;6:veaa007. doi: 10.1093/ve/veaa007. PubMed DOI PMC
Liu G., Du W., Sang X., Tong Q., Wang Y., Chen G., Yuan Y., Jiang L., Cheng W., Liu D., et al. RNA G-Quadruplex in TMPRSS2 Reduces SARS-CoV-2 Infection. Nat. Commun. 2022;13:1444. doi: 10.1038/s41467-022-29135-5. PubMed DOI PMC
Moraca F., Marzano S., D’Amico F., Lupia A., Di Fonzo S., Vertecchi E., Salvati E., Di Porzio A., Catalanotti B., Randazzo A., et al. Ligand-Based Drug Repurposing Strategy Identified SARS-CoV-2 RNA G-Quadruplex Binders. Chem. Commun. 2022;58:11913–11916. doi: 10.1039/D2CC03135C. PubMed DOI
Qin G., Zhao C., Liu Y., Zhang C., Yang G., Yang J., Wang Z., Wang C., Tu C., Guo Z., et al. RNA G-Quadruplex Formed in SARS-CoV-2 Used for COVID-19 Treatment in Animal Models. Cell Discov. 2022;8:86. doi: 10.1038/s41421-022-00450-x. PubMed DOI PMC
Vora S.M., Fontana P., Mao T., Leger V., Zhang Y., Fu T.-M., Lieberman J., Gehrke L., Shi M., Wang L., et al. Targeting Stem-Loop 1 of the SARS-CoV-2 5’ UTR to Suppress Viral Translation and Nsp1 Evasion. Proc. Natl. Acad. Sci. USA. 2022;119:e2117198119. doi: 10.1073/pnas.2117198119. PubMed DOI PMC
Chowdhury S., Wang J., Nuccio S.P., Mao H., Di Antonio M. Short LNA-Modified Oligonucleotide Probes as Efficient Disruptors of DNA G-Quadruplexes. Nucleic Acids Res. 2022;50:7247–7259. doi: 10.1093/nar/gkac569. PubMed DOI PMC
Yeh T.-Y., Contreras G.P. Emerging Viral Mutants in Australia Suggest RNA Recombination Event in the SARS-CoV-2 Genome. Med. J. Aust. 2020;213:44–44.e1. doi: 10.5694/mja2.50657. PubMed DOI PMC
Xu Z., Choi J.-H., Dai D.L., Luo J., Ladak R.J., Li Q., Wang Y., Zhang C., Wiebe S., Liu A.C.H., et al. SARS-CoV-2 Impairs Interferon Production via NSP2-Induced Repression of MRNA Translation. Proc. Natl. Acad. Sci. USA. 2022;119:e2204539119. doi: 10.1073/pnas.2204539119. PubMed DOI PMC