Organelle Studies and Proteome Analyses of Mitochondria and Plastids Fractions from the Diatom Thalassiosira pseudonana
Jazyk angličtina Země Japonsko Médium print
Typ dokumentu časopisecké články
PubMed
31179502
PubMed Central
PMC6683858
DOI
10.1093/pcp/pcz097
PII: 5513118
Knihovny.cz E-zdroje
- Klíčová slova
- Chloroplast, Organelle isolation, Photosynthesis, Proteomics, Respiration, Thylakoids,
- MeSH
- mitochondrie metabolismus MeSH
- plastidy metabolismus MeSH
- proteom metabolismus MeSH
- rozsivky metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteom MeSH
Diatoms are unicellular algae and evolved by secondary endosymbiosis, a process in which a red alga-like eukaryote was engulfed by a heterotrophic eukaryotic cell. This gave rise to plastids of remarkable complex architecture and ultrastructure that require elaborate protein importing, trafficking, signaling and intracellular cross-talk pathways. Studying both plastids and mitochondria and their distinctive physiological pathways in organello may greatly contribute to our understanding of photosynthesis, mitochondrial respiration and diatom evolution. The isolation of such complex organelles, however, is still demanding, and existing protocols are either limited to a few species (for plastids) or have not been reported for diatoms so far (for mitochondria). In this work, we present the first isolation protocol for mitochondria from the model diatom Thalassiosira pseudonana. Apart from that, we extended the protocol so that it is also applicable for the purification of a high-quality plastids fraction, and provide detailed structural and physiological characterizations of the resulting organelles. Isolated mitochondria were structurally intact, showed clear evidence of mitochondrial respiration, but the fractions still contained residual cell fragments. In contrast, plastid isolates were virtually free of cellular contaminants, featured structurally preserved thylakoids performing electron transport, but lost most of their stromal components as concluded from Western blots and mass spectrometry. Liquid chromatography electrospray-ionization mass spectrometry studies on mitochondria and thylakoids, moreover, allowed detailed proteome analyses which resulted in extensive proteome maps for both plastids and mitochondria thus helping us to broaden our understanding of organelle metabolism and functionality in diatoms.
Zobrazit více v PubMed
Allen A.E., Dupont C.L., Oborn�k M., Hor�k A., Nunes-Nesi A., McCrow J.P., et al.. (2011) Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473: 203–207. PubMed
Allen A.E., Laroche J., Maheswari U., Lommer M., Schauer N., Lopez P.J., et al.. (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl. Acad. Sci. USA 105: 10438–10443. PubMed PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403–410. PubMed
Andersson B., Anderson J.M. (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta (BBA) Bioenerg. 593: 427–440. PubMed
Armbrust E.V., Berges J.A., Bowler C., Green B.R., Martinez D., Putnam N.H., et al.. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86. PubMed
Ast M., Gruber A., Schmitz-Esser S., Neuhaus H.E., Kroth P.G., Horn M., et al.. (2009) Diatom plastids depend on nucleotide import from the cytosol. Proc. Natl. Acad. Sci. USA 106: 3621–3626. PubMed PMC
Bailleul B., Berne N., Murik O., Petroutsos D., Prihoda J., Tanaka A., et al.. (2015) Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524: 366–369. PubMed
Beston H., Ulf B., AnnaCarin E., Elzbieta G. (1990) Large‐scale purification procedure of spinach leaf mitochondria—isolation and immunological studies of the F1-ATPase. Physiol. Plant 78: 367–373.
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254. PubMed
B�chel C. (2015) Evolution and function of light harvesting proteins. J. Plant Physiol. 172: 62–75. PubMed
Cavalier-Smith T. (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci. 5: 174–182. PubMed
Chance B., Williams G.R. (1955) Respiratory enzymes in oxidative phosphorylation: IV. The respiratory chain. J. Biol. Chem. 217: 429–438. PubMed
Clark L.C. Jr., Wolf R., Granger D., Taylor Z. (1953) Continuous recording of blood oxygen tensions by polarography. J. Appl. Physiol. 6: 189–193. PubMed
Clement R., Dimnet L., Maberly S.C., Gontero B. (2016) The nature of the CO2-concentrating mechanisms in a marine diatom, Thalassiosira pseudonana. New Phytol. 209: 1417–1427. PubMed
Compton S.J., Jones C.G. (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal. Biochem. 151: 369–374. PubMed
Dong H.-P., Dong Y.-L., Cui L., Balamurugan S., Gao J., Lu S.-H., et al.. (2016) High light stress triggers distinct proteomic responses in the marine diatom Thalassiosira pseudonana. BMC Genomics 17: 994–994. PubMed PMC
Edwards G.E., Robinson S.P., Tyler N.J., Walker D.A. (1978) Photosynthesis by isolated protoplasts, protoplast extracts, and chloroplasts of wheat: influence of orthophosphate, pyrophosphate, and adenylates. Plant Physiol. 62: 313–319. PubMed PMC
Emanuelsson O., Brunak S., von Heijne G., Nielsen H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2: 953–971. PubMed
Eriksson M., Gardestrom P., Samuelsson G. (1995) Isolation, purification, and characterization of mitochondria from Chlamydomonas reinhardtii. Plant Physiol. 107: 479–483. PubMed PMC
Ewe D., Tachibana M., Kikutani S., Gruber A., Rio Bartulos C., Konert G., et al.. (2018) The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. Photosynth. Res. 137: 263–280. PubMed
Fabris M., Matthijs M., Rombauts S., Vyverman W., Goossens A., Baart G.J.E. (2012) The metabolic blueprint of Phaeodactylum tricornutum reveals a eukaryotic Entner-Doudoroff glycolytic pathway. Plant J. 70: 1004–1014. PubMed
Fling S.P., Gregerson D.S. (1986) Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea. Anal. Biochem. 155: 83–88. PubMed
Flori S., Jouneau P.-H., Bailleul B., Gallet B., Estrozi L.F., Moriscot C.et al. . (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat. Commun. 8: 15885. PubMed PMC
Gelhaye E., Rouhier N., Jacquot J.-P. (2004) The thioredoxin h system of higher plants. Plant Physiol. Biochem. 42: 265–271. PubMed
Grigoriev I.V., Nordberg H., Shabalov I., Aerts A., Cantor M., Goodstein D., et al.. (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 40: D26–D32. PubMed PMC
Grouneva I., Muth-Pawlak D., Battchikova N., Aro E.-M. (2016) Changes in relative thylakoid protein abundance induced by fluctuating light in the diatom Thalassiosira pseudonana. J. Proteome Res. 15: 1649–1658. PubMed
Grouneva I., Rokka A., Aro E.M. (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J. Proteome Res. 10: 5338–5353. PubMed
Gruber A., Kroth P.G. (2014) Deducing intracellular distributions of metabolic pathways from genomic data. InPlant Metabolism. Edited by Sriram G. pp. 187–211. Humana Press, Totowa, NJ. PubMed
Gruber A., Kroth P.G. (2017) Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research. Philos. Trans. R Soc. B 372: 20160402. PubMed PMC
Gruber A., Rocap G., Kroth P.G., Armbrust E.V., Mock T. (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 81: 519–528. PubMed PMC
Guillard R.R.L., Lorenzen C.J. (1972) Yellow-green algae with chlorophyllide C1, 2. J. Phycol. 8: 10–14.
J�ger S., B�chel C. (2019) Cation-dependent changes in the thylakoid membrane appression of the diatom Thalassiosira pseudonana. Biochim. Biophys. Acta (BBA) Bioenerg. 1860: 41–51. PubMed
Jeffrey S.W., Humphrey G.F. (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz 167: 191–204.
Jiroutov� K., Kořen� L., Bowler C., Oborn�k M. (2010) A gene in the process of endosymbiotic transfer. PLoS One 5: e13234. PubMed PMC
Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45: D353–D361. PubMed PMC
Kanehisa M., Goto S. (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28: 27–30. PubMed PMC
Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457–462. PubMed PMC
Kanehisa M., Sato Y., Morishima K. (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428: 726–731. PubMed
Kansy M., Gurowietz A., Wilhelm C., Goss R. (2017) An optimized protocol for the preparation of oxygen-evolving thylakoid membranes from Cyclotella meneghiniana provides a tool for the investigation of diatom plastidic electron transport. BMC Plant Biol. 17: 221. PubMed PMC
Karpowicz S.J., Prochnik S.E., Grossman A.R., Merchant S.S. (2011) The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J. Biol. Chem. 286: 21427–21439. PubMed PMC
Kawakami K., Umena Y., Iwai M., Kawabata Y., Ikeuchi M., Kamiya N., et al.. (2011) Roles of PsbI and PsbM in photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography. Biochim. Biophys. Acta (BBA) Bioenerg. 1807: 319–325. PubMed
Klein M.-C., Zimmermann K., Schorr S., Landini M., Klemens P.A.W., Altensell J., et al.. (2018) AXER is an ATP/ADP exchanger in the membrane of the endoplasmic reticulum. Nat. Commun. 9: 3489. PubMed PMC
Kroth P.G., Chiovitti A., Gruber A., Martin-Jezequel V., Mock T., Parker M.S., et al.. (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3: e1426. PubMed PMC
Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. PubMed
Lepetit B., Goss R., Jakob T., Wilhelm C. (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth. Res. 111: 245–257. PubMed
Lepetit B., Volke D., Szabo M., Hoffmann R., Garab G., Wilhelm C., et al.. (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. Biochemistry 46: 9813–9822. PubMed
Lyttleton J.W. (1962) Isolation of ribosomes from spinach chloroplasts. Exp. Cell Res. 26: 312–317. PubMed
Martin W.F., Garg S., Zimorski V. (2015) Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. B 370: 20140330. PubMed PMC
Martinson T.A., Ikeuchi M., Plumley F.G. (1998) Oxygen-evolving diatom thylakoid membranes. Biochim. Biophys. Acta (BBA) Bioenerg. 1409: 72–86. PubMed
Mason C.B., Bricker T.M., Moroney J.V. (2006) A rapid method for chloroplast isolation from the green alga Chlamydomonas reinhardtii. Nat. Protoc. 1: 2227–2230. PubMed
Matsuda Y., Nakajima K., Tachibana M. (2011) Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth. Res. 109: 191–203. PubMed
Mendiola-Morgenthaler L., Leu S., Boschetti A. (1985) Isolation of biochemically active chloroplasts from chlamydomonas. Plant Sci. 38: 33–39.
Merchant S.S., Prochnik S.E., Vallon O., Harris E.H., Karpowicz S.J., Witman G.B., et al.. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250. PubMed PMC
Meyer Y., Reichheld J.P., Vignols F. (2005) Thioredoxins in Arabidopsis and other plants. Photosyn. Res. 86: 419–433. PubMed
Michels A.K., Wedel N., Kroth P.G. (2005) Diatom plastids possess a phosphoribulokinase with an altered regulation and no oxidative pentose phosphate pathway. Plant Physiol. 137: 911–920. PubMed PMC
Moog D., Rensing S.A., Archibald J.M., Maier U.G., Ullrich K.K. (2015) Localization and evolution of putative triose phosphate translocators in the diatom Phaeodactylum tricornutum. Genome Biol. Evol. 7: 2955–2969. PubMed PMC
Murata N., Kume N-A., Okada Y., Hori T. (1979) Preparation of girdle lamella-containing chloroplasts from the diatom Phaeodactylum tricornutum. Plant Cell Physiol. 20: 1047-1053
Nagao R., Ishii A., Tada O., Suzuki T., Dohmae N., Okumura A., et al.. (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim. Biophys. Acta (BBA) Bioenerg. 1767: 1353–1362. PubMed
Nagao R., Takahashi S., Suzuki T., Dohmae N., Nakazato K., Tomo T. (2013) Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynth. Res. 117: 281–288. PubMed
Neubauer C., Schreiber U. (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z. Naturforsch. C 42: 1246–1247.
Nordberg H., Cantor M., Dusheyko S., Hua S., Poliakov A., Shabalov I., et al.. (2014) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucl. Acids Res. 42: D26–D31. PubMed PMC
Nymark M., Valle K.C., Brembu T., Hancke K., Winge P., Andresen K., et al.. (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One 4: e7743. PubMed PMC
Oudot-Le Secq M.P., Green B.R. (2011) Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Gene 476: 20–26. PubMed
Oudot-Le Secq M.P., Grimwood J., Shapiro H., Armbrust E.V., Bowler C., Green B.R. (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol. Genet. Genomics 277: 427–439. PubMed
Palmer J.M. (1967) Rapid isolation of active mitochondria from plant tissue. Nature 216: 1208. PubMed
Pollock S.V., Colombo S.L., Prout D.L. Jr, Godfrey A.C., Moroney J.V. (2003) Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere. Plant Physiol. 133: 1854–1861. PubMed PMC
Poulsen N., Chesley P.M., Kr�ger N. (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 42: 1059–1065.
Prihoda J., Tanaka A., de Paula W.B.M., Allen J.F., Tirichine L., Bowler C. (2012) Chloroplast-mitochondria cross-talk in diatoms. J. Exp. Bot. 63: 1543–1557. PubMed
R�o B�rtulos C., Rogers M.B., Williams T.A., Gentekaki E., Brinkmann H., Cerff R., et al.. (2018) Mitochondrial glycolysis in a major lineage of eukaryotes. Genome Biol. Evol. 10: 2310–2325. PubMed PMC
Roger A.J., Mu�oz-G�mez S.A., Kamikawa R. (2017) The origin and diversification of mitochondria. Curr. Biol. 27: R1177–R1192. PubMed
Rottberger J., Gruber A., Kroth P. (2013) Analysing size variation during light-starvation response of nutritionally diverse chrysophytes with a Coulter counter. Algol. Stud. 141: 37–51.
Round F.E., Crawford R.M., Mann D.G. (2007) 59. Biology of diatoms. InDiatoms: Biology and Morphology of the Genera. pp. 1–125. Cambridge University Press, New York, NY.
Schnell R.A., Lefebvre P.A. (1993) Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging. Genetics 134: 737–747. PubMed PMC
Schober A.F., Flori S., Finazzi G., Kroth P.G., B�rtulos C.R. (2018) Isolation of plastid fractions from the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. In Plastids: Methods and Protocols. Edited by Mar�chal E. pp. 189–203. Springer US, New York, NY. PubMed
Schreiber U., Neubauer C. (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation. Z. Naturforsch. C 42: 1255.
Schwitzguebel J.-P., Siegenthaler P.-A. (1984) Purification of peroxisomes and mitochondria from spinach leaf by percoll gradient centrifugation. Plant Physiol. 75: 670–674. PubMed PMC
Spurr A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26: 31–43. PubMed
Stankovic Z.S., Walker D.A. (1977) Photosynthesis by isolated pea chloroplasts: some effects of adenylates and inorganic pyrophosphate. Plant Physiol. 59: 428–432. PubMed PMC
Stirbet A. and Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B 104: 236–257. PubMed
Storey B.T., Bahr J.T. (1969) The respiratory chain of plant mitochondria. II. Oxidative phosphorylation in skunk cabbage mitochondria. Plant Physiol. 44: 126–134. PubMed PMC
Strasser R.J., Srivastava A. (1995) Polyphasic chlorophyll A fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 61: 32–42.
Swiatek M., Kuras R., Sokolenko A., Higgs D., Olive J., Cinque G., et al.. (2001) The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13: 1347. PubMed PMC
Szabo M., Lepetit B., Goss R., Wilhelm C., Mustardy L., Garab G. (2008) Structurally flexible macro-organization of the pigment-protein complexes of the diatom Phaeodactylum tricornutum. Photosynth. Res. 95: 237–245. PubMed
Vishwakarma A., Gupta K.J. (2017) Isolation and structural studies of mitochondria from pea roots. InPlant Respiration and Internal Oxygen: Methods and Protocols. Edited by Jagadis Gupta K. pp. 87–95. Springer; New York, NY. PubMed
Watson K., Smith J.E. (1967) Oxidative phosphorylation and respiratory control in mitochondria from Aspergillus niger. Biochem. J. 104: 332–339. PubMed PMC
Weber T., Gruber A., Kroth P.G. (2009) The presence and localization of thioredoxins in diatoms, unicellular algae of secondary endosymbiotic origin. Mol. Plant 2: 468–477. PubMed
Werner D. (1977) The biology of diatoms. InBotanical Monographs,Vol. 13. Edited by Werner D. pp. 85–87. University of California Press, Berkeley and New York, NY.
Wittpoth C. (1996) Isolierung und Characterisierung von Plastiden aus Kieselalgen. Dissertation. Heinrich-Heine Universit�t D�sseldorf, D�sseldorf, NRW.
Wittpoth C., Kroth P.G., Weyrauch K., Kowallik K.V., Strotmann H. (1998) Functional characterization of isolated plastids from two marine diatoms. Planta 206: 79–85.
Zhu S.-H., Green B.R. (2010) Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-like proteins in response to high light stress. Biochim. Biophys. Acta (BBA) Bioenerg. 1797: 1449–1457. PubMed