A gene in the process of endosymbiotic transfer
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20949086
PubMed Central
PMC2950852
DOI
10.1371/journal.pone.0013234
PII: e13234
Knihovny.cz E-zdroje
- MeSH
- buněčné jádro genetika MeSH
- molekulární sekvence - údaje MeSH
- plastidy genetika MeSH
- proteiny chemie genetika MeSH
- rozsivky genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- symbióza genetika MeSH
- technika přenosu genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny MeSH
BACKGROUND: The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer. METHODOLOGY/PRINCIPAL FINDINGS: To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28) through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP. CONCLUSIONS/SIGNIFICANCE: We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA) need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont.
Zobrazit více v PubMed
Delwiche CF. Tracing the thread of plastid diversity through the tapestry of life. Am Nat. 1999;154:S164–S177. PubMed
Martin W, Rujan T, Richly E, Hansen S, Hasegawa M, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA. 2002;99:12246–12251. PubMed PMC
Jarvis P. Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol. 2008;179:257–285. PubMed
Oborník M, Janouškovec J, Chrudimský T, Lukeš J. Evolution of the apicoplast and its host: From heterotrophy to autotrophy and back again. Int J Parasitol. 2009;39:1–12. PubMed
Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, et al. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science. 2004;306:79–86. PubMed
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int Rev Cytol Surv Cell Biol. 2002;221:191–255. PubMed
Shi LX, Schröder WP. The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim Biophys Acta. 2004;1608:75–96. PubMed
Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, et al. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry. 2002;41:8004–8012. PubMed
Stirewalt VL, Michalowski CB, Loeffelhardt W, Bohnert HJ, Bryant DA. Nucleotide sequence of the cyanelle DNA from Cyanophora paradoxa. Plant Mol Biol Rep. 1995;13:327–332.
Reith ME, Munholland J. Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep. 1995;13:333–335.
Douglas SE, Penny SL. The plastid genome of the cryptophyte alga Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48: 236–. 1999;244 PubMed
Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, et al. Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genom. 2007;277:427–439. PubMed
Cattolico RA, Jacobs MA, Zhou Y, Chang J, Duplessis M, et al. Chloroplast genome sequencing analysis of Heterosigma akashiwo CCMP452 (West Atlantic) and NIES 293 (West Pacific) strains (er). BMC Genomics. 2008;9:211–221. PubMed PMC
Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–244. PubMed
Nisbet RER, Kilian O, McFadden GI. Diatom genomics: Genetic acquisition and merges. Curr Biol. 2004;14:R1048–R1050. PubMed
Poulsen N, Chesley PM, Kroger N. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol. 2006;42:1059–1065.
Apt KE, Kroth PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet. 1996;252:572–579. PubMed
Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C. Transformation of Nonselectable Reporter Genes in Marine Diatoms. Mar Biotechnol. 1999;1:239–251. PubMed
Maheswari U, Mock T, Armbrust EV, Bowler C. Update of the Diatom EST Database: a new tool for digital transcriptomics. Nucleic Acids Res. 2009;37(Database issue):D1001–5. PubMed PMC
Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2:953–971. PubMed
Kilian O, Kroth PG. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J. 2005;41:175–83. PubMed
Gruber A, Vugrinec S, Hempel F, Gould SB, Maier UG, et al. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol. 2007;64:519–530. PubMed
Nassoury N, Morse D. Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun. Biochim Biophys Acta. 2005;1743:5–19. PubMed
Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, et al. Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms. Science. 2009;324:1724–1726. PubMed
Van de Peer Y, Frickey T, Taylor JS, Meyer A. Dealing with saturation at amino acid level: a case study based on anciently duplicated zebrafish genes. Gene. 2002;295:205–211. PubMed
Lartillot N, Philippe H. A byesian mixture model for across-site heterogenities in the amino-acid replacement process. Mol Biol Evol. 2004;21:1095–1109. PubMed
Blanquart S, Lartillot N. A site- and time-heterogenous model of amino acid replacement. Mol Biol Evol. 2008;25:842–858. PubMed
Dobáková M, Sobotka R, Tichý M, Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2009;149:1076–1086. PubMed PMC
Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, et al. Many parallel looses of infA from chloroplast DNA during angiosperm evolution with multiple independet transfers to nucleus. Plant Cell. 2001;13:645–658. PubMed PMC
Huang CY, Ayliffe MA, Timmis JN. Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobacco. Proc Natl Acad Sci USA. 2004;101:9710–9715. PubMed PMC
Sheppard AE, Ayliffe MA, Blatch L, Day A, Delaney SK, et al. Transfer of plastid DNA to the nucleus is elevated during male gametogenesis in tobacco. Plant Physiol. 2008;148:328–336. PubMed PMC
Chepurnov VA, Mann DG, Sabbe K, Vyverman W. Experimental studies on sexual reproduction in diatoms. Int Rev Cytol. 2004;237:91–154. PubMed
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–98.
Katoh K, Misawa K, Kuma K, Miyata T. Mafft: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res. 2002;30:3059–3066. PubMed PMC
Swofford DL. Phylogenetic Analysis Using Parsimony (and other methods), version 4b10. Sinauer Associates, Sunderland, Mass 2000
Guindon S, Gascuel O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. PubMed
Le SQ, Gascuel O. An Improved General Amino-Acid Replacement Matrix. Mol Biol Evol. 2008;25:1307–1320. PubMed
Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, et al. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene. 2007;406:23–35. PubMed