The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
G-1011-199.12/2008
German-Israeli Foundation for Scientific Research and Development (GIF)
24310015
Grant-in-Aid for Scientific Research B
16H06557
Grant-in-Aid for Scientific Research on Innovative Areas
26870750
Japan Society for the Promotion of Science
PubMed
29572588
DOI
10.1007/s11120-018-0500-5
PII: 10.1007/s11120-018-0500-5
Knihovny.cz E-zdroje
- Klíčová slova
- C4 photosynthesis, Carboxylation, Chloroplast, Decarboxylation, Green fluorescent protein (GFP),
- MeSH
- Arabidopsis fyziologie MeSH
- fosfoenolpyruvátkarboxylasa klasifikace metabolismus MeSH
- fotosyntéza fyziologie MeSH
- koloběh uhlíku MeSH
- kukuřice setá fyziologie MeSH
- mitochondrie enzymologie MeSH
- pyruvátkarboxylasa genetika metabolismus MeSH
- regulace genové exprese enzymů fyziologie MeSH
- regulace genové exprese u rostlin fyziologie MeSH
- rozsivky enzymologie fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfoenolpyruvátkarboxylasa MeSH
- pyruvátkarboxylasa MeSH
Diatoms are unicellular algae and important primary producers. The process of carbon fixation in diatoms is very efficient even though the availability of dissolved CO2 in sea water is very low. The operation of a carbon concentrating mechanism (CCM) also makes the more abundant bicarbonate accessible for photosynthetic carbon fixation. Diatoms possess carbonic anhydrases as well as metabolic enzymes potentially involved in C4 pathways; however, the question as to whether a C4 pathway plays a general role in diatoms is not yet solved. While genome analyses indicate that the diatom Phaeodactylum tricornutum possesses all the enzymes required to operate a C4 pathway, silencing of the pyruvate orthophosphate dikinase (PPDK) in a genetically transformed cell line does not lead to reduced photosynthetic carbon fixation. In this study, we have determined the intracellular location of all enzymes potentially involved in C4-like carbon fixing pathways in P. tricornutum by expression of the respective proteins fused to green fluorescent protein (GFP), followed by fluorescence microscopy. Furthermore, we compared the results to known pathways and locations of enzymes in higher plants performing C3 or C4 photosynthesis. This approach revealed that the intracellular distribution of the investigated enzymes is quite different from the one observed in higher plants. In particular, the apparent lack of a plastidic decarboxylase in P. tricornutum indicates that this diatom does not perform a C4-like CCM.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Centre Algatech Institute of Microbiology of the Czech Academy of Sciences Třeboň Czech Republic
Fachbereich Biologie Universität Konstanz 78457 Konstanz Germany
Lion Corporation Pharmaceutical Laboratories No 1 Odawara Kanagawa 256 0811 Japan
Zobrazit více v PubMed
PLoS One. 2008 Jan 09;3(1):e1426 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:539-570 PubMed
Appl Environ Microbiol. 2014 May;80(9):2672-8 PubMed
EMBO Rep. 2008 Jan;9(1):42-9 PubMed
Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2883-7 PubMed
Plant J. 2015 Feb;81(3):519-28 PubMed
Nature. 2000 Oct 26;407(6807):996-9 PubMed
New Phytol. 2016 Mar;209(4):1417-27 PubMed
J Exp Bot. 2016 May;67(11):3445-56 PubMed
J Exp Bot. 2002 Apr;53(369):581-90 PubMed
Biotechnol Biofuels. 2013 May 04;6(1):67 PubMed
Photosynth Res. 2014 Sep;121(2-3):235-49 PubMed
Plant Cell Physiol. 2012 Jun;53(6):1043-52 PubMed
Photosynth Res. 2014 Sep;121(2-3):251-63 PubMed
J Exp Bot. 2017 Jun 1;68(14):3949-3958 PubMed
Plant J. 2005 Jan;41(2):175-83 PubMed
Mol Plant. 2009 May;2(3):468-77 PubMed
Photosynth Res. 2011 Sep;109(1-3):191-203 PubMed
New Phytol. 2014 Nov;204(3):507-20 PubMed
Mol Biol Evol. 2006 Dec;23(12):2413-22 PubMed
J Exp Bot. 2014 Jul;65(13):3657-67 PubMed
J Mol Biol. 2000 Jul 21;300(4):1005-16 PubMed
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9828-33 PubMed
J Exp Bot. 2017 Jun 1;68(14):3763-3772 PubMed
J Exp Bot. 2017 Jun 1;68(14):3985-3995 PubMed
Plant Cell Physiol. 2009 Feb;50(2):318-29 PubMed
Plant Physiol. 1973 Oct;52(4):357-61 PubMed
Annu Rev Plant Biol. 2012;63:19-47 PubMed
J Mol Biol. 2004 Jul 16;340(4):783-95 PubMed
Plant J. 2010 May 1;62(4):641-52 PubMed
Plant Physiol. 2002 Jan;128(1):140-9 PubMed
Mol Biol Evol. 2012 Jan;29(1):367-79 PubMed
J Exp Bot. 2002 Apr;53(369):591-607 PubMed
Science. 2004 Oct 1;306(5693):79-86 PubMed
Plant J. 2010 Jan;61(1):122-33 PubMed
Arch Biochem Biophys. 1991 Jul;288(1):1-9 PubMed
Photosynth Res. 2013 May;115(1):65-80 PubMed
Nat Methods. 2011 Sep 29;8(10):785-6 PubMed
Mol Gen Genet. 1991 Oct;229(2):307-15 PubMed
FEBS J. 2009 Oct;276(19):5665-77 PubMed
Proc Int Conf Intell Syst Mol Biol. 1997;5:226-33 PubMed
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1767-72 PubMed
Genome Biol Evol. 2011;3:375-82 PubMed
Plant J. 2008 Mar;53(5):854-63 PubMed
Nature. 2008 Nov 13;456(7219):239-44 PubMed
Adv Appl Microbiol. 2002;51:1-51 PubMed
Plant J. 2002 Sep;31(5):649-62 PubMed
J Exp Bot. 2011 May;62(9):3155-69 PubMed
Plant Physiol. 2013 Feb;161(2):1034-48 PubMed
J Exp Bot. 2017 Jun 1;68(14):3925-3935 PubMed
Plant Physiol. 1979 Nov;64(5):892-5 PubMed
Can J Microbiol. 1962 Apr;8:229-39 PubMed
Annu Rev Plant Biol. 2004;55:69-84 PubMed
Plant Mol Biol. 2008 Nov;68(4-5):355-67 PubMed
Arch Biochem Biophys. 1985 May 15;239(1):53-62 PubMed
Nucleic Acids Res. 2012 Jan;40(Database issue):D26-32 PubMed
Mol Biol Evol. 2000 Feb;17(2):213-23 PubMed
New Phytol. 2013 Jan;197(1):177-85 PubMed
Annu Rev Plant Biol. 2005;56:99-131 PubMed
Arch Biochem Biophys. 1994 Jan;308(1):200-6 PubMed
J Basic Microbiol. 2009 Feb;49(1):58-72 PubMed
Arch Biochem Biophys. 2003 Jun 15;414(2):211-22 PubMed
J Cell Sci. 2002 Nov 1;115(Pt 21):4061-9 PubMed
Photosynth Res. 2011 Sep;109(1-3):205-21 PubMed
Methods Mol Biol. 2014;1083:187-211 PubMed
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 5;372(1728): PubMed
Protist. 2017 Feb;168(1):134-153 PubMed
Photosynth Res. 2007 Jul-Sep;93(1-3):79-88 PubMed
Prog Lipid Res. 2009 Nov;48(6):375-87 PubMed
Plant Physiol. 2007 Sep;145(1):230-5 PubMed
J Biol Chem. 1987 Aug 25;262(24):11726-30 PubMed
Physiol Plant. 2008 May;133(1):68-77 PubMed
Lipids. 1997 Jun;32(6):605-10 PubMed
Plant Mol Biol. 2006 Oct;62(3):339-49 PubMed
Plant Physiol. 2013 Jun;162(2):1142-52 PubMed
J Exp Bot. 2014 Jul;65(13):3567-78 PubMed
J Exp Bot. 2011 May;62(9):3083-91 PubMed
Plant Cell. 1991 Mar;3(3):225-45 PubMed
Plant Physiol. 1987 Dec;85(4):952-7 PubMed
J Exp Bot. 2017 Jun 1;68(14):3937-3948 PubMed
Plant Mol Biol. 2007 Jul;64(5):519-30 PubMed
Eur J Cell Biol. 1999 Mar;78(3):199-208 PubMed
J Biol Chem. 1976 Sep 25;251(18):5824-6 PubMed
Plant Physiol. 2011 Apr;155(4):1612-28 PubMed
Microbiology. 2007 Jul;153(Pt 7):2013-25 PubMed
J Exp Bot. 2017 Jun 1;68(14):3751-3762 PubMed
PLoS One. 2012;7(10):e46722 PubMed
Mol Biol Evol. 2007 Apr;24(4):918-28 PubMed
Database (Oxford). 2011 May 29;2011:bar022 PubMed
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 PubMed
Photosynth Res. 2014 Sep;121(2-3):285-97 PubMed
Nucleic Acids Res. 2014 Jan;42(Database issue):D191-8 PubMed
Nucleotide Transport and Metabolism in Diatoms
Mitochondrial Glycolysis in a Major Lineage of Eukaryotes