Differentiated modulation of signaling molecules AMPK and SIRT1 in experimentally drug-induced hepatocyte injury

. 2023 Mar ; 167 (1) : 50-60. [epub] 20220412

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35416184

AIM: Currently available medicines have little to offer in terms of supporting the regeneration of injured hepatic cells. Previous experimental studies have shown that resveratrol and metformin, less specific activators of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), can effectively attenuate acute liver injury. The aim of this experimental study was to elucidate whether modulation of AMPK and SIRT1 activity can modify drug/paracetamol (APAP)-induced hepatocyte damage in vitro. METHODS: Primary rat hepatocytes were pretreated with mutual combinations of specific synthetic activators and inhibitors of SIRT1 and AMPK and followed by a toxic dose of APAP. At the end of cultivation, medium samples were collected for biochemical analysis of alanine-aminotransferase and nitrite levels. Hepatocyte viability, thiobarbituric reactive substances, SIRT1 and AMPK activity and protein expression were also assessed. RESULTS: The harmful effect of APAP was associated with decreased AMPK and SIRT1 activity and protein expression alongside enhanced oxidative stress in hepatocytes. The addition of AMPK activator (AICAR) or SIRT1 activator (CAY10591) significantly attenuated the deleterious effects of AMPK inhibitor (Compound C) on the hepatotoxicity of APAP. Furthermore, CAY10591 but not AICAR markedly decreased the deleterious effect of APAP in combination with SIRT1 inhibitor (EX-527). CONCLUSION: Our findings demonstrate that decreased AMPK activity is associated with the hepatotoxic effect of APAP which can be significantly attenuated by the administration of a SIRT1 activator. These findings suggest that differentiated modulation of AMPK and SIRT1 activity could therefore provide an interesting and novel therapeutic opportunity in the future to combat hepatocyte injury.

Zobrazit více v PubMed

Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019;70(1):151-71. PubMed DOI

Rada P, Pardo V, Mobasher MA, García-Martínez I, Ruiz L, Gonzalez-Rodriguez A, Sanchez-Ramos C, Muntané J, Alemany S, James LP, Simpson KJ. SIRT1 controls acetaminophen hepatotoxicity by modulating inflammation and oxidative stress. Antioxid Redox Signal 2018;28(13):1187-208. PubMed DOI

McGill MR, Jaeschke H. Biomarkers of drug-induced liver injury. Adv Pharmacol 2019;85:221-39. DOI

Rangnekar AS, Fontana RJ. An update on drug induced liver injury. Minerva Gastroenterol Dietol 2011;57:213-29. PubMed

Kuna L, Bozic I, Kizivat T, Bojanic K, Mrso M, Kralj E, Smolic R, Wu GY, Smolic M. Models of drug induced liver injury (DILI)-current issues and future perspectives. Curr Drug Metab 2018;19(10):830-8. PubMed DOI

Jaeschke H, Akakpo JY, Umbaugh DS, Ramachandran A. Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicol Sci 2020;174:159-67. PubMed DOI

Akakpo JY, Jaeschke MW, Ramachandran A, Curry SC, Rumack BH, Jaeschke H. Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Arch Toxicol 2021;95(10):3377-91. PubMed DOI

McGill MR, Williams CD, Xie Y, Ramachandran A, Jaeschke H. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol 2012;264(3):387-94. PubMed DOI

Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 2013;55:279-89. DOI

Iorga A, Dara L, Kaplowitz N. Drug-induced liver injury: cascade of events leading to cell death, apoptosis or necrosis. Int J Mol Sci [serial on internet] 2017;18(5): Article No. 1018. Available from: https://www.mdpi.com/1422-0067/18/5/1018 DOI

Farghali H, Černý D, Kameníková L, Martínek J, Hořínek A, Kmoníčková E, Zídek Z. Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats: role of nitric oxide synthase 2 and heme oxygenase-1. Nitric Oxide-Biol Chem 2009;21:216-25. DOI

Wojnarová L, Kutinová Canová N, Farghali H, Kučera T. Sirtuin 1 modulation in rat model of acetaminophen-induced hepatotoxicity. Physiol Res 2015;64:S477-S487. PubMed DOI

Farghali H, Kmoníčková E, Lotková H, Martínek J. Evaluation of calcium channel blockers as potential hepatoprotective agents in oxidative stress injury of perfused hepatocytes, Physiol Res 2000;49:261-8.

Černý D, Lekić N, Váňová K, Muchová L, Hořínek A, Kmoníčková E., Zídek Z, Kameníková L, Farghali H. Hepatoprotective effect of curcumin in Lipopolysaccharide/D-Galactosamine model of liver injury in rats: relationship to HO-1/CO antioxidant system. Filoterapia 2011;82:786-91. PubMed DOI

Lekić N, Kutinová Canová N, Hořínek A, Farghali H. The involvement of hemeoxygenase 1 but not nitric oxide synthase 2 in a hepatoprotective action of quercetin in lipopolysaccharide-induced hepatotoxicity of D-galactosamine sensitized rats. Filoterapia 2013;87:20-6. DOI

Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425:191-6. PubMed DOI

Farghali H, Canová NK, Zakhari S. Hepatoprotective properties of extensively studied medicinal plant active constituents: possible common mechanisms. Pharm Biol 2015;53(6):781-91. DOI

Ruderman NB, Xu J, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 2010;298:E751-60. PubMed DOI

Farghali H, Kutinová Canová N, Lekic N. Resveratrol and related compounds as antioxidants with an allosteric mechanism of action in epigenetic drug targets. Physiol Res 2013;62:1-13. PubMed DOI

Lan F, Weikel KA, Cacicedo JM, Ido Y. Resveratrol-Induced AMP-Activated Protein Kinase Activation Is Cell-Type Dependent: Lessons from Basic Research for Clinical Application. Nutrients [serial on internet] 2017;9: Article No. 751. Available from: https://www.mdpi.com/2072-6643/9/7/751 DOI

Farghali H, Kemelo MK, Kutinová Canová N. SIRT1 Modulators in Experimentally Induced Liver Injury. Oxid Med Cell Longev [serial on internet] 2019: Article No. 8765954. Available from: https://www.hindawi.com/journals/omcl/2019/8765954/ DOI

Saeedi Saravi SS, Hasanvand A, Shahkarami K, Dehpour AR. The protective potential of metformin against acetaminophen-induced hepatotoxicity in BALB/C mice. Pharm Biol 2016;54(12):2830-37. DOI

Tripathi SS, Singh S, Garg G, Kumar R, Verma AK, Singh AK, Bissoyi A, Rizvi SI. Metformin ameliorates acetaminophen-induced sub-acute toxicity via antioxidant property. Drug Chem Toxicol 2019:1-9. DOI

Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 2010;205(1):97-106. PubMed DOI

Xu T, Lu X, Arbab AAI, Wu X, Mao Y, Loor JJ, Yang Z. Metformin acts to suppress β-hydroxybutyric acid-mediated inflammatory responses through activation of AMPK signaling in bovine hepatocytes. J Anim Sci 2021;99(7): Article No. skab153. Available on: https://academic.oup.com/jas/article/99/7/skab153/6275009 DOI

Song YM, Lee YH, Kim JW, Ham DS, Kang ES, Cha BS, Lee HC, Lee BW. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 2015;11(1):46-59. PubMed DOI

Nelson LE, Valentine RJ, Cacicedo JM, Gauthier MS, Ido Y, Ruderman NB. A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells. Am J Physiol Cell Physiol 2012;303(1):C4-C13. PubMed DOI

Silva JP, Wahlested C. Role of Sirtuin 1 in metabolic regulation. Drug Discov Today 2010;15:781-91. PubMed DOI

Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med [serial on internet] 2016;48: Article No. 224. Available from: https://www.nature.com/articles/emm201616 DOI

Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, Slingerland JM, Mills GB. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007;9:218-24. PubMed DOI

Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 2014;35:146-54. DOI

Kutinová Canová N, Gaier N, Farghali H. Perspectives on pharmacological and clinical benefits from sirtuin 1 activators in oxidative damage. Cas Lek Cesk 2012;151:187-9. (in Czech) PubMed

Berry MN, Edwards AM, Barrit JG. Isolated Hepatocytes Preparation, Properties and Applications. 1st ed. Amsterdam: Elsevier Science; 1991.

Černý D, Canová NK, Martínek J, Horínek A, Kmonícková E, Zídek Z, Farghali H. Effects of resveratrol pretreatment on tert-butylhydroperoxide induced hepatocyte toxicity in immobilized perifused hepatocytes: involvement of inducible nitric oxide synthase and hemoxygenase-1. Nitric Oxide-Biol Chem 2009;20(1):1-8. PubMed DOI

Kutinová Canová N, Martínek J, Kmoníčková E. Modulation of spontaneous and lipopolysaccharide-induced nitric oxide production and apoptosis by d-galactosamine in rat hepatocyte culture: the significance of combinations of different methods. Toxicol Mech Methods 2008;18:63-74. PubMed DOI

De Leon ADJ, Borges CR. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J Vis Exp [serial on internet] 2020: Article No. 159. Available from: https://www.jove.com/t/61122/evaluation-oxidative-stress-biological-samples-using-thiobarbituric

Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J Hepatol 2018;10:1-7. PubMed DOI

Wang SW, Wang W, Sheng H, Bai YF, Weng YY, Fan XY, Zheng F, Zhu XT, Xu ZC, Zhang F. Hesperetin, a SIRT1 activator, inhibits hepatic inflammation via AMPK/CREB pathway. Int Immunopharmacol [serial on internet] 2020;89(partB): Article No. 107036. Available from: https://www.sciencedirect.com/science/article/pii/S1567576920327831 DOI

Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 2018;17:274-83. PubMed DOI

Shu Y, He D, Li W, Wang M, Zhao S, Liu L, Cao Z, Liu R, Huang Y, Li H, Yang X, Lu C, Liu Y. Hepatoprotective Effect of Citrus aurantium L. against APAP-induced liver injury by regulating liver lipid metabolism and apoptosis. Int J Biol Sci 2020;16(5):752-65. PubMed DOI

Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta 2015;1852:1114-23. PubMed DOI

Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012;15:675-90. DOI

Gao Z, Zhang J, Wei L, Yang X, Zhang Y, Cheng B, Yang Z, Gao W, Song C, Miao W, Williams K, Liu C, Xu Q, Chang Y, Gao Y. The Protective Effects of Imperatorin on Acetaminophen Overdose-Induced Acute Liver Injury. Oxid Med Cell Longev [serial on internet] 2020: Article No. 8026838. Available from: https://www.hindawi.com/journals/omcl/2020/8026838/ DOI

Jaeschke H, Ramachandran A. Acetaminophen-induced apoptosis: Facts versus fiction. J Clin Transl Res 2020;6:36-47.

Kang SW, Haydar G, Taniane C, Farrell G, Arias IM, Lippincott-Schwartz J, Fu D. AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function. PLoS One 2016;11(10):e0165638. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165638 PubMed DOI

Hwang JH, Kim YH, Noh JR, Choi DH, Kim KS, Lee CH. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury. Mol Cells 2015;38:843-50. PubMed DOI

Jiang WP, Deng JS, Huang SS, Wu SH, Chen CC, Liao JC, Chen HY, Lin HY, Huang GJ. Sanghuangporus sanghuang mycelium prevents paracetamol-induced hepatotoxicity through regulating the MAPK/NF-?B, Keap1/Nrf2/HO-1, TLR4/PI3K/Akt, and CaMKK?/LKB1/AMPK pathways and suppressing oxidative stress and inflammation. Antioxidants (Basel) 2021;10(6): Article No. 897. Available from: https://www.mdpi.com/2076-3921/10/6/897/htm DOI

Zhang J, Liang X, Li J, Yin H, Liu F, Hu C, Li L. Apigenin attenuates acetaminophen-induced hepatotoxicity by activating AMP-activated protein kinase/carnitine palmitoyltransferase I pathway. Front Pharmacol 2020;11: Article No. 549057. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2020.549057/full PubMed DOI

Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, Meijer AJ. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 2006;281:34870-9. PubMed DOI

Czaja MJ, Ding WX, Donohue TM Jr, Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, Perlmutter DH, Randall G, Ray RB, Tsung A, Yin XM. Functions of autophagy in normal and diseased liver. Autophagy 2013;9:1131-58. PubMed DOI

Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, Topisirovic I. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 2015;14:473-80. PubMed DOI

Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology 2012;55:222-32. PubMed DOI

Wang K. Autophagy and apoptosis in liver injury. Cell Cycle 2015;14(11):1631-42. PubMed DOI

Scudiero O, Nigro E, Monaco ML, Oliviero G, Polito R, Borbone N, D'Errico S, Mayol L, Daniele A, Piccialli G. New synthetic AICAR derivatives with enhanced AMPK and ACC activation. J Enzyme Inhib Med Chem 2016;31:748-53. DOI

Zhu H, Chai Y, Dong D, Zhang N, Liu W, Ma T, Wu R, Lv Y, Hu L. AICAR-Induced AMPK Activation Inhibits the Noncanonical NF-κB Pathway to Attenuate Liver Injury and Fibrosis in BDL Rats. Can J Gastroenterol Hepatol [serial on internet] 2018: Article No. 6181432. Available from: https://www.hindawi.com/journals/cjgh/2018/6181432/ DOI

De Gregorio E, Colell A, Morales A, Marí M. Relevance of SIRT1-NF-κB Axis as Therapeutic Target to Ameliorate Inflammation in Liver Disease. Int J Mol Sci [serial on internet] 2020;21: Article No. 3858. Available from: https://www.mdpi.com/1422-0067/21/11/3858 PubMed DOI

Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front Pharmacol [serial on internet] 2020;11: article No. 1225. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2020.01225/full PubMed DOI

Hwang JW, Yao H, Caito S, Sundar IK, Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 2013;61:95-110. PubMed DOI

Yan T, Huang J, Nisar MF, Wan C, Huang W. The Beneficial Roles of SIRT1 in Drug-Induced Liver Injury. Oxid Med Cell Longev [serial on internet] 2019: Article No. 8506195. Available from: https://www.hindawi.com/journals/omcl/2019/8506195/ DOI

Gertz M, Fischer F, Nguyen GTT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism, Proc Natl Acad Sci 2013;110:E2772-81. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...