Differentiated modulation of signaling molecules AMPK and SIRT1 in experimentally drug-induced hepatocyte injury
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35416184
DOI
10.5507/bp.2022.018
Knihovny.cz E-zdroje
- Klíčová slova
- 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), CAY10591, adenosine monophosphate protein kinase (AMPK), enzyme activation, hepatocyte protection, sirtuin 1 (SIRT1),
- MeSH
- cyklopentany farmakologie MeSH
- hepatocyty * metabolismus MeSH
- krysa rodu Rattus MeSH
- lékové postižení jater * etiologie genetika metabolismus patologie MeSH
- paracetamol toxicita MeSH
- proteinkinasy aktivované AMP * chemie metabolismus farmakologie MeSH
- sirtuin 1 * metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CAY10591 MeSH Prohlížeč
- cyklopentany MeSH
- paracetamol MeSH
- proteinkinasy aktivované AMP * MeSH
- Sirt1 protein, rat MeSH Prohlížeč
- sirtuin 1 * MeSH
AIM: Currently available medicines have little to offer in terms of supporting the regeneration of injured hepatic cells. Previous experimental studies have shown that resveratrol and metformin, less specific activators of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), can effectively attenuate acute liver injury. The aim of this experimental study was to elucidate whether modulation of AMPK and SIRT1 activity can modify drug/paracetamol (APAP)-induced hepatocyte damage in vitro. METHODS: Primary rat hepatocytes were pretreated with mutual combinations of specific synthetic activators and inhibitors of SIRT1 and AMPK and followed by a toxic dose of APAP. At the end of cultivation, medium samples were collected for biochemical analysis of alanine-aminotransferase and nitrite levels. Hepatocyte viability, thiobarbituric reactive substances, SIRT1 and AMPK activity and protein expression were also assessed. RESULTS: The harmful effect of APAP was associated with decreased AMPK and SIRT1 activity and protein expression alongside enhanced oxidative stress in hepatocytes. The addition of AMPK activator (AICAR) or SIRT1 activator (CAY10591) significantly attenuated the deleterious effects of AMPK inhibitor (Compound C) on the hepatotoxicity of APAP. Furthermore, CAY10591 but not AICAR markedly decreased the deleterious effect of APAP in combination with SIRT1 inhibitor (EX-527). CONCLUSION: Our findings demonstrate that decreased AMPK activity is associated with the hepatotoxic effect of APAP which can be significantly attenuated by the administration of a SIRT1 activator. These findings suggest that differentiated modulation of AMPK and SIRT1 activity could therefore provide an interesting and novel therapeutic opportunity in the future to combat hepatocyte injury.
Zobrazit více v PubMed
Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019;70(1):151-71. PubMed DOI
Rada P, Pardo V, Mobasher MA, García-Martínez I, Ruiz L, Gonzalez-Rodriguez A, Sanchez-Ramos C, Muntané J, Alemany S, James LP, Simpson KJ. SIRT1 controls acetaminophen hepatotoxicity by modulating inflammation and oxidative stress. Antioxid Redox Signal 2018;28(13):1187-208. PubMed DOI
McGill MR, Jaeschke H. Biomarkers of drug-induced liver injury. Adv Pharmacol 2019;85:221-39. DOI
Rangnekar AS, Fontana RJ. An update on drug induced liver injury. Minerva Gastroenterol Dietol 2011;57:213-29. PubMed
Kuna L, Bozic I, Kizivat T, Bojanic K, Mrso M, Kralj E, Smolic R, Wu GY, Smolic M. Models of drug induced liver injury (DILI)-current issues and future perspectives. Curr Drug Metab 2018;19(10):830-8. PubMed DOI
Jaeschke H, Akakpo JY, Umbaugh DS, Ramachandran A. Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicol Sci 2020;174:159-67. PubMed DOI
Akakpo JY, Jaeschke MW, Ramachandran A, Curry SC, Rumack BH, Jaeschke H. Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Arch Toxicol 2021;95(10):3377-91. PubMed DOI
McGill MR, Williams CD, Xie Y, Ramachandran A, Jaeschke H. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol 2012;264(3):387-94. PubMed DOI
Jaeschke H, Williams CD, McGill MR, Xie Y, Ramachandran A. Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 2013;55:279-89. DOI
Iorga A, Dara L, Kaplowitz N. Drug-induced liver injury: cascade of events leading to cell death, apoptosis or necrosis. Int J Mol Sci [serial on internet] 2017;18(5): Article No. 1018. Available from: https://www.mdpi.com/1422-0067/18/5/1018 DOI
Farghali H, Černý D, Kameníková L, Martínek J, Hořínek A, Kmoníčková E, Zídek Z. Resveratrol attenuates lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats: role of nitric oxide synthase 2 and heme oxygenase-1. Nitric Oxide-Biol Chem 2009;21:216-25. DOI
Wojnarová L, Kutinová Canová N, Farghali H, Kučera T. Sirtuin 1 modulation in rat model of acetaminophen-induced hepatotoxicity. Physiol Res 2015;64:S477-S487. PubMed DOI
Farghali H, Kmoníčková E, Lotková H, Martínek J. Evaluation of calcium channel blockers as potential hepatoprotective agents in oxidative stress injury of perfused hepatocytes, Physiol Res 2000;49:261-8.
Černý D, Lekić N, Váňová K, Muchová L, Hořínek A, Kmoníčková E., Zídek Z, Kameníková L, Farghali H. Hepatoprotective effect of curcumin in Lipopolysaccharide/D-Galactosamine model of liver injury in rats: relationship to HO-1/CO antioxidant system. Filoterapia 2011;82:786-91. PubMed DOI
Lekić N, Kutinová Canová N, Hořínek A, Farghali H. The involvement of hemeoxygenase 1 but not nitric oxide synthase 2 in a hepatoprotective action of quercetin in lipopolysaccharide-induced hepatotoxicity of D-galactosamine sensitized rats. Filoterapia 2013;87:20-6. DOI
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425:191-6. PubMed DOI
Farghali H, Canová NK, Zakhari S. Hepatoprotective properties of extensively studied medicinal plant active constituents: possible common mechanisms. Pharm Biol 2015;53(6):781-91. DOI
Ruderman NB, Xu J, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 2010;298:E751-60. PubMed DOI
Farghali H, Kutinová Canová N, Lekic N. Resveratrol and related compounds as antioxidants with an allosteric mechanism of action in epigenetic drug targets. Physiol Res 2013;62:1-13. PubMed DOI
Lan F, Weikel KA, Cacicedo JM, Ido Y. Resveratrol-Induced AMP-Activated Protein Kinase Activation Is Cell-Type Dependent: Lessons from Basic Research for Clinical Application. Nutrients [serial on internet] 2017;9: Article No. 751. Available from: https://www.mdpi.com/2072-6643/9/7/751 DOI
Farghali H, Kemelo MK, Kutinová Canová N. SIRT1 Modulators in Experimentally Induced Liver Injury. Oxid Med Cell Longev [serial on internet] 2019: Article No. 8765954. Available from: https://www.hindawi.com/journals/omcl/2019/8765954/ DOI
Saeedi Saravi SS, Hasanvand A, Shahkarami K, Dehpour AR. The protective potential of metformin against acetaminophen-induced hepatotoxicity in BALB/C mice. Pharm Biol 2016;54(12):2830-37. DOI
Tripathi SS, Singh S, Garg G, Kumar R, Verma AK, Singh AK, Bissoyi A, Rizvi SI. Metformin ameliorates acetaminophen-induced sub-acute toxicity via antioxidant property. Drug Chem Toxicol 2019:1-9. DOI
Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 2010;205(1):97-106. PubMed DOI
Xu T, Lu X, Arbab AAI, Wu X, Mao Y, Loor JJ, Yang Z. Metformin acts to suppress β-hydroxybutyric acid-mediated inflammatory responses through activation of AMPK signaling in bovine hepatocytes. J Anim Sci 2021;99(7): Article No. skab153. Available on: https://academic.oup.com/jas/article/99/7/skab153/6275009 DOI
Song YM, Lee YH, Kim JW, Ham DS, Kang ES, Cha BS, Lee HC, Lee BW. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy 2015;11(1):46-59. PubMed DOI
Nelson LE, Valentine RJ, Cacicedo JM, Gauthier MS, Ido Y, Ruderman NB. A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells. Am J Physiol Cell Physiol 2012;303(1):C4-C13. PubMed DOI
Silva JP, Wahlested C. Role of Sirtuin 1 in metabolic regulation. Drug Discov Today 2010;15:781-91. PubMed DOI
Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Exp Mol Med [serial on internet] 2016;48: Article No. 224. Available from: https://www.nature.com/articles/emm201616 DOI
Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, Slingerland JM, Mills GB. The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007;9:218-24. PubMed DOI
Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 2014;35:146-54. DOI
Kutinová Canová N, Gaier N, Farghali H. Perspectives on pharmacological and clinical benefits from sirtuin 1 activators in oxidative damage. Cas Lek Cesk 2012;151:187-9. (in Czech) PubMed
Berry MN, Edwards AM, Barrit JG. Isolated Hepatocytes Preparation, Properties and Applications. 1st ed. Amsterdam: Elsevier Science; 1991.
Černý D, Canová NK, Martínek J, Horínek A, Kmonícková E, Zídek Z, Farghali H. Effects of resveratrol pretreatment on tert-butylhydroperoxide induced hepatocyte toxicity in immobilized perifused hepatocytes: involvement of inducible nitric oxide synthase and hemoxygenase-1. Nitric Oxide-Biol Chem 2009;20(1):1-8. PubMed DOI
Kutinová Canová N, Martínek J, Kmoníčková E. Modulation of spontaneous and lipopolysaccharide-induced nitric oxide production and apoptosis by d-galactosamine in rat hepatocyte culture: the significance of combinations of different methods. Toxicol Mech Methods 2008;18:63-74. PubMed DOI
De Leon ADJ, Borges CR. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J Vis Exp [serial on internet] 2020: Article No. 159. Available from: https://www.jove.com/t/61122/evaluation-oxidative-stress-biological-samples-using-thiobarbituric
Del Campo JA, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J Hepatol 2018;10:1-7. PubMed DOI
Wang SW, Wang W, Sheng H, Bai YF, Weng YY, Fan XY, Zheng F, Zhu XT, Xu ZC, Zhang F. Hesperetin, a SIRT1 activator, inhibits hepatic inflammation via AMPK/CREB pathway. Int Immunopharmacol [serial on internet] 2020;89(partB): Article No. 107036. Available from: https://www.sciencedirect.com/science/article/pii/S1567576920327831 DOI
Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 2018;17:274-83. PubMed DOI
Shu Y, He D, Li W, Wang M, Zhao S, Liu L, Cao Z, Liu R, Huang Y, Li H, Yang X, Lu C, Liu Y. Hepatoprotective Effect of Citrus aurantium L. against APAP-induced liver injury by regulating liver lipid metabolism and apoptosis. Int J Biol Sci 2020;16(5):752-65. PubMed DOI
Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta 2015;1852:1114-23. PubMed DOI
Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012;15:675-90. DOI
Gao Z, Zhang J, Wei L, Yang X, Zhang Y, Cheng B, Yang Z, Gao W, Song C, Miao W, Williams K, Liu C, Xu Q, Chang Y, Gao Y. The Protective Effects of Imperatorin on Acetaminophen Overdose-Induced Acute Liver Injury. Oxid Med Cell Longev [serial on internet] 2020: Article No. 8026838. Available from: https://www.hindawi.com/journals/omcl/2020/8026838/ DOI
Jaeschke H, Ramachandran A. Acetaminophen-induced apoptosis: Facts versus fiction. J Clin Transl Res 2020;6:36-47.
Kang SW, Haydar G, Taniane C, Farrell G, Arias IM, Lippincott-Schwartz J, Fu D. AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function. PLoS One 2016;11(10):e0165638. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165638 PubMed DOI
Hwang JH, Kim YH, Noh JR, Choi DH, Kim KS, Lee CH. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury. Mol Cells 2015;38:843-50. PubMed DOI
Jiang WP, Deng JS, Huang SS, Wu SH, Chen CC, Liao JC, Chen HY, Lin HY, Huang GJ. Sanghuangporus sanghuang mycelium prevents paracetamol-induced hepatotoxicity through regulating the MAPK/NF-?B, Keap1/Nrf2/HO-1, TLR4/PI3K/Akt, and CaMKK?/LKB1/AMPK pathways and suppressing oxidative stress and inflammation. Antioxidants (Basel) 2021;10(6): Article No. 897. Available from: https://www.mdpi.com/2076-3921/10/6/897/htm DOI
Zhang J, Liang X, Li J, Yin H, Liu F, Hu C, Li L. Apigenin attenuates acetaminophen-induced hepatotoxicity by activating AMP-activated protein kinase/carnitine palmitoyltransferase I pathway. Front Pharmacol 2020;11: Article No. 549057. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2020.549057/full PubMed DOI
Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, Meijer AJ. AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 2006;281:34870-9. PubMed DOI
Czaja MJ, Ding WX, Donohue TM Jr, Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, Perlmutter DH, Randall G, Ray RB, Tsung A, Yin XM. Functions of autophagy in normal and diseased liver. Autophagy 2013;9:1131-58. PubMed DOI
Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, Topisirovic I. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 2015;14:473-80. PubMed DOI
Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. Activation of autophagy protects against acetaminophen-induced hepatotoxicity. Hepatology 2012;55:222-32. PubMed DOI
Wang K. Autophagy and apoptosis in liver injury. Cell Cycle 2015;14(11):1631-42. PubMed DOI
Scudiero O, Nigro E, Monaco ML, Oliviero G, Polito R, Borbone N, D'Errico S, Mayol L, Daniele A, Piccialli G. New synthetic AICAR derivatives with enhanced AMPK and ACC activation. J Enzyme Inhib Med Chem 2016;31:748-53. DOI
Zhu H, Chai Y, Dong D, Zhang N, Liu W, Ma T, Wu R, Lv Y, Hu L. AICAR-Induced AMPK Activation Inhibits the Noncanonical NF-κB Pathway to Attenuate Liver Injury and Fibrosis in BDL Rats. Can J Gastroenterol Hepatol [serial on internet] 2018: Article No. 6181432. Available from: https://www.hindawi.com/journals/cjgh/2018/6181432/ DOI
De Gregorio E, Colell A, Morales A, Marí M. Relevance of SIRT1-NF-κB Axis as Therapeutic Target to Ameliorate Inflammation in Liver Disease. Int J Mol Sci [serial on internet] 2020;21: Article No. 3858. Available from: https://www.mdpi.com/1422-0067/21/11/3858 PubMed DOI
Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 Activation by Natural Phytochemicals: An Overview. Front Pharmacol [serial on internet] 2020;11: article No. 1225. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2020.01225/full PubMed DOI
Hwang JW, Yao H, Caito S, Sundar IK, Rahman I. Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 2013;61:95-110. PubMed DOI
Yan T, Huang J, Nisar MF, Wan C, Huang W. The Beneficial Roles of SIRT1 in Drug-Induced Liver Injury. Oxid Med Cell Longev [serial on internet] 2019: Article No. 8506195. Available from: https://www.hindawi.com/journals/omcl/2019/8506195/ DOI
Gertz M, Fischer F, Nguyen GTT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism, Proc Natl Acad Sci 2013;110:E2772-81. PubMed DOI