Functional Characterization of Luciferase in a Brittle Star Indicates Parallel Evolution Influenced by Genomic Availability of Haloalkane Dehalogenase

. 2025 Apr 30 ; 42 (5) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40181585

Grantová podpora
R35 GM133530 NIGMS NIH HHS - United States

Determining why convergent traits use distinct versus shared genetic components is crucial for understanding how evolutionary processes generate and sustain biodiversity. However, the factors dictating the genetic underpinnings of convergent traits remain incompletely understood. Here, we use heterologous protein expression, biochemical assays, and phylogenetic analyses to confirm the origin of a luciferase gene from haloalkane dehalogenases in the brittle star Amphiura filiformis. Through database searches and gene tree analyses, we also show a complex pattern of the presence and absence of haloalkane dehalogenases across organismal genomes. These results first confirm parallel evolution across a vast phylogenetic distance, because octocorals like Renilla also use luciferase derived from haloalkane dehalogenases. This parallel evolution is surprising, even though previously hypothesized, because many organisms that also use coelenterazine as the bioluminescence substrate evolved completely distinct luciferases. The inability to detect haloalkane dehalogenases in the genomes of several bioluminescent groups suggests that the distribution of this gene family influences its recruitment as a luciferase. Together, our findings highlight how biochemical function and genomic availability help determine whether distinct or shared genetic components are used during the convergent evolution of traits like bioluminescence.

Před aktualizací

PubMed

Zobrazit více v PubMed

Albalat  R, Cañestro  C. Evolution by gene loss. Nat Rev Genet.  2016:17:379–391. 10.1038/nrg.2016.39. PubMed DOI

Aslan-Üzel  AS, Beier  A, Kovář  D, Cziegler  C, Padhi  SK, Schuiten  ED, Dörr  M, Böttcher  D, Hollmann  F, Rudroff  F, et al.  An ultrasensitive fluorescence assay for the detection of halides and enzymatic dehalogenation. ChemCatChem. 2020:12(7):2032–2039. 10.1002/cctc.201901891. PubMed DOI PMC

Berger  A, Blackwelder  P, Frank  T, Sutton  TT, Pruzinsky  NM, Slayden  N, Lopez  JV. Microscopic and genetic characterization of bacterial symbionts with bioluminescent potential in Pyrosoma atlanticum. Front Mar Sci. 2021:8:606818. 10.3389/fmars.2021.606818. DOI

Bessho-Uehara  M, Huang  W, Patry  WL, Browne  WE, Weng  J-K, Haddock  SHD. Evidence for de novo biosynthesis of the luminous substrate coelenterazine in ctenophores. iScience. 2020:23(12):101859. 10.1016/j.isci.2020.101859. PubMed DOI PMC

Bessho-Uehara  M, Konishi  K, Oba  Y. Biochemical characteristics and gene expression profiles of two paralogous luciferases from the Japanese firefly Pyrocoelia atripennis (Coleoptera, Lampyridae, Lampyrinae): insight into the evolution of firefly luciferase genes. Photochem Photobiol Sci.  2017:16(8):1301–1310. 10.1039/c7pp00110j. PubMed DOI

Buchfink  B, Xie  C, Huson  DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods.  2015:12(1):59–60. 10.1038/nmeth.3176. PubMed DOI

Buryska  T, Vasina  M, Gielen  F, Vanacek  P, van Vliet  L, Jezek  J, Pilat  Z, Zemanek  P, Damborsky  J, Hollfelder  F, et al.  Controlled oil/water partitioning of hydrophobic substrates extending the bioanalytical applications of droplet-based microfluidics. Anal Chem.  2019:91(15):10008–10015. 10.1021/acs.analchem.9b01839. PubMed DOI

Chaloupkova  R, Liskova  V, Toul  M, Markova  K, Sebestova  E, Hernychova  L, Marek  M, Pinto  GP, Pluskal  D, Waterman  J, et al.  Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 2019:9(6):4810–4823. 10.1021/acscatal.9b01031. DOI

Chovancová  E, Kosinski  J, Bujnicki  JM, Damborský  J. Phylogenetic analysis of haloalkane dehalogenases. Proteins. 2007:67(2):305–316. 10.1002/prot.21313. PubMed DOI

Christin  PA, Weinreich  DM, Besnard  G. Causes and evolutionary significance of genetic convergence. Trends Genet. 2010:26(9):400–405. 10.1016/j.tig.2010.06.005. PubMed DOI

Coubris  C, Duchatelet  L, Dupont  S, Mallefet  J. A brittle star is born: ontogeny of luminous capabilities in Amphiura filiformis. PLoS One. 2024:19(3):e0298185. 10.1371/journal.pone.0298185. PubMed DOI PMC

Delroisse  J, Duchatelet  L, Flammang  P, Mallefet  J. Leaving the dark side? Insights into the evolution of luciferases. Front Mar Sci. 2021:8:673620. 10.3389/fmars.2021.673620. DOI

Delroisse  J, Ortega-Martinez  O, Dupont  S, Mallefet  J, Flammang  P. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae. Mar Genomics.  2015:23:109–121. 10.1016/j.margen.2015.05.014. PubMed DOI

Delroisse  J, Ullrich-Lüter  E, Blaue  S, Ortega-Martinez  O, Eeckhaut  I, Flammang  P, Mallefet  J. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Open Biol. 2017:7:160300. 10.1098/rsob.160300. PubMed DOI PMC

Delroisse  J, Ullrich-Lüter  E, Ortega-Martinez  O, Dupont  S, Arnone  M-I, Mallefet  J, Flammang  P. High opsin diversity in a non-visual infaunal brittle star. BMC Genomics. 2014:15(1):1035. 10.1186/1471-2164-15-1035. PubMed DOI PMC

Dylus  DV, Czarkwiani  A, Stångberg  J, Ortega-Martinez  O, Dupont  S, Oliveri  P. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. Evodevo. 2016:7(1):2. 10.1186/s13227-015-0039-x. PubMed DOI PMC

Fernández  R, Gabaldón  T. Gene gain and loss across the Metazoa Tree of Life. Nat Ecol Evol.  2019:4(4):524–533. 10.1038/s41559-019-1069-x. PubMed DOI PMC

Foster  CSP, Van Dyke  JU, Thompson  MB, Smith  NMA, Simpfendorfer  CA, Murphy  CR, Whittington  CM. Different genes are recruited during convergent evolution of pregnancy and the placenta. Mol Biol Evol.  2022:39(4):msac077. 10.1093/molbev/msac077. PubMed DOI PMC

Frank  TM, Widder  EA, Case  JF. Dietary maintenance of bioluminescence in a deep-sea mysid. J Exp Biol.  1984:109(1):385–389. 10.1242/jeb.109.1.385. DOI

Guijarro-Clarke  C, Holland  P, Paps  J. Widespread patterns of gene loss in the evolution of the animal kingdom. Nat Ecol Evol.  2020:4(4):519–523. 10.1038/s41559-020-1129-2. PubMed DOI

Haddock  SH, Rivers  TJ, Robison  BH. Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proc Natl Acad Sci U S A.  2001:98(20):11148–11151. 10.1073/pnas.201329798. PubMed DOI PMC

He  J, Li  J, Zhang  R, Dong  Z, Liu  G, Chang  Z, Bi  W, Ruan  Y, Yang  Y, Liu  H, et al.  Multiple origins of bioluminescence in beetles and evolution of luciferase function. Mol Biol Evol.  2024:41(1):msad287. 10.1093/molbev/msad287. PubMed DOI PMC

Hensley  NM, Ellis  EA, Leung  NY, Coupart  J, Mikhailovsky  A, Taketa  DA, Tessler  M, Gruber  DF, De Tomaso  AW, Mitani  Y, et al.  Selection, drift, and constraint in cypridinid luciferases and the diversification of bioluminescent signals in sea fireflies. Mol Ecol.  2021:30(8):1864–1879. 10.1111/mec.15673. PubMed DOI PMC

Janssen  DB, Dinkla  IJT, Poelarends  GJ, Terpstra  P. Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol.  2005:7(12):1868–1882. 10.1111/j.1462-2920.2005.00966.x. PubMed DOI

Johnson  KA. New standards for collecting and fitting steady state kinetic data. Beilstein J Org Chem.  2019:15:16–29. 10.3762/bjoc.15.2. PubMed DOI PMC

Kalyaanamoorthy  S, Minh  BQ, Wong  TKF, von Haeseler  A, Jermiin  LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods.  2017:14(6):587–589. 10.1038/nmeth.4285. PubMed DOI PMC

Karan  D, David  JR, Capy  P. Molecular evolution of the AMP-forming acetyl-CoA synthetase. Gene. 2001:265(1-2):95–101. 10.1016/S0378-1119(01)00358-4. PubMed DOI

Katoh  K, Standley  DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol.  2013:30(4):772–780. 10.1093/molbev/mst010. PubMed DOI PMC

Lau  ES, Goodheart  JA, Anderson  NT, Liu  VL, Mukherjee  A, Oakley  TH. Similar enzymatic functions in distinct bioluminescence systems: evolutionary recruitment of sulfotransferases in ostracod light organs. Biol Lett. 2024:20:20230585. 10.1098/rsbl.2023.0585. PubMed DOI PMC

Lau  ES, Oakley  TH. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol Rev Camb Philos Soc.  2020:96(2):673–691. 10.1111/brv.12672. PubMed DOI

Loening  AM, Fenn  TD, Gambhir  SS. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol. 2007:374:1017–1028. 10.1016/j.jmb.2007.09.078. PubMed DOI PMC

Lorenz  WW, McCann  RO, Longiaru  M, Cormier  MJ. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A.  1991:88(10):4438–4442. 10.1073/pnas.88.10.4438. PubMed DOI PMC

Mallefet  J, Duchatelet  L, Coubris  C. Bioluminescence induction in the ophiuroid Amphiura filiformis (Echinodermata). J Exp Biol. 2020:223(4):jeb218719. 10.1242/jeb.218719. PubMed DOI

Markova  SV, Vysotski  ES. Coelenterazine dependent luciferases. Biochemistry. 2015:80:714–732. 10.1134/S0006297915060073. PubMed DOI

McElroy  WD, Seliger  HH, White  EH. Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin. Photochem Photobiol.  1969:10:153–170. 10.1111/j.1751-1097.1969.tb05676.x. PubMed DOI

Minh  BQ, Schmidt  HA, Chernomor  O, Schrempf  D, Woodhams  MD, von Haeseler  A, Lanfear  R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol.  2020:37:1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC

Oakley  TH. Building, maintaining, and (re-)deploying genetic toolkits during convergent evolution. Integr Comp Biol.  2024:64:1505–1512. 10.1093/icb/icae114. PubMed DOI

Oba  Y, Kato  SI, Ojika  M, Inouye  S. Biosynthesis of coelenterazine in the deep-sea copepod, Metridia pacifica. Biochem Biophys Res Commun.  2009:390(3):684–688. 10.1016/j.bbrc.2009.10.028. PubMed DOI

Parey  E, Ortega-Martinez  O, Delroisse  J, Piovani  L, Czarkwiani  A, Dylus  D, Arya  S, Dupont  S, Thorndyke  M, Larsson  T, et al.  The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat Ecol Evol.  2024:8:1505–1521. 10.1038/s41559-024-02456-y. PubMed DOI PMC

Rosenblum  EB, Parent  CE, Brandt  EE. The molecular basis of phenotypic convergence. Annu Rev Ecol Evol Syst.  2014:45(1):203–226. 10.1146/annurev-ecolsys-120213-091851. DOI

Schenkmayerova  A, Pinto  GP, Toul  M, Marek  M, Hernychova  L, Planas-Iglesias  J, Daniel Liskova  V, Pluskal  D, Vasina  M, Emond  S, et al.  Engineering the protein dynamics of an ancestral luciferase. Nat Commun.  2021:12(1):3616. 10.1038/s41467-021-23450-z. PubMed DOI PMC

Schenkmayerova  A, Toul  M, Pluskal  D, Baatallah  R, Gagnot  G, Pinto  GP, Santana  VT, Stuchla  M, Neugebauer  P, Chaiyen  P, et al.  Catalytic mechanism for Renilla-type luciferases. Nat Catal.  2023:6(1):23–38. 10.1038/s41929-022-00895-z. DOI

Shimomura  O, Yampolsky  IV. Bioluminescence: chemical principles and methods. 3rd ed. Singapore: World Scientific; 2019.

Shubin  N, Tabin  C, Carroll  S. Deep homology and the origins of evolutionary novelty. Nature. 2009:457(7231):818–823. 10.1038/nature07891. PubMed DOI

Stern  DL. The genetic causes of convergent evolution. Nat Rev Genet.  2013:14(11):751–764. 10.1038/nrg3483. PubMed DOI

Tessler  M, Gaffney  JP, Oliveira  AG, Guarnaccia  A, Dobi  KC, Gujarati  NA, Galbraith  M, Mirza  JD, Sparks  JS, Pieribone  VA, et al.  A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Sci Rep.  2020:10(1):1–11. 10.1038/s41598-020-73446-w. PubMed DOI PMC

Thomson  CM, Herring  PJ, Campbell  AK. Evidence for de novo biosynthesis of coelenterazine in the bioluminescent midwater shrimp, Systellaspis debilis. J Mar Biol Assoc U K.  1995:75(1):165–171. 10.1017/S0025315400015277. DOI

Tomarev  SI, Piatigorsky  J. Lens crystallins of invertebrates—diversity and recruitment from detoxification enzymes and novel proteins. Eur J Biochem.  1996:235(3):449–465. 10.1111/j.1432-1033.1996.00449.x. PubMed DOI

Vasina  M, Vanacek  P, Hon  J, Kovar  D, Faldynova  H, Kunka  A, Buryska  T, Badenhorst  CPS, Mazurenko  S, Bednar  D, et al.  Advanced database mining of efficient haloalkane dehalogenases by sequence and structure bioinformatics and microfluidics. Chem Catal.  2022:2(10):2704–2725. 10.1016/j.checat.2022.09.011. DOI

Vassel  N, Cox  CD, Naseem  R, Morse  V, Evans  RT, Power  RL, Brancale  A, Wann  KT, Campbell  AK. Enzymatic activity of albumin shown by coelenterazine chemiluminescence. Luminescence. 2012:27(3):234–241. 10.1002/bio.2357. PubMed DOI

Yano  D, Bessho-Uehara  M, Paitio  J, Iwasaka  M, Oba  Y. 14-3-3 proteins are luciferases candidate proteins from lanternfish Diaphus watasei. Photochem Photobiol Sci.  2023:22(2):263–277. 10.1007/s43630-022-00311-2. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...