Functional Characterization of Luciferase in a Brittle Star Indicates Parallel Evolution Influenced by Genomic Availability of Haloalkane Dehalogenase
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
R35 GM133530
NIGMS NIH HHS - United States
PubMed
40181585
PubMed Central
PMC12059646
DOI
10.1093/molbev/msaf081
PII: 8105801
Knihovny.cz E-zdroje
- Klíčová slova
- bioluminescence, convergent evolution, haloalkane dehalogenase, luciferase, parallel evolution,
- MeSH
- fylogeneze MeSH
- hydrolasy * genetika metabolismus MeSH
- luciferasy * genetika metabolismus MeSH
- molekulární evoluce * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy * MeSH
- luciferasy * MeSH
Determining why convergent traits use distinct versus shared genetic components is crucial for understanding how evolutionary processes generate and sustain biodiversity. However, the factors dictating the genetic underpinnings of convergent traits remain incompletely understood. Here, we use heterologous protein expression, biochemical assays, and phylogenetic analyses to confirm the origin of a luciferase gene from haloalkane dehalogenases in the brittle star Amphiura filiformis. Through database searches and gene tree analyses, we also show a complex pattern of the presence and absence of haloalkane dehalogenases across organismal genomes. These results first confirm parallel evolution across a vast phylogenetic distance, because octocorals like Renilla also use luciferase derived from haloalkane dehalogenases. This parallel evolution is surprising, even though previously hypothesized, because many organisms that also use coelenterazine as the bioluminescence substrate evolved completely distinct luciferases. The inability to detect haloalkane dehalogenases in the genomes of several bioluminescent groups suggests that the distribution of this gene family influences its recruitment as a luciferase. Together, our findings highlight how biochemical function and genomic availability help determine whether distinct or shared genetic components are used during the convergent evolution of traits like bioluminescence.
Department of Chemical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA
Department of Chemistry University of California Santa Barbara Santa Barbara CA 93106 USA
Department of Zoology University of Cambridge Cambridge CB2 1TN UK
International Clinical Research Center St Anne's University Hospital Brno 656 91 Brno Czech Republic
Neuroscience Research Institute University of California Santa Barbara Santa Barbara CA 93106 USA
Zobrazit více v PubMed
Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet. 2016:17:379–391. 10.1038/nrg.2016.39. PubMed DOI
Aslan-Üzel AS, Beier A, Kovář D, Cziegler C, Padhi SK, Schuiten ED, Dörr M, Böttcher D, Hollmann F, Rudroff F, et al. An ultrasensitive fluorescence assay for the detection of halides and enzymatic dehalogenation. ChemCatChem. 2020:12(7):2032–2039. 10.1002/cctc.201901891. PubMed DOI PMC
Berger A, Blackwelder P, Frank T, Sutton TT, Pruzinsky NM, Slayden N, Lopez JV. Microscopic and genetic characterization of bacterial symbionts with bioluminescent potential in Pyrosoma atlanticum. Front Mar Sci. 2021:8:606818. 10.3389/fmars.2021.606818. DOI
Bessho-Uehara M, Huang W, Patry WL, Browne WE, Weng J-K, Haddock SHD. Evidence for de novo biosynthesis of the luminous substrate coelenterazine in ctenophores. iScience. 2020:23(12):101859. 10.1016/j.isci.2020.101859. PubMed DOI PMC
Bessho-Uehara M, Konishi K, Oba Y. Biochemical characteristics and gene expression profiles of two paralogous luciferases from the Japanese firefly Pyrocoelia atripennis (Coleoptera, Lampyridae, Lampyrinae): insight into the evolution of firefly luciferase genes. Photochem Photobiol Sci. 2017:16(8):1301–1310. 10.1039/c7pp00110j. PubMed DOI
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015:12(1):59–60. 10.1038/nmeth.3176. PubMed DOI
Buryska T, Vasina M, Gielen F, Vanacek P, van Vliet L, Jezek J, Pilat Z, Zemanek P, Damborsky J, Hollfelder F, et al. Controlled oil/water partitioning of hydrophobic substrates extending the bioanalytical applications of droplet-based microfluidics. Anal Chem. 2019:91(15):10008–10015. 10.1021/acs.analchem.9b01839. PubMed DOI
Chaloupkova R, Liskova V, Toul M, Markova K, Sebestova E, Hernychova L, Marek M, Pinto GP, Pluskal D, Waterman J, et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal. 2019:9(6):4810–4823. 10.1021/acscatal.9b01031. DOI
Chovancová E, Kosinski J, Bujnicki JM, Damborský J. Phylogenetic analysis of haloalkane dehalogenases. Proteins. 2007:67(2):305–316. 10.1002/prot.21313. PubMed DOI
Christin PA, Weinreich DM, Besnard G. Causes and evolutionary significance of genetic convergence. Trends Genet. 2010:26(9):400–405. 10.1016/j.tig.2010.06.005. PubMed DOI
Coubris C, Duchatelet L, Dupont S, Mallefet J. A brittle star is born: ontogeny of luminous capabilities in Amphiura filiformis. PLoS One. 2024:19(3):e0298185. 10.1371/journal.pone.0298185. PubMed DOI PMC
Delroisse J, Duchatelet L, Flammang P, Mallefet J. Leaving the dark side? Insights into the evolution of luciferases. Front Mar Sci. 2021:8:673620. 10.3389/fmars.2021.673620. DOI
Delroisse J, Ortega-Martinez O, Dupont S, Mallefet J, Flammang P. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae. Mar Genomics. 2015:23:109–121. 10.1016/j.margen.2015.05.014. PubMed DOI
Delroisse J, Ullrich-Lüter E, Blaue S, Ortega-Martinez O, Eeckhaut I, Flammang P, Mallefet J. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Open Biol. 2017:7:160300. 10.1098/rsob.160300. PubMed DOI PMC
Delroisse J, Ullrich-Lüter E, Ortega-Martinez O, Dupont S, Arnone M-I, Mallefet J, Flammang P. High opsin diversity in a non-visual infaunal brittle star. BMC Genomics. 2014:15(1):1035. 10.1186/1471-2164-15-1035. PubMed DOI PMC
Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. Evodevo. 2016:7(1):2. 10.1186/s13227-015-0039-x. PubMed DOI PMC
Fernández R, Gabaldón T. Gene gain and loss across the Metazoa Tree of Life. Nat Ecol Evol. 2019:4(4):524–533. 10.1038/s41559-019-1069-x. PubMed DOI PMC
Foster CSP, Van Dyke JU, Thompson MB, Smith NMA, Simpfendorfer CA, Murphy CR, Whittington CM. Different genes are recruited during convergent evolution of pregnancy and the placenta. Mol Biol Evol. 2022:39(4):msac077. 10.1093/molbev/msac077. PubMed DOI PMC
Frank TM, Widder EA, Case JF. Dietary maintenance of bioluminescence in a deep-sea mysid. J Exp Biol. 1984:109(1):385–389. 10.1242/jeb.109.1.385. DOI
Guijarro-Clarke C, Holland P, Paps J. Widespread patterns of gene loss in the evolution of the animal kingdom. Nat Ecol Evol. 2020:4(4):519–523. 10.1038/s41559-020-1129-2. PubMed DOI
Haddock SH, Rivers TJ, Robison BH. Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proc Natl Acad Sci U S A. 2001:98(20):11148–11151. 10.1073/pnas.201329798. PubMed DOI PMC
He J, Li J, Zhang R, Dong Z, Liu G, Chang Z, Bi W, Ruan Y, Yang Y, Liu H, et al. Multiple origins of bioluminescence in beetles and evolution of luciferase function. Mol Biol Evol. 2024:41(1):msad287. 10.1093/molbev/msad287. PubMed DOI PMC
Hensley NM, Ellis EA, Leung NY, Coupart J, Mikhailovsky A, Taketa DA, Tessler M, Gruber DF, De Tomaso AW, Mitani Y, et al. Selection, drift, and constraint in cypridinid luciferases and the diversification of bioluminescent signals in sea fireflies. Mol Ecol. 2021:30(8):1864–1879. 10.1111/mec.15673. PubMed DOI PMC
Janssen DB, Dinkla IJT, Poelarends GJ, Terpstra P. Bacterial degradation of xenobiotic compounds: evolution and distribution of novel enzyme activities. Environ Microbiol. 2005:7(12):1868–1882. 10.1111/j.1462-2920.2005.00966.x. PubMed DOI
Johnson KA. New standards for collecting and fitting steady state kinetic data. Beilstein J Org Chem. 2019:15:16–29. 10.3762/bjoc.15.2. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017:14(6):587–589. 10.1038/nmeth.4285. PubMed DOI PMC
Karan D, David JR, Capy P. Molecular evolution of the AMP-forming acetyl-CoA synthetase. Gene. 2001:265(1-2):95–101. 10.1016/S0378-1119(01)00358-4. PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013:30(4):772–780. 10.1093/molbev/mst010. PubMed DOI PMC
Lau ES, Goodheart JA, Anderson NT, Liu VL, Mukherjee A, Oakley TH. Similar enzymatic functions in distinct bioluminescence systems: evolutionary recruitment of sulfotransferases in ostracod light organs. Biol Lett. 2024:20:20230585. 10.1098/rsbl.2023.0585. PubMed DOI PMC
Lau ES, Oakley TH. Multi-level convergence of complex traits and the evolution of bioluminescence. Biol Rev Camb Philos Soc. 2020:96(2):673–691. 10.1111/brv.12672. PubMed DOI
Loening AM, Fenn TD, Gambhir SS. Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. J Mol Biol. 2007:374:1017–1028. 10.1016/j.jmb.2007.09.078. PubMed DOI PMC
Lorenz WW, McCann RO, Longiaru M, Cormier MJ. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A. 1991:88(10):4438–4442. 10.1073/pnas.88.10.4438. PubMed DOI PMC
Mallefet J, Duchatelet L, Coubris C. Bioluminescence induction in the ophiuroid Amphiura filiformis (Echinodermata). J Exp Biol. 2020:223(4):jeb218719. 10.1242/jeb.218719. PubMed DOI
Markova SV, Vysotski ES. Coelenterazine dependent luciferases. Biochemistry. 2015:80:714–732. 10.1134/S0006297915060073. PubMed DOI
McElroy WD, Seliger HH, White EH. Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin. Photochem Photobiol. 1969:10:153–170. 10.1111/j.1751-1097.1969.tb05676.x. PubMed DOI
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020:37:1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC
Oakley TH. Building, maintaining, and (re-)deploying genetic toolkits during convergent evolution. Integr Comp Biol. 2024:64:1505–1512. 10.1093/icb/icae114. PubMed DOI
Oba Y, Kato SI, Ojika M, Inouye S. Biosynthesis of coelenterazine in the deep-sea copepod, Metridia pacifica. Biochem Biophys Res Commun. 2009:390(3):684–688. 10.1016/j.bbrc.2009.10.028. PubMed DOI
Parey E, Ortega-Martinez O, Delroisse J, Piovani L, Czarkwiani A, Dylus D, Arya S, Dupont S, Thorndyke M, Larsson T, et al. The brittle star genome illuminates the genetic basis of animal appendage regeneration. Nat Ecol Evol. 2024:8:1505–1521. 10.1038/s41559-024-02456-y. PubMed DOI PMC
Rosenblum EB, Parent CE, Brandt EE. The molecular basis of phenotypic convergence. Annu Rev Ecol Evol Syst. 2014:45(1):203–226. 10.1146/annurev-ecolsys-120213-091851. DOI
Schenkmayerova A, Pinto GP, Toul M, Marek M, Hernychova L, Planas-Iglesias J, Daniel Liskova V, Pluskal D, Vasina M, Emond S, et al. Engineering the protein dynamics of an ancestral luciferase. Nat Commun. 2021:12(1):3616. 10.1038/s41467-021-23450-z. PubMed DOI PMC
Schenkmayerova A, Toul M, Pluskal D, Baatallah R, Gagnot G, Pinto GP, Santana VT, Stuchla M, Neugebauer P, Chaiyen P, et al. Catalytic mechanism for Renilla-type luciferases. Nat Catal. 2023:6(1):23–38. 10.1038/s41929-022-00895-z. DOI
Shimomura O, Yampolsky IV. Bioluminescence: chemical principles and methods. 3rd ed. Singapore: World Scientific; 2019.
Shubin N, Tabin C, Carroll S. Deep homology and the origins of evolutionary novelty. Nature. 2009:457(7231):818–823. 10.1038/nature07891. PubMed DOI
Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013:14(11):751–764. 10.1038/nrg3483. PubMed DOI
Tessler M, Gaffney JP, Oliveira AG, Guarnaccia A, Dobi KC, Gujarati NA, Galbraith M, Mirza JD, Sparks JS, Pieribone VA, et al. A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Sci Rep. 2020:10(1):1–11. 10.1038/s41598-020-73446-w. PubMed DOI PMC
Thomson CM, Herring PJ, Campbell AK. Evidence for de novo biosynthesis of coelenterazine in the bioluminescent midwater shrimp, Systellaspis debilis. J Mar Biol Assoc U K. 1995:75(1):165–171. 10.1017/S0025315400015277. DOI
Tomarev SI, Piatigorsky J. Lens crystallins of invertebrates—diversity and recruitment from detoxification enzymes and novel proteins. Eur J Biochem. 1996:235(3):449–465. 10.1111/j.1432-1033.1996.00449.x. PubMed DOI
Vasina M, Vanacek P, Hon J, Kovar D, Faldynova H, Kunka A, Buryska T, Badenhorst CPS, Mazurenko S, Bednar D, et al. Advanced database mining of efficient haloalkane dehalogenases by sequence and structure bioinformatics and microfluidics. Chem Catal. 2022:2(10):2704–2725. 10.1016/j.checat.2022.09.011. DOI
Vassel N, Cox CD, Naseem R, Morse V, Evans RT, Power RL, Brancale A, Wann KT, Campbell AK. Enzymatic activity of albumin shown by coelenterazine chemiluminescence. Luminescence. 2012:27(3):234–241. 10.1002/bio.2357. PubMed DOI
Yano D, Bessho-Uehara M, Paitio J, Iwasaka M, Oba Y. 14-3-3 proteins are luciferases candidate proteins from lanternfish Diaphus watasei. Photochem Photobiol Sci. 2023:22(2):263–277. 10.1007/s43630-022-00311-2. PubMed DOI