parallel evolution
Dotaz
Zobrazit nápovědu
After the break-up of Gondwana dispersal of organisms between America, Australia and Africa became more complicated. One of the possible remaining paths led through Antarctica, that was not yet glaciated and it remained habitable for many organisms. This favourable climate made Antarctica an important migration corridor for organisms with good dispersal ability, such as Aculeata (Hymenoptera), till the Oligocene cooling. Here we tested how cooling of Antarctica impacted global dispersal of Aculeata parasites (Strepsiptera: Xenidae). Our data set comprising six nuclear genes from a broad sample of Xenidae. Bayesian dating was used to estimate divergence times in phylogenetic reconstruction. Biogeography was investigated using event-based analytical methods: likelihood-based dispersal-extinction-cladogenesis and Bayesian models. The Bayesian model was used for reconstruction of ancestral host groups. Biogeographical methods indicate that multiple lineages were exchanged between the New World and the Old World + Australia until the Antarctica became completely frozen over. During the late Paleogene and Neogene periods, several lineages spread from the Afrotropics to other Old World regions and Australia. The original hosts of Xenidae were most likely social wasps. Within one lineage of solitary wasp parasites, parallel switch to digger wasps (Sphecidae) occurred independently in the New World and Old World regions. The biogeography and macroevolutionary history of Xenidae can be explained by the combination of dispersal, lineage extinction and climatic changes during the Cenozoic era. A habitable Antarctica and the presence of now-submerged islands and plateaus that acted as a connection between the New World and Old World + Australia provided the possibility for biotic exchanges of parasites along with their hymenopteran hosts. Although Xenidae are generally host specialists, there were significant host switches to unrelated but ecologically similar hosts during their evolution. There is little or no evidence for cophylogeny between strepsipteran parasites and hymenopteran lineages.
- MeSH
- Bayesova věta MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- interakce hostitele a parazita * MeSH
- paraziti fyziologie MeSH
- pravděpodobnostní funkce MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Antarktida MeSH
Dexoris chome sp. nov. is described from South Pare mountains, Tanzania, based on a male specimen. This is the only Dexoris with shortened elytra, rudimentary hind wings and large, larviform abdomen. Unlike males of other species in the genus, D. chome sp. nov. has a modified number of palpomeres and remarkably short, robust legs and antennae. Such modifications are similar to those in the neotenic female of Omalisus fontisbellaquei Fourcroy, 1785 (Omalisidae), suggesting analogous morphological changes in unrelated lineages supposedly caused by similar modifications of their metamorphosis. The distribution of all 11 known species of African Dexoris closely overlap with the location of the hypothesized centres for evolution of new species in the Afrotropical region.
- MeSH
- anatomické struktury zvířat anatomie a histologie růst a vývoj MeSH
- biologická evoluce MeSH
- brouci anatomie a histologie klasifikace růst a vývoj MeSH
- rozšíření zvířat MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The molecules of life were created by a continuous physicochemical process on an early Earth. In this hadean environment, chemical transformations were driven by fluctuations of the naturally given physical parameters established for example by wet-dry cycles. These conditions might have allowed for the formation of (self)-replicating RNA as the fundamental biopolymer during chemical evolution. The question of how a complex multistep chemical synthesis of RNA building blocks was possible in such an environment remains unanswered. Here we report that geothermal fields could provide the right setup for establishing wet-dry cycles that allow for the synthesis of RNA nucleosides by continuous synthesis. Our model provides both the canonical and many ubiquitous non-canonical purine nucleosides in parallel by simple changes of physical parameters such as temperature, pH and concentration. The data show that modified nucleosides were potentially formed as competitor molecules. They could in this sense be considered as molecular fossils.
Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.
- MeSH
- anaerobióza genetika MeSH
- Archamoebae enzymologie genetika metabolismus MeSH
- duplikace genu * MeSH
- energetický metabolismus genetika MeSH
- enzymy genetika izolace a purifikace MeSH
- molekulární evoluce * MeSH
- organely enzymologie genetika metabolismus MeSH
- přenos genů horizontální * MeSH
- struktury buněčné membrány genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Parallel adaptive radiations have arisen following the colonization of islands by lizards and lakes by fishes. In these classic examples, parallel adaptive radiation is a response to the ecological opportunities afforded by the colonization of novel ecosystems and similar adaptive landscapes that favour the evolution of similar suites of ecomorphs, despite independent evolutionary histories. Here, we demonstrate that parallel adaptive radiations of cichlid fishes arose in South American rivers. Speciation-assembled communities of pike cichlids (Crenicichla) have independently diversified into similar suites of novel ecomorphs in the Uruguay and Paraná Rivers, including crevice feeders, periphyton grazers and molluscivores. There were bursts in phenotypic evolution associated with the colonization of each river and the subsequent expansion of morphospace following the evolution of the ecomorphs. These riverine clades demonstrate that characteristics emblematic of textbook parallel adaptive radiations of island- and lake-dwelling assemblages are feasible evolutionary outcomes even in labile ecosystems such as rivers.
- MeSH
- biologická adaptace genetika MeSH
- biologická evoluce * MeSH
- cichlidy anatomie a histologie genetika MeSH
- ekosystém MeSH
- fenotyp MeSH
- fylogeneze MeSH
- jednonukleotidový polymorfismus genetika MeSH
- jezera MeSH
- ostrovy MeSH
- řeky * MeSH
- sekvenování celého genomu MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- ostrovy MeSH
- Uruguay MeSH
A characteristic feature of spider karyotypes is the predominance of unusual multiple X chromosomes. To elucidate the evolution of spider sex chromosomes, their meiotic behavior was analyzed in 2 major clades of opisthothele spiders, namely, the entelegyne araneomorphs and the mygalomorphs. Our data support the predominance of X(1)X(2)0 systems in entelegynes, while rare X(1)X(2)X(3)X(4)0 systems were revealed in the tuberculote mygalomorphs. The spider species studied exhibited a considerable diversity of achiasmate sex chromosome pairing in male meiosis. The end-to-end pairing of sex chromosomes found in mygalomorphs was gradually replaced by the parallel attachment of sex chromosomes in entelegynes. The observed association of male X univalents with a centrosome at the first meiotic division may ensure the univalents' segregation. Spider meiotic sex chromosomes also showed other unique traits, namely, association with a chromosome pair in males and inactivation in females. Analysis of these traits supports the hypothesis that the multiple X chromosomes of spiders originated by duplications. In contrast to the homogametic sex of other animals, the homologous sex chromosomes of spider females were already paired at premeiotic interphase and were inactivated until prophase I. Furthermore, the sex chromosome pairs exhibited an end-to-end association during these stages. We suggest that the specific behavior of the female sex chromosomes may have evolved to avoid the negative effects of duplicated X chromosomes on female meiosis. The chromosome ends that ensure the association of sex chromosome pairs during meiosis may contain information for discriminating between homologous and homeologous X chromosomes and thus act to promote homologous pairing. The meiotic behavior of 4 X chromosome pairs in mygalomorph females, namely, the formation of 2 associations, each composed of 2 pairs with similar structure, suggests that the mygalomorph X(1)X(2)X(3)X(4)0 system originated by the duplication of the X(1)X(2)0 system via nondisjunctions or polyploidization.
Richter syndrome represents the transformation of the chronic lymphocytic leukemia (CLL) into an aggressive lymphoma, most frequently the diffuse large B-cell lymphoma (DLBCL). In this report we describe a patient with CLL, who developed a clonally-related pleomorphic highly-aggressive mantle cell lymphoma (MCL) after five cycles of a fludarabine-based second-line therapy for the first relapse of CLL. Molecular cytogenetic methods together with whole-exome sequencing revealed numerous gene alterations restricted to the MCL clone (apart from the canonical t(11;14)(q13;q32) translocation) including gain of one copy of ATM gene or emergence of TP53, CREBBP, NUP214, FUBP1 and SF3B1 gene mutations. Similarly, gene expression analysis revealed vast differences between the MCL and CLL transcriptome, including overexpression of cyclin D1, downregulation of cyclins D2 and D3, or downregulation of IL4R in the MCL clone. Backtracking analysis using quantitative PCR specifically detecting an MCL-restricted focal deletion of TP53 revealed that the pre-MCL clone appeared in the bone marrow and peripheral blood of the patient approximately 4 years before the clinical manifestation of MCL. Both molecular cytogenetic and sequencing data support the hypothesis of a slow development of the pre-MCL clone in parallel to CLL over several years, and thereby exclude the possibility that the transformation event occurred at the stage of the CLL relapse clone by mere t(11;14)(q13;q32) acquisition.
- MeSH
- chronická lymfatická leukemie genetika metabolismus patologie MeSH
- difúzní velkobuněčný B-lymfom genetika metabolismus patologie MeSH
- hybridizace in situ fluorescenční MeSH
- imunohistochemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 11 MeSH
- lidské chromozomy, pár 14 MeSH
- lymfom z plášťových buněk genetika metabolismus patologie MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- translokace genetická MeSH
- ztráta heterozygozity MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Amoebozoa is the eukaryotic supergroup sister to Obazoa, the lineage that contains the animals and Fungi, as well as their protistan relatives, and the breviate and apusomonad flagellates. Amoebozoa is extraordinarily diverse, encompassing important model organisms and significant pathogens. Although amoebozoans are integral to global nutrient cycles and present in nearly all environments, they remain vastly understudied. We present a robust phylogeny of Amoebozoa based on broad representative set of taxa in a phylogenomic framework (325 genes). By sampling 61 taxa using culture-based and single-cell transcriptomics, our analyses show two major clades of Amoebozoa, Discosea, and Tevosa. This phylogeny refutes previous studies in major respects. Our results support the hypothesis that the last common ancestor of Amoebozoa was sexual and flagellated, it also may have had the ability to disperse propagules from a sporocarp-type fruiting body. Overall, the main macroevolutionary patterns in Amoebozoa appear to result from the parallel losses of homologous characters of a multiphase life cycle that included flagella, sex, and sporocarps rather than independent acquisition of convergent features.
- MeSH
- Amoeba genetika metabolismus MeSH
- Amoebozoa genetika MeSH
- bezobratlí genetika MeSH
- biologická evoluce MeSH
- Eukaryota genetika MeSH
- fylogeneze MeSH
- genová knihovna MeSH
- houby genetika MeSH
- molekulární evoluce MeSH
- sekvenční analýza DNA metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Germline SAMD9 and SAMD9L mutations (SAMD9/9Lmut) predispose to myelodysplastic syndromes (MDS) with propensity for somatic rescue. In this study, we investigated a clinically annotated pediatric MDS cohort (n = 669) to define the prevalence, genetic landscape, phenotype, therapy outcome and clonal architecture of SAMD9/9L syndromes. In consecutively diagnosed MDS, germline SAMD9/9Lmut accounted for 8% and were mutually exclusive with GATA2 mutations present in 7% of the cohort. Among SAMD9/9Lmut cases, refractory cytopenia was the most prevalent MDS subtype (90%); acquired monosomy 7 was present in 38%; constitutional abnormalities were noted in 57%; and immune dysfunction was present in 28%. The clinical outcome was independent of germline mutations. In total, 67 patients had 58 distinct germline SAMD9/9Lmut clustering to protein middle regions. Despite inconclusive in silico prediction, 94% of SAMD9/9Lmut suppressed HEK293 cell growth, and mutations expressed in CD34+ cells induced overt cell death. Furthermore, we found that 61% of SAMD9/9Lmut patients underwent somatic genetic rescue (SGR) resulting in clonal hematopoiesis, of which 95% was maladaptive (monosomy 7 ± cancer mutations), and 51% had adaptive nature (revertant UPD7q, somatic SAMD9/9Lmut). Finally, bone marrow single-cell DNA sequencing revealed multiple competing SGR events in individual patients. Our findings demonstrate that SGR is common in SAMD9/9Lmut MDS and exemplify the exceptional plasticity of hematopoiesis in children.
- MeSH
- analýza jednotlivých buněk MeSH
- buňky kostní dřeně metabolismus MeSH
- dítě MeSH
- HEK293 buňky MeSH
- intracelulární signální peptidy a proteiny genetika MeSH
- Kaplanův-Meierův odhad MeSH
- klonální evoluce genetika MeSH
- klonální hematopoéza genetika MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- myelodysplastické syndromy genetika patologie MeSH
- nádorové supresorové proteiny genetika MeSH
- předškolní dítě MeSH
- transkripční faktor GATA2 genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zárodečné mutace genetika MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH