An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32362951
PubMed Central
PMC7188320
DOI
10.1002/cctc.201901891
PII: CCTC201901891
Knihovny.cz E-zdroje
- Klíčová slova
- dehalogenase, fluorescence, halides, haloalkane, haloperoxidase,
- Publikační typ
- časopisecké články MeSH
Halide assays are important for the study of enzymatic dehalogenation, a topic of great industrial and scientific importance. Here we describe the development of a very sensitive halide assay that can detect less than a picomole of bromide ions, making it very useful for quantifying enzymatic dehalogenation products. Halides are oxidised under mild conditions using the vanadium-dependent chloroperoxidase from Curvularia inaequalis, forming hypohalous acids that are detected using aminophenyl fluorescein. The assay is up to three orders of magnitude more sensitive than currently available alternatives, with detection limits of 20 nM for bromide and 1 μM for chloride and iodide. We demonstrate that the assay can be used to determine specific activities of dehalogenases and validate this by comparison to a well-established GC-MS method. This new assay will facilitate the identification and characterisation of novel dehalogenases and may also be of interest to those studying other halide-producing enzymes.
Department of Biotechnology Delft University of Technology Delft 2629 HZ (The Netherlands
Institute of Applied Synthetic Chemistry TU Wien Vienna 1060 Austria
International Clinical Research Center St Anne's University Hospital Brno Brno 656 91 Czech Republic
Zobrazit více v PubMed
Janssen D. B., Scheper A., Witholt B., in Innovations in biotechnology (Eds.: E. H. Houwink, R. R. van der Meer), Elsevier, Amsterdam, 1984, pp. 169–178;
Swanson P. E., Curr. Opin. Biotechnol. 1999, 10, 365–369. PubMed
Rhew R. C., Miller B. R., Weiss R. F., Nature 2000, 403, 292–295; PubMed
Wuosmaa A. M., Hager L. P., Science 1990, 249, 160–162. PubMed
Janssen D. B., Scheper A., Dijkhuizen L., Witholt B., Appl. Environ. Microbiol. 1985, 49, 673–677. PubMed PMC
Jensen H. L., Acta Agric. Scand. 1960, 10, 83–103.
Koudelakova T., Bidmanova S., Dvorak P., Pavelka A., Chaloupkova R., Prokop Z., Damborsky J., Biotechnol. J. 2013, 8, 32–45; PubMed
Li A., Shao Z., PLoS One 2014, 9, e89144. PubMed PMC
Keuning S., Janssen D. B., Witholt B., J. Bacteriol. 1985, 163, 635–639. PubMed PMC
Buryska T., Babkova P., Vavra O., Damborsky J., Prokop Z., Appl. Environ. Microbiol. 2018, 84, e01684–01617; PubMed PMC
Vanacek P., Sebestova E., Babkova P., Bidmanova S., Daniel L., Dvorak P., Stepankova V., Chaloupkova R., Brezovsky J., Prokop Z., Damborsky J., ACS Catal. 2018, 8, 2402–2412;
Fung H. K. H., Gadd M. S., Drury T. A., Cheung S., Guss J. M., Coleman N. V., Matthews J. M., Mol. Microbiol. 2015, 97, 439–453; PubMed
Carlucci L., Zhou E., Malashkevich V. N., Almo S. C., Mundorff E. C., Protein Sci. 2016, 25, 877–886; PubMed PMC
Novak H. R., Sayer C., Isupov M. N., Gotz D., Spragg A. M., Littlechild J. A., FEBS Lett. 2014, 588, 1616–1622. PubMed
Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J., Damborsky J., Biochem. J. 2011, 435, 345–354. PubMed
Kunka A., Damborsky J., Prokop Z., Methods Enzymol. 2018, 605, 203–251; PubMed
Chaloupkova R., Sykorova J., Prokop Z., Jesenska A., Monincova M., Pavlova M., Tsuda M., Nagata Y., Damborsky J., J. Biol. Chem. 2003, 278, 52622–52628; PubMed
Chaloupkova R., Liskova V., Toul M., Markova K., Sebestova E., Hernychova L., Marek M., Pinto G. P., Pluskal D., Waterman J., Prokop Z., Damborsky J., ACS Catal. 2019, 9, 4810–4823.
Horváth P., Šebej P., Kovář D., Damborský J., Prokop Z., Klán P., ACS Omega 2019, 4, 5479–5485;
Nevolova S., Manaskova E., Mazurenko S., Damborsky J., Prokop Z., Biotechnol. J. 2019, 14, e1800144. PubMed
Holloway P., Trevors J. T., Lee H., J. Microbiol. Methods 1998, 32, 31–36.
Iwasaki I., Utsumi S., Ozawa T., Bull. Chem. Soc. Jpn. 1952, 25, 226–226.
Marvanova S., Nagata Y., Wimmerova M., Sykorova J., Hynkova K., Damborsky J., J. Microbiol. Methods 2001, 44, 149–157; PubMed
Phillips T. M., Seech A. G., Lee H., Trevors J. T., J. Microbiol. Methods 2001, 47, 181–188. PubMed
Merchant M., Microchem. J. 2009, 92, 80–82.
Oosting M., Reijnders H. F. R., Fresenius J. Anal. Chem. 1980, 301, 28–29;
Trapp S. A., Bell E. F., Clin. Chim. Acta 1989, 181, 207–211. PubMed
Bornscheuer U. T., Huisman G. W., Kazlauskas R. J., Lutz S., Moore J. C., Robins K., Nature 2012, 485, 185–194. PubMed
Jeske L., Placzek S., Schomburg I., Chang A., Schomburg D., Nucleic Acids Res. 2019, 47, D542-D549. PubMed PMC
Wever R., Hemrika W., in Handbook of Metalloproteins (Eds.: A. Messerschmidt, R. Huber, T. Poulas, K. Wieghardt, C. M., W. Bode), John Wiley & Sons, Ltd., 2004;
Winter J. M., Moore B. S., J. Biol. Chem. 2009, 284, 18577–18581; PubMed PMC
Archer S. D., Posman K. M., DeStefano J., Harrison A. H., Ladina A., Cheff E. A., Witt D. P., Front. Mar. Sci. 2019, 6, 68;
Tanaka N., Wever R., J. Inorg. Biochem. 2004, 98, 625–631; PubMed
van Schijndel J. W., Vollenbroek E. G., Wever R., Biochim. Biophys. Acta 1993, 1161, 249–256. PubMed
Faber K., Biotransformations in Organic Chemistry: A Textbook, 7th ed., Springer International Publishing, 2017.
Timmins A., de Visser S., Catalysts 2018, 8, 314.
Hasan Z., Renirie R., Kerkman R., Ruijssenaars H. J., Hartog A. F., Wever R., J. Biol. Chem. 2006, 281, 9738–9744; PubMed
Hemrika W., Renirie R., Macedo-Ribeiro S., Messerschmidt A., Wever R., J. Biol. Chem. 1999, 274, 23820–23827. PubMed
Prütz W. A., Kissner R., Koppenol W. H., Ruegger H., Arch. Biochem. Biophys. 2000, 380, 181–191; PubMed
Prütz W. A., Kissner R., Nauser T., Koppenol W. H., Arch. Biochem. Biophys. 2001, 389, 110–122; PubMed
Chapman A. L., Skaff O., Senthilmohan R., Kettle A. J., Davies M. J., Biochem. J. 2009, 417, 773–781. PubMed
Marchesi J. R., J. Microbiol. Methods 2003, 55, 325–329. PubMed
Zall D. M., Fisher D., Garner M. Q., Anal. Chem. 1956, 28, 1665–1668.
Tutol J. N., Kam H. C., Dodani S. C., ChemBioChem 2019, 20, 1759–1765; PubMed PMC
Tutol J. N., Peng W., Dodani S. C., Biochemistry 2019, 58, 31–35. PubMed PMC
Wolfbeis O. S., Urbano E., J. Heterocycl. Chem. 1982, 19, 841–843.
Biwersi J., Tulk B., Verkman A. S., Anal. Biochem. 1994, 219, 139–143. PubMed
Legg K. D., Hercules D. M., J. Phys. Chem. 1970, 74, 2114–2118.
Kulakova A. N., Larkin M. J., Kulakov L. A., Microbiology 1997, 143, 109–115. PubMed
Dvorak P., Bidmanova S., Damborsky J., Prokop Z., Environ. Sci. Technol. 2014, 48, 6859–6866; PubMed
Fibinger M. P., Davids T., Böttcher D., Bornscheuer U. T., Appl. Microbiol. Biotechnol. 2015, 99, 8955–8962. PubMed
Flemmig J., Zschaler J., Remmler J., Arnhold J., J. Biol. Chem. 2012, 287, 27913–27923. PubMed PMC
Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M., Biochemistry 1966, 5, 467–477. PubMed
Fernández-Fueyo E., Younes S. H. H., van Rootselaar S., Aben R. W. M., Renirie R., Wever R., Holtmann D., Rutjes F. P. J. T., Hollmann F., ACS Catal. 2016, 6, 5904–5907.
Albrett A. M., Ashby L. V., Dickerhof N., Kettle A. J., Winterbourn C. C., J. Biol. Chem. 2018, 293, 15715–15724; PubMed PMC
Sokolov A. V., Kostevich V. A., Kozlov S. O., Donskyi I. S., Vlasova I. I., Rudenko A. O., Zakharova E. T., Vasilyev V. B., Panasenko O. M., Free Radical Res. 2015, 49, 777–789; PubMed
Chen X., Lee K.-A., Ren X., Ryu J.-C., Kim G., Ryu J.-H., Lee W.-J., Yoon J., Nat. Protoc. 2016, 11, 1219–1228. PubMed
Janssen D. B., van der Ploeg J. R., Pries F., Biodegradation 1994, 5, 249–257. PubMed
Steele H. L., Jaeger K. E., Daniel R., Streit W. R., J. Mol. Microbiol. Biotechnol. 2009, 16, 25–37; PubMed
Chen B., Lim S., Kannan A., Alford S. C., Sunden F., Herschlag D., Dimov I. K., Baer T. M., Cochran J. R., Nat. Chem. Biol. 2016, 12, 76–81; PubMed PMC
Kintses B., Hein C., Mohamed M. F., Fischlechner M., Courtois F., Laine C., Hollfelder F., Chem. Biol. 2012, 19, 1001–1009; PubMed
Lim S., Chen B., Kariolis M. S., Dimov I. K., Baer T. M., Cochran J. R., ACS Chem. Biol. 2017, 12, 336–341; PubMed
Zinchenko A., Devenish S. R., Kintses B., Colin P. Y., Fischlechner M., Hollfelder F., Anal. Chem. 2014, 86, 2526–2533. PubMed PMC
Beier A., Damborsky J., Prokop Z., Adv. Synth. Catal. 2019, 361, 2438–2442.
Zhou G., Guan Y., Chromatographia 2016, 79, 319–325;
Setsukinai K., Urano Y., Kakinuma K., Majima H. J., Nagano T., J. Biol. Chem. 2003, 278, 3170–3175; PubMed
Chandrappa S., Vinaya K., Ramakrishnappa T., Rangappa K. S., Synlett 2010, 3019–3022.
Butler A., Walker J. V., Chem. Rev. 1993, 93, 1937–1944.