An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation

. 2020 Apr 06 ; 12 (7) : 2032-2039. [epub] 20200131

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32362951

Halide assays are important for the study of enzymatic dehalogenation, a topic of great industrial and scientific importance. Here we describe the development of a very sensitive halide assay that can detect less than a picomole of bromide ions, making it very useful for quantifying enzymatic dehalogenation products. Halides are oxidised under mild conditions using the vanadium-dependent chloroperoxidase from Curvularia inaequalis, forming hypohalous acids that are detected using aminophenyl fluorescein. The assay is up to three orders of magnitude more sensitive than currently available alternatives, with detection limits of 20 nM for bromide and 1 μM for chloride and iodide. We demonstrate that the assay can be used to determine specific activities of dehalogenases and validate this by comparison to a well-established GC-MS method. This new assay will facilitate the identification and characterisation of novel dehalogenases and may also be of interest to those studying other halide-producing enzymes.

Zobrazit více v PubMed

Janssen D. B., Scheper A., Witholt B., in Innovations in biotechnology (Eds.: E. H. Houwink, R. R. van der Meer), Elsevier, Amsterdam, 1984, pp. 169–178;

Swanson P. E., Curr. Opin. Biotechnol. 1999, 10, 365–369. PubMed

Rhew R. C., Miller B. R., Weiss R. F., Nature 2000, 403, 292–295; PubMed

Wuosmaa A. M., Hager L. P., Science 1990, 249, 160–162. PubMed

Janssen D. B., Scheper A., Dijkhuizen L., Witholt B., Appl. Environ. Microbiol. 1985, 49, 673–677. PubMed PMC

Jensen H. L., Acta Agric. Scand. 1960, 10, 83–103.

Koudelakova T., Bidmanova S., Dvorak P., Pavelka A., Chaloupkova R., Prokop Z., Damborsky J., Biotechnol. J. 2013, 8, 32–45; PubMed

Li A., Shao Z., PLoS One 2014, 9, e89144. PubMed PMC

Keuning S., Janssen D. B., Witholt B., J. Bacteriol. 1985, 163, 635–639. PubMed PMC

Buryska T., Babkova P., Vavra O., Damborsky J., Prokop Z., Appl. Environ. Microbiol. 2018, 84, e01684–01617; PubMed PMC

Vanacek P., Sebestova E., Babkova P., Bidmanova S., Daniel L., Dvorak P., Stepankova V., Chaloupkova R., Brezovsky J., Prokop Z., Damborsky J., ACS Catal. 2018, 8, 2402–2412;

Fung H. K. H., Gadd M. S., Drury T. A., Cheung S., Guss J. M., Coleman N. V., Matthews J. M., Mol. Microbiol. 2015, 97, 439–453; PubMed

Carlucci L., Zhou E., Malashkevich V. N., Almo S. C., Mundorff E. C., Protein Sci. 2016, 25, 877–886; PubMed PMC

Novak H. R., Sayer C., Isupov M. N., Gotz D., Spragg A. M., Littlechild J. A., FEBS Lett. 2014, 588, 1616–1622. PubMed

Koudelakova T., Chovancova E., Brezovsky J., Monincova M., Fortova A., Jarkovsky J., Damborsky J., Biochem. J. 2011, 435, 345–354. PubMed

Kunka A., Damborsky J., Prokop Z., Methods Enzymol. 2018, 605, 203–251; PubMed

Chaloupkova R., Sykorova J., Prokop Z., Jesenska A., Monincova M., Pavlova M., Tsuda M., Nagata Y., Damborsky J., J. Biol. Chem. 2003, 278, 52622–52628; PubMed

Chaloupkova R., Liskova V., Toul M., Markova K., Sebestova E., Hernychova L., Marek M., Pinto G. P., Pluskal D., Waterman J., Prokop Z., Damborsky J., ACS Catal. 2019, 9, 4810–4823.

Horváth P., Šebej P., Kovář D., Damborský J., Prokop Z., Klán P., ACS Omega 2019, 4, 5479–5485;

Nevolova S., Manaskova E., Mazurenko S., Damborsky J., Prokop Z., Biotechnol. J. 2019, 14, e1800144. PubMed

Holloway P., Trevors J. T., Lee H., J. Microbiol. Methods 1998, 32, 31–36.

Iwasaki I., Utsumi S., Ozawa T., Bull. Chem. Soc. Jpn. 1952, 25, 226–226.

Marvanova S., Nagata Y., Wimmerova M., Sykorova J., Hynkova K., Damborsky J., J. Microbiol. Methods 2001, 44, 149–157; PubMed

Phillips T. M., Seech A. G., Lee H., Trevors J. T., J. Microbiol. Methods 2001, 47, 181–188. PubMed

Merchant M., Microchem. J. 2009, 92, 80–82.

Oosting M., Reijnders H. F. R., Fresenius J. Anal. Chem. 1980, 301, 28–29;

Trapp S. A., Bell E. F., Clin. Chim. Acta 1989, 181, 207–211. PubMed

Bornscheuer U. T., Huisman G. W., Kazlauskas R. J., Lutz S., Moore J. C., Robins K., Nature 2012, 485, 185–194. PubMed

Jeske L., Placzek S., Schomburg I., Chang A., Schomburg D., Nucleic Acids Res. 2019, 47, D542-D549. PubMed PMC

Wever R., Hemrika W., in Handbook of Metalloproteins (Eds.: A. Messerschmidt, R. Huber, T. Poulas, K. Wieghardt, C. M., W. Bode), John Wiley & Sons, Ltd., 2004;

Winter J. M., Moore B. S., J. Biol. Chem. 2009, 284, 18577–18581; PubMed PMC

Archer S. D., Posman K. M., DeStefano J., Harrison A. H., Ladina A., Cheff E. A., Witt D. P., Front. Mar. Sci. 2019, 6, 68;

Tanaka N., Wever R., J. Inorg. Biochem. 2004, 98, 625–631; PubMed

van Schijndel J. W., Vollenbroek E. G., Wever R., Biochim. Biophys. Acta 1993, 1161, 249–256. PubMed

Faber K., Biotransformations in Organic Chemistry: A Textbook, 7th ed., Springer International Publishing, 2017.

Timmins A., de Visser S., Catalysts 2018, 8, 314.

Hasan Z., Renirie R., Kerkman R., Ruijssenaars H. J., Hartog A. F., Wever R., J. Biol. Chem. 2006, 281, 9738–9744; PubMed

Hemrika W., Renirie R., Macedo-Ribeiro S., Messerschmidt A., Wever R., J. Biol. Chem. 1999, 274, 23820–23827. PubMed

Prütz W. A., Kissner R., Koppenol W. H., Ruegger H., Arch. Biochem. Biophys. 2000, 380, 181–191; PubMed

Prütz W. A., Kissner R., Nauser T., Koppenol W. H., Arch. Biochem. Biophys. 2001, 389, 110–122; PubMed

Chapman A. L., Skaff O., Senthilmohan R., Kettle A. J., Davies M. J., Biochem. J. 2009, 417, 773–781. PubMed

Marchesi J. R., J. Microbiol. Methods 2003, 55, 325–329. PubMed

Zall D. M., Fisher D., Garner M. Q., Anal. Chem. 1956, 28, 1665–1668.

Tutol J. N., Kam H. C., Dodani S. C., ChemBioChem 2019, 20, 1759–1765; PubMed PMC

Tutol J. N., Peng W., Dodani S. C., Biochemistry 2019, 58, 31–35. PubMed PMC

Wolfbeis O. S., Urbano E., J. Heterocycl. Chem. 1982, 19, 841–843.

Biwersi J., Tulk B., Verkman A. S., Anal. Biochem. 1994, 219, 139–143. PubMed

Legg K. D., Hercules D. M., J. Phys. Chem. 1970, 74, 2114–2118.

Kulakova A. N., Larkin M. J., Kulakov L. A., Microbiology 1997, 143, 109–115. PubMed

Dvorak P., Bidmanova S., Damborsky J., Prokop Z., Environ. Sci. Technol. 2014, 48, 6859–6866; PubMed

Fibinger M. P., Davids T., Böttcher D., Bornscheuer U. T., Appl. Microbiol. Biotechnol. 2015, 99, 8955–8962. PubMed

Flemmig J., Zschaler J., Remmler J., Arnhold J., J. Biol. Chem. 2012, 287, 27913–27923. PubMed PMC

Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M., Biochemistry 1966, 5, 467–477. PubMed

Fernández-Fueyo E., Younes S. H. H., van Rootselaar S., Aben R. W. M., Renirie R., Wever R., Holtmann D., Rutjes F. P. J. T., Hollmann F., ACS Catal. 2016, 6, 5904–5907.

Albrett A. M., Ashby L. V., Dickerhof N., Kettle A. J., Winterbourn C. C., J. Biol. Chem. 2018, 293, 15715–15724; PubMed PMC

Sokolov A. V., Kostevich V. A., Kozlov S. O., Donskyi I. S., Vlasova I. I., Rudenko A. O., Zakharova E. T., Vasilyev V. B., Panasenko O. M., Free Radical Res. 2015, 49, 777–789; PubMed

Chen X., Lee K.-A., Ren X., Ryu J.-C., Kim G., Ryu J.-H., Lee W.-J., Yoon J., Nat. Protoc. 2016, 11, 1219–1228. PubMed

Janssen D. B., van der Ploeg J. R., Pries F., Biodegradation 1994, 5, 249–257. PubMed

Steele H. L., Jaeger K. E., Daniel R., Streit W. R., J. Mol. Microbiol. Biotechnol. 2009, 16, 25–37; PubMed

Chen B., Lim S., Kannan A., Alford S. C., Sunden F., Herschlag D., Dimov I. K., Baer T. M., Cochran J. R., Nat. Chem. Biol. 2016, 12, 76–81; PubMed PMC

Kintses B., Hein C., Mohamed M. F., Fischlechner M., Courtois F., Laine C., Hollfelder F., Chem. Biol. 2012, 19, 1001–1009; PubMed

Lim S., Chen B., Kariolis M. S., Dimov I. K., Baer T. M., Cochran J. R., ACS Chem. Biol. 2017, 12, 336–341; PubMed

Zinchenko A., Devenish S. R., Kintses B., Colin P. Y., Fischlechner M., Hollfelder F., Anal. Chem. 2014, 86, 2526–2533. PubMed PMC

Beier A., Damborsky J., Prokop Z., Adv. Synth. Catal. 2019, 361, 2438–2442.

Zhou G., Guan Y., Chromatographia 2016, 79, 319–325;

Setsukinai K., Urano Y., Kakinuma K., Majima H. J., Nagano T., J. Biol. Chem. 2003, 278, 3170–3175; PubMed

Chandrappa S., Vinaya K., Ramakrishnappa T., Rangappa K. S., Synlett 2010, 3019–3022.

Butler A., Walker J. V., Chem. Rev. 1993, 93, 1937–1944.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Engineering Dehalogenase Enzymes Using Variational Autoencoder-Generated Latent Spaces and Microfluidics

. 2025 Feb 24 ; 5 (2) : 838-850. [epub] 20250213

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace