halides Dotaz Zobrazit nápovědu
Quaternary ammonium salts (chloride, bromide and iodide; QUATs) with n-alkyl chain lengths between C8 and C18 have been synthesized under optimized experimental conditions. These compounds were tested in vitro for antimicrobial activity against representative bacterial strains (Staphylococcus aureus CIP 4.83, Enterococcus hirae CIP 5855, Pseudomonas aeruginosa CIP 82118, Escherichia coli CIP 53126, Mycobacterium smegmatis CIP 7326) and fungal species (Aspergillus niger ATCC 16404, Candida albicans IP 118079, Trichophyton interdigitale IP 146583). While these compounds showed moderate antifungal activity, several of them (particularly C14-I−) may be considered as highly potential antibacterial agents against S. aureus, E. hirae and E. coli with MIC values lower than that of commercial benzalkonium chloride and ciprofloxacin used as standards. The relationship between the lipophilicity and the antibacterial activity of the tested QUATs was quantified by a multiple linear regression method.
- MeSH
- antibakteriální látky farmakologie chemická syntéza chemie MeSH
- antifungální látky farmakologie chemická syntéza chemie MeSH
- kvartérní amoniové sloučeniny * farmakologie chemická syntéza chemie MeSH
- techniky in vitro statistika a číselné údaje MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- práce podpořená grantem MeSH
By means of molecular dynamics simulations with an all-atom force field, we investigated the affinities of alkali cations and halide anions for the dioleoylphosphatidylcholine lipid membrane in aqueous salt solutions. In addition, changes in phospholipid lateral diffusion and in headgroup mobility upon adding NaCl were observed using fluorescence spectroscopy. The simulations revealed that sodium is attracted to the headgroup region with its concentration being maximal in the vicinity of the phosphate groups. Potassium and cesium, however, do not preferentially adsorb to the membrane. Similarly, halide anions do not exhibit a strong affinity for the lipid headgroups but merely compensate for the positive charge of the sodium countercations. Nevertheless, larger halides such as bromide and iodide penetrate deeper into the headgroup region toward the boundary with the hydrophobic alkyl chain, this effect being likely underestimated within the present nonpolarizable force field. Addition of alkali halide salts modifies physical properties of the bilayer including the electronic density profiles, the electrostatic potential, and the area per lipid headgroup.
- MeSH
- adsorpce MeSH
- alkálie farmakologie chemie MeSH
- anionty farmakologie chemie MeSH
- biologické modely MeSH
- chlorid sodný chemie MeSH
- fluorescenční spektrometrie MeSH
- fosfatidylcholiny chemie MeSH
- halogenované uhlovodíky farmakologie chemie MeSH
- kationty farmakologie chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- počítačová simulace MeSH
- povrchové vlastnosti MeSH
- roztoky MeSH
- statická elektřina MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Combining the unique properties of peptides as versatile tools for nano- and biotechnology with lead halide perovskite nanoparticles can bring exceptional opportunities for the development of optoelectronics, photonics, and bioelectronics. As a first step towards this challenge sub 10 nm methylammonium lead bromide perovskite colloidal nanoparticles have been synthetizes using commercial cyclic peptide Cyclo(RGDFK), containing 5 amino acids, as a surface stabilizer. Perovskite nanoparticles passivated with Cyclo(RGDFK) possess charge transfer from the perovskite core to the peptide shell, resulting in lower photoluminescence quantum yields, which however opens a path for the application where charge transfer is favorable.
The crystal structure of the novel haloalkane dehalogenase DbeA from Bradyrhizobium elkanii USDA94 revealed the presence of two chloride ions buried in the protein interior. The first halide-binding site is involved in substrate binding and is present in all structurally characterized haloalkane dehalogenases. The second halide-binding site is unique to DbeA. To elucidate the role of the second halide-binding site in enzyme functionality, a two-point mutant lacking this site was constructed and characterized. These substitutions resulted in a shift in the substrate-specificity class and were accompanied by a decrease in enzyme activity, stability and the elimination of substrate inhibition. The changes in enzyme catalytic activity were attributed to deceleration of the rate-limiting hydrolytic step mediated by the lower basicity of the catalytic histidine.
The catalytic reaction of copper amine oxidase proceeds through a ping-pong mechanism comprising two half-reactions. In the initial half-reaction, the substrate amine reduces the Tyr-derived cofactor, topa quinone (TPQ), to an aminoresorcinol form (TPQamr) that is in equilibrium with a semiquinone radical (TPQsq) via an intramolecular electron transfer to the active-site copper. We have analyzed this reductive half-reaction in crystals of the copper amine oxidase from Arthrobacter globiformis. Anerobic soaking of the crystals with an amine substrate shifted the equilibrium toward TPQsq in an "on-copper" conformation, in which the 4-OH group ligated axially to the copper center, which was probably reduced to Cu(I). When the crystals were soaked with substrate in the presence of halide ions, which act as uncompetitive and noncompetitive inhibitors with respect to the amine substrate and dioxygen, respectively, the equilibrium in the crystals shifted toward the "off-copper" conformation of TPQamr. The halide ion was bound to the axial position of the copper center, thereby preventing TPQamr from adopting the on-copper conformation. Furthermore, transient kinetic analyses in the presence of viscogen (glycerol) revealed that only the rate constant in the step of TPQamr/TPQsq interconversion is markedly affected by the viscogen, which probably perturbs the conformational change. These findings unequivocally demonstrate that TPQ undergoes large conformational changes during the reductive half-reaction.
Haloalkane dehalogenases catalyze the hydrolysis of carbon-halogen bonds in various chlorinated, brominated and iodinated compounds. These enzymes have a conserved pair of halide-stabilizing residues that are important in substrate binding and stabilization of the transition state and the halide ion product via hydrogen bonding. In all previously known haloalkane dehalogenases, these residues are either a pair of tryptophans or a tryptophan-asparagine pair. The newly-isolated haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 (EC 3.8.1.5) possesses a unique halide-stabilizing tyrosine residue, Y109, in place of the conventional tryptophan. A variant of DatA with the Y109W mutation was created and the effects of this mutation on the structure and catalytic properties of the enzyme were studied using spectroscopy and pre-steady-state kinetic experiments. Quantum mechanical and molecular dynamics calculations were used to obtain a detailed analysis of the hydrogen-bonding patterns within the active sites of the wild-type and the mutant, as well as of the stabilization of the ligands as the reaction proceeds. Fluorescence quenching experiments suggested that replacing the tyrosine with tryptophan improves halide binding by 3.7-fold, presumably as a result of the introduction of an additional hydrogen bond. Kinetic analysis revealed that the mutation affected the substrate specificity of the enzyme and reduced its K(0.5) for selected halogenated substrates by a factor of 2-4, without impacting the rate-determining hydrolytic step. We conclude that DatA is the first natural haloalkane dehalogenase that stabilizes its substrate in the active site using only a single hydrogen bond, which is a new paradigm in catalysis by this enzyme family.
- MeSH
- Agrobacterium tumefaciens enzymologie metabolismus MeSH
- analýza hlavních komponent MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- biokatalýza MeSH
- halogenované uhlovodíky chemie metabolismus MeSH
- halogeny chemie metabolismus MeSH
- hydrolasy chemie genetika metabolismus MeSH
- hydrolýza MeSH
- katalytická doména MeSH
- konformace proteinů MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- mutageneze cílená MeSH
- mutantní proteiny chemie metabolismus MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- stabilita enzymů MeSH
- substituce aminokyselin MeSH
- substrátová specifita MeSH
- tyrosin chemie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Novel direct C-H borylations of 7-deazapurines to position 8 by B2pin2 under Ir catalysis were followed by Suzuki cross-couplings with aryl halides and other functional group transformations to give diverse 8-substituted 7-deazaadenines.
Procedures for the extraction-spectrophotometric determination of tris(2-chloroethyl)amine, an alkylating agent known as a drug as well as a chemical warfare agent (nitrogen mustard HN-3), with 7 acid-base indicators of a triphenylmethane lactone type, phthaleins, were developed. Representatives of phthaleins without an oxygen bridge (thymolphthalein, o-cresolphthalein, naphtholphthalein) and with an oxygen bridge (fluorescein, 2',7'-dichlorofluorescein, eosin B and eosin Y) were used. The methods were based on the formation of ion pair complexes. Chloroform was used as a non-polar solvent for an extraction. The conditions to determine were optimized for the optimal pH of the buffer and the concentration of a phthalein as a reagent. The dependence on the reaction time in a water phase and the stoichiometry of extraction products were studied. The detection limits and the limits of the determination of separate procedures and conditional extraction constants were determined. Comparison with the spectrophotometric method of the group determination of alkyl halides and acyl halides using alkaline ethanol-water solution of thymolphthalein, the so-called T-135 agent, was conducted. While studying the selectivity, the possible interference of bis(2-chloroethyl)sulphide and 3 nitrogen mustards in the proposed procedures were verified. Copyright © 2016 John Wiley & Sons, Ltd.
- MeSH
- alkylační látky analýza izolace a purifikace MeSH
- chemické bojové látky analýza izolace a purifikace MeSH
- fenolftaleiny chemie MeSH
- koncentrace vodíkových iontů MeSH
- limita detekce MeSH
- pufry MeSH
- sloučeniny dusíkatého yperitu analýza izolace a purifikace MeSH
- spektrofotometrie metody MeSH
- voda analýza MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH