Engineering Dehalogenase Enzymes Using Variational Autoencoder-Generated Latent Spaces and Microfluidics

. 2025 Feb 24 ; 5 (2) : 838-850. [epub] 20250213

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40017771

Enzymes play a crucial role in sustainable industrial applications, with their optimization posing a formidable challenge due to the intricate interplay among residues. Computational methodologies predominantly rely on evolutionary insights of homologous sequences. However, deciphering the evolutionary variability and complex dependencies among residues presents substantial hurdles. Here, we present a new machine-learning method based on variational autoencoders and evolutionary sampling strategy to address those limitations. We customized our method to generate novel sequences of model enzymes, haloalkane dehalogenases. Three design-build-test cycles improved the solubility of variants from 11% to 75%. Thorough experimental validation including the microfluidic device MicroPEX resulted in 20 multiple-point variants. Nine of them, sharing as little as 67% sequence similarity with the template, showed a melting temperature increase of up to 9 °C and an average improvement of 3 °C. The most stable variant demonstrated a 3.5-fold increase in activity compared to the template. High-quality experimental data collected with 20 variants represent a valuable data set for the critical validation of novel protein design approaches. Python scripts, jupyter notebooks, and data sets are available on GitHub (https://github.com/loschmidt/vae-dehalogenases), and interactive calculations will be possible via https://loschmidt.chemi.muni.cz/fireprotasr/.

Zobrazit více v PubMed

Wu S.; Snajdrova R.; Moore J. C.; Baldenius K.; Bornscheuer U. T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem., Int. Ed. 2021, 60 (1), 88–119. 10.1002/anie.202006648. PubMed DOI PMC

Bell E. L.; Finnigan W.; France S. P.; Green A. P.; Hayes M. A.; Hepworth L. J.; Lovelock S. L.; Niikura H.; Osuna S.; Romero E.; Ryan K. S.; Turner N. J.; Flitsch S. L. Biocatalysis. Nat. Rev. Methods Primer 2021, 1 (1), 1–21. 10.1038/s43586-021-00044-z. DOI

Silvestre B. S.; Ţîrcă D. M. Innovations for Sustainable Development: Moving toward a Sustainable Future. J. Clean. Prod. 2019, 208, 325–332. 10.1016/j.jclepro.2018.09.244. DOI

Tiso T.; Winter B.; Wei R.; Hee J.; de Witt J.; Wierckx N.; Quicker P.; Bornscheuer U. T.; Bardow A.; Nogales J.; Blank L. M. The Metabolic Potential of Plastics as Biotechnological Carbon Sources - Review and Targets for the Future. Metab. Eng. 2022, 71, 77–98. 10.1016/j.ymben.2021.12.006. PubMed DOI

Planas-Iglesias J.; Marques S. M.; Pinto G. P.; Musil M.; Stourac J.; Damborsky J.; Bednar D. Computational Design of Enzymes for Biotechnological Applications. Biotechnol. Adv. 2021, 47, 107696.10.1016/j.biotechadv.2021.107696. PubMed DOI

Marques S. M.; Planas-Iglesias J.; Damborsky J. Web-Based Tools for Computational Enzyme Design. Curr. Opin. Struct. Biol. 2021, 69, 19–34. 10.1016/j.sbi.2021.01.010. PubMed DOI

Kamerlin S. C. L.; Warshel A. The Empirical Valence Bond Model: Theory and Applications. WIREs Comput. Mol. Sci. 2011, 1 (1), 30–45. 10.1002/wcms.10. DOI

Vardi-Kilshtain A.; Roca M.; Warshel A. The Empirical Valence Bond as an Effective Strategy for Computer-Aided Enzyme Design. Biotechnol. J. 2009, 4 (4), 495–500. 10.1002/biot.200800299. PubMed DOI PMC

Oanca G.; van der Ent F.; Åqvist J. Efficient Empirical Valence Bond Simulations with GROMACS. J. Chem. Theory Comput. 2023, 19 (17), 6037–6045. 10.1021/acs.jctc.3c00714. PubMed DOI PMC

Kubař T.; Elstner M.; Cui Q. Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines. Annu. Rev. Biophys. 2023, 52 (1), 525–551. 10.1146/annurev-biophys-111622-091140. PubMed DOI PMC

van der Kamp M. W.; Mulholland A. J. Combined Quantum Mechanics/Molecular Mechanics (QM/MM) Methods in Computational Enzymology. Biochemistry 2013, 52 (16), 2708–2728. 10.1021/bi400215w. PubMed DOI

Baker D. What Has de Novo Protein Design Taught Us about Protein Folding and Biophysics?. Protein Sci. 2019, 28 (4), 678–683. 10.1002/pro.3588. PubMed DOI PMC

Taverna D. M.; Goldstein R. A. Why Are Proteins Marginally Stable?. Proteins Struct. Funct. Bioinforma. 2002, 46 (1), 105–109. 10.1002/prot.10016. PubMed DOI

Yang K. K.; Wu Z.; Arnold F. H. Machine-Learning-Guided Directed Evolution for Protein Engineering. Nat. Methods 2019, 16 (8), 687–694. 10.1038/s41592-019-0496-6. PubMed DOI

Wu Z.; Kan S. B. J.; Lewis R. D.; Wittmann B. J.; Arnold F. H. Machine Learning-Assisted Directed Protein Evolution with Combinatorial Libraries. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (18), 8852–8858. 10.1073/pnas.1901979116. PubMed DOI PMC

Jumper J.; Evans R.; Pritzel A.; Green T.; Figurnov M.; Ronneberger O.; Tunyasuvunakool K.; Bates R.; Žídek A.; Potapenko A.; Bridgland A.; Meyer C.; Kohl S. A. A.; Ballard A. J.; Cowie A.; Romera-Paredes B.; Nikolov S.; Jain R.; Adler J.; Back T.; Petersen S.; Reiman D.; Clancy E.; Zielinski M.; Steinegger M.; Pacholska M.; Berghammer T.; Bodenstein S.; Silver D.; Vinyals O.; Senior A. W.; Kavukcuoglu K.; Kohli P.; Hassabis D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. 10.1038/s41586-021-03819-2. PubMed DOI PMC

Jones B. J.; Kan C. N. E.; Luo C.; Kazlauskas R. J.. Chapter Six - Consensus Finder Web Tool to Predict Stabilizing Substitutions in Proteins. In Methods in Enzymology; Tawfik D. S., Ed.; Enzyme Engineering and Evolution: General Methods; Academic Press, 2020; Vol. 643, pp 129–148. 10.1016/bs.mie.2020.07.010. PubMed DOI

Xie W. J.; Asadi M.; Warshel A. Enhancing Computational Enzyme Design by a Maximum Entropy Strategy. Proc. Natl. Acad. Sci. U. S. A. 2022, 119 (7), e212235511910.1073/pnas.2122355119. PubMed DOI PMC

Gelfand N.; Orel V.; Cui W.; Damborský J.; Li C.; Prokop Z.; Xie W. J.; Warshel A. Biochemical and Computational Characterization of Haloalkane Dehalogenase Variants Designed by Generative AI: Accelerating the SN2 Step. J. Am. Chem. Soc. 2025, 147, 2747.10.1021/jacs.4c15551. PubMed DOI

Sumbalova L.; Stourac J.; Martinek T.; Bednar D.; Damborsky J. HotSpot Wizard 3.0: Web Server for Automated Design of Mutations and Smart Libraries Based on Sequence Input Information. Nucleic Acids Res. 2018, 46 (W1), W356–W362. 10.1093/nar/gky417. PubMed DOI PMC

Furukawa R.; Toma W.; Yamazaki K.; Akanuma S. Ancestral Sequence Reconstruction Produces Thermally Stable Enzymes with Mesophilic Enzyme-like Catalytic Properties. Sci. Rep. 2020, 10 (1), 15493.10.1038/s41598-020-72418-4. PubMed DOI PMC

Musil M.; Khan R. T.; Beier A.; Stourac J.; Konegger H.; Damborsky J.; Bednar D. FireProtASR: A Web Server for Fully Automated Ancestral Sequence Reconstruction. Brief. Bioinform. 2021, 22 (4), bbaa337.10.1093/bib/bbaa337. PubMed DOI PMC

Livada J.; Vargas A. M.; Martinez C. A.; Lewis R. D. Ancestral Sequence Reconstruction Enhances Gene Mining Efforts for Industrial Ene Reductases by Expanding Enzyme Panels with Thermostable Catalysts. ACS Catal. 2023, 13 (4), 2576–2585. 10.1021/acscatal.2c03859. DOI

Prakinee K.; Phaisan S.; Kongjaroon S.; Chaiyen P. Ancestral Sequence Reconstruction for Designing Biocatalysts and Investigating Their Functional Mechanisms. JACS Au 2024, 4 (12), 4571–4591. 10.1021/jacsau.4c00653. PubMed DOI PMC

Lehmann M.; Pasamontes L.; Lassen S. F.; Wyss M. The Consensus Concept for Thermostability Engineering of Proteins. Biochim. Biophys. Acta BBA - Protein Struct. Mol. Enzymol. 2000, 1543 (2), 408–415. 10.1016/S0167-4838(00)00238-7. PubMed DOI

Morcos F.; Pagnani A.; Lunt B.; Bertolino A.; Marks D. S.; Sander C.; Zecchina R.; Onuchic J. N.; Hwa T.; Weigt M. Direct-Coupling Analysis of Residue Coevolution Captures Native Contacts across Many Protein Families. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (49), E1293-E130110.1073/pnas.1111471108. PubMed DOI PMC

Alley E. C.; Khimulya G.; Biswas S.; AlQuraishi M.; Church G. M. Unified Rational Protein Engineering with Sequence-Based Deep Representation Learning. Nat. Methods 2019, 16 (12), 1315–1322. 10.1038/s41592-019-0598-1. PubMed DOI PMC

Hawkins-Hooker A.; Depardieu F.; Baur S.; Couairon G.; Chen A.; Bikard D. Generating Functional Protein Variants with Variational Autoencoders. PLOS Comput. Biol. 2021, 17 (2), e100873610.1371/journal.pcbi.1008736. PubMed DOI PMC

Lin Z.; Akin H.; Rao R.; Hie B.; Zhu Z.; Lu W.; Smetanin N.; Verkuil R.; Kabeli O.; Shmueli Y.; dos Santos Costa A.; Fazel-Zarandi M.; Sercu T.; Candido S.; Rives A. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379 (6637), 1123–1130. 10.1126/science.ade2574. PubMed DOI

Elnaggar A.; Essam H.; Salah-Eldin W.; Moustafa W.; Elkerdawy M.; Rochereau C.; Rost B.. Ankh: Optimized Protein Language Model Unlocks General-Purpose Modelling. arXiv, January 16, 2023. 10.48550/arXiv.2301.06568. DOI

Wu K. E.; Yang K. K.; van den Berg R.;. et al.Protein structure generation via folding diffusion. Nat. Commun., 15, 2024. 10.1038/s41467-024-45051-2. PubMed DOI PMC

Watson J. L.; Juergens D.; Bennett N. R.; Trippe B. L.; Yim J.; Eisenach H. E.; Ahern W.; Borst A. J.; Ragotte R. J.; Milles L. F.; Wicky B. I. M.; Hanikel N.; Pellock S. J.; Courbet A.; Sheffler W.; Wang J.; Venkatesh P.; Sappington I.; Torres S. V.; Lauko A.; De Bortoli V.; Mathieu E.; Ovchinnikov S.; Barzilay R.; Jaakkola T. S.; DiMaio F.; Baek M.; Baker D. De Novo Design of Protein Structure and Function with RFdiffusion. Nature 2023, 620 (7976), 1089–1100. 10.1038/s41586-023-06415-8. PubMed DOI PMC

Corso G.; Jing B.; Barzilay R.; Jaakkola T.. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. In Conference on Learning Representations (ICLR 2023), 2023.

Alamdari S.; Thakkar N.; van den Berg R.; Lu A.; Fusi N.; Amini A.; Yang K.. Protein Generation with Evolutionary Diffusion: Sequence Is All You Need; bioRxiv, 2023. 10.1101/2023.09.11.556673. DOI

Lisanza S. L.; Gershon J. M.; Tipps S. W. K.; Sims J. N.; Arnoldt L.; Hendel S. J.; Simma M. K.; Liu G.; Yase M.; Wu H.; Tharp C. D.; Li X.; Kang A.; Brackenbrough E.; Bera A. K.; Gerben S.; Wittmann B. J.; McShan A. C.; Baker D. Multistate and Functional Protein Design Using RoseTTAFold Sequence Space Diffusion. Nat. Biotechnol. 2024, 1–11. 10.1038/s41587-024-02395-w. PubMed DOI

Repecka D.; Jauniskis V.; Karpus L.; Rembeza E.; Rokaitis I.; Zrimec J.; Poviloniene S.; Laurynenas A.; Viknander S.; Abuajwa W.; Savolainen O.; Meskys R.; Engqvist M. K. M.; Zelezniak A. Expanding Functional Protein Sequence Spaces Using Generative Adversarial Networks. Nat. Mach. Intell. 2021, 3 (4), 324–333. 10.1038/s42256-021-00310-5. DOI

Kingma D. P.; Welling M.. Auto-Encoding Variational Bayes. arXiv, December 10, 2022. 10.48550/arXiv.1312.6114. DOI

Eguchi R. R.; Choe C. A.; Huang P.-S. Ig-VAE: Generative Modeling of Protein Structure by Direct 3D Coordinate Generation. PLOS Comput. Biol. 2022, 18 (6), e101027110.1371/journal.pcbi.1010271. PubMed DOI PMC

Gómez-Bombarelli R.; Wei J. N.; Duvenaud D.; Hernández-Lobato J. M.; Sánchez-Lengeling B.; Sheberla D.; Aguilera-Iparraguirre J.; Hirzel T. D.; Adams R. P.; Aspuru-Guzik A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci. 2018, 4 (2), 268–276. 10.1021/acscentsci.7b00572. PubMed DOI PMC

Lian X.; Praljak N.; Subramanian S. K.; Wasinger S.; Ranganathan R.; Ferguson A. L. Deep Learning-Enabled Design of Synthetic Orthologs of a Signaling Protein. Cell Syst. 2024, 15, 725.10.1016/j.cels.2024.07.005. PubMed DOI

Ding X.; Zou Z.; Brooks C. L. III Deciphering Protein Evolution and Fitness Landscapes with Latent Space Models. Nat. Commun. 2019, 10 (1), 5644.10.1038/s41467-019-13633-0. PubMed DOI PMC

Ziegler C.; Martin J.; Sinner C.; Morcos F. Latent Generative Landscapes as Maps of Functional Diversity in Protein Sequence Space. Nat. Commun. 2023, 14 (1), 2222.10.1038/s41467-023-37958-z. PubMed DOI PMC

Detlefsen N. S.; Hauberg S.; Boomsma W. Learning Meaningful Representations of Protein Sequences. Nat. Commun. 2022, 13 (1), 1914.10.1038/s41467-022-29443-w. PubMed DOI PMC

Barghout R. A.; Xu Z.; Betala S.; Mahadevan R. Advances in Generative Modeling Methods and Datasets to Design Novel Enzymes for Renewable Chemicals and Fuels. Curr. Opin. Biotechnol. 2023, 84, 103007.10.1016/j.copbio.2023.103007. PubMed DOI

Janssen D. B. Evolving Haloalkane Dehalogenases. Curr. Opin. Chem. Biol. 2004, 8 (2), 150–159. 10.1016/j.cbpa.2004.02.012. PubMed DOI

Koudelakova T.; Bidmanova S.; Dvorak P.; Pavelka A.; Chaloupkova R.; Prokop Z.; Damborsky J. Haloalkane Dehalogenases: Biotechnological Applications. Biotechnol. J. 2013, 8 (1), 32–45. 10.1002/biot.201100486. PubMed DOI

Hon J.; Borko S.; Stourac J.; Prokop Z.; Zendulka J.; Bednar D.; Martinek T.; Damborsky J. EnzymeMiner: Automated Mining of Soluble Enzymes with Diverse Structures, Catalytic Properties and Stabilities. Nucleic Acids Res. 2020, 48 (W1), W104–W109. 10.1093/nar/gkaa372. PubMed DOI PMC

Babkova P.; Sebestova E.; Brezovsky J.; Chaloupkova R.; Damborsky J. Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. ChemBioChem. 2017, 18 (14), 1448–1456. 10.1002/cbic.201700197. PubMed DOI

Kunka A.; Marques S. M.; Havlasek M.; Vasina M.; Velatova N.; Cengelova L.; Kovar D.; Damborsky J.; Marek M.; Bednar D.; Prokop Z. Advancing Enzyme’s Stability and Catalytic Efficiency through Synergy of Force-Field Calculations, Evolutionary Analysis, and Machine Learning. ACS Catal. 2023, 13 (19), 12506–12518. 10.1021/acscatal.3c02575. PubMed DOI PMC

Beerens K.; Mazurenko S.; Kunka A.; Marques S. M.; Hansen N.; Musil M.; Chaloupkova R.; Waterman J.; Brezovsky J.; Bednar D.; Prokop Z.; Damborsky J. Evolutionary Analysis As a Powerful Complement to Energy Calculations for Protein Stabilization. ACS Catal. 2018, 8 (10), 9420–9428. 10.1021/acscatal.8b01677. DOI

Sohn K.; Lee H.; Yan X.. Learning Structured Output Representation Using Deep Conditional Generative Models. In Advances in Neural Information Processing Systems; Curran Associates, Inc., 2015; Vol. 28.

Hon J.; Marusiak M.; Martinek T.; Kunka A.; Zendulka J.; Bednar D.; Damborsky J. SoluProt: Prediction of Soluble Protein Expression in Escherichia Coli. Bioinformatics 2021, 37 (1), 23–28. 10.1093/bioinformatics/btaa1102. PubMed DOI PMC

Yao Y.; Wang X.; Ma Y.; Fang H.; Wei J.; Chen L.; Anaissi A.; Braytee A.. Conditional Variational Autoencoder with Balanced Pre-Training for Generative Adversarial Networks. In 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA); 2022; pp 1–10. 10.1109/DSAA54385.2022.10032367. DOI

McGee F.; Hauri S.; Novinger Q.; Vucetic S.; Levy R. M.; Carnevale V.; Haldane A. The Generative Capacity of Probabilistic Protein Sequence Models. Nat. Commun. 2021, 12 (1), 6302.10.1038/s41467-021-26529-9. PubMed DOI PMC

Mirdita M.; Schütze K.; Moriwaki Y.; Heo L.; Ovchinnikov S.; Steinegger M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19 (6), 679–682. 10.1038/s41592-022-01488-1. PubMed DOI PMC

The PyMOL Molecular Graphics System, Version 1.2r3pre; Schrödinger, LLC.

Shroff R.; Cole A. W.; Diaz D. J.; Morrow B. R.; Donnell I.; Annapareddy A.; Gollihar J.; Ellington A. D.; Thyer R. Discovery of Novel Gain-of-Function Mutations Guided by Structure-Based Deep Learning. ACS Synth. Biol. 2020, 9 (11), 2927–2935. 10.1021/acssynbio.0c00345. PubMed DOI

Aslan-Üzel A. S.; Beier A.; Kovář D.; Cziegler C.; Padhi S. K.; Schuiten E. D.; Dörr M.; Böttcher D.; Hollmann F.; Rudroff F.; Mihovilovic M. D.; Buryška T.; Damborský J.; Prokop Z.; Badenhorst C. P. S.; Bornscheuer U. T. An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation. ChemCatChem. 2020, 12 (7), 2032–2039. 10.1002/cctc.201901891. PubMed DOI PMC

Drew E. D.; Janes R. W. PDBMD2CD: Providing Predicted Protein Circular Dichroism Spectra from Multiple Molecular Dynamics-Generated Protein Structures. Nucleic Acids Res. 2020, 48 (W1), W17–W24. 10.1093/nar/gkaa296. PubMed DOI PMC

Micsonai A.; Moussong É.; Wien F.; Boros E.; Vadászi H.; Murvai N.; Lee Y.-H.; Molnár T.; Réfrégiers M.; Goto Y.; Tantos Á.; Kardos J. BeStSel: Webserver for Secondary Structure and Fold Prediction for Protein CD Spectroscopy. Nucleic Acids Res. 2022, 50 (W1), W90–W98. 10.1093/nar/gkac345. PubMed DOI PMC

Vasina M.; Vanacek P.; Hon J.; Kovar D.; Faldynova H.; Kunka A.; Buryska T.; Badenhorst C. P. S.; Mazurenko S.; Bednar D.; Stavrakis S.; Bornscheuer U. T.; deMello A.; Damborsky J.; Prokop Z. Advanced Database Mining of Efficient Haloalkane Dehalogenases by Sequence and Structure Bioinformatics and Microfluidics. Chem. Catal. 2022, 2 (10), 2704–2725. 10.1016/j.checat.2022.09.011. DOI

Buryska T.; Vasina M.; Gielen F.; Vanacek P.; van Vliet L.; Jezek J.; Pilat Z.; Zemanek P.; Damborsky J.; Hollfelder F.; Prokop Z. Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics. Anal. Chem. 2019, 91 (15), 10008–10015. 10.1021/acs.analchem.9b01839. PubMed DOI

Vasina M.; Vanacek P.; Damborsky J.; Prokop Z.. Chapter Three - Exploration of Enzyme Diversity: High-Throughput Techniques for Protein Production and Microscale Biochemical Characterization. In Methods in Enzymology; Tawfik D. S., Ed.; Enzyme Engineering and Evolution: General Methods; Academic Press, 2020; Vol. 643, pp 51–85. 10.1016/bs.mie.2020.05.004. PubMed DOI

Wong K. M.; Suchard M. A.; Huelsenbeck J. P. Alignment Uncertainty and Genomic Analysis. Science 2008, 319 (5862), 473–476. 10.1126/science.1151532. PubMed DOI

Jongkind E. P. J.; Domenech J.; Govers A.; van den Broek M.; Daran J.-M.; Grogan G.; Paul C. E. Discovery and Synthetic Applications of a NAD(P)H-Dependent Reductive Aminase from Rhodococcus Erythropolis. ACS Catal. 2025, 15, 211–219. 10.1021/acscatal.4c04935. PubMed DOI PMC

Love A. C.; Purdy T. N.; Hubert F. M.; Kirwan E. J.; Holland D. C.; Moore B. S. Discovery of Latent Cannabichromene Cyclase Activity in Marine Bacterial Flavoenzymes. ACS Synth. Biol. 2024, 13 (4), 1343–1354. 10.1021/acssynbio.4c00051. PubMed DOI PMC

Pardo I.; Bednar D.; Calero P.; Volke D. C.; Damborský J.; Nikel P. I. A Nonconventional Archaeal Fluorinase Identified by In Silico Mining for Enhanced Fluorine Biocatalysis. ACS Catal. 2022, 12 (11), 6570–6577. 10.1021/acscatal.2c01184. PubMed DOI PMC

Johnson S. R.; Monaco S.; Massie K.; Syed Z.. Generating Novel Protein Sequences Using Gibbs Sampling of Masked Language Models. bioRxiv, January 27, 2021. 10.1101/2021.01.26.428322. DOI

Costello Z.; Martin H. G.. How to Hallucinate Functional Proteins. arXiv, March 1, 2019. 10.48550/arXiv.1903.00458. DOI

Spence M. A.; Kaczmarski J. A.; Saunders J. W.; Jackson C. J. Ancestral Sequence Reconstruction for Protein Engineers. Curr. Opin. Struct. Biol. 2021, 69, 131–141. 10.1016/j.sbi.2021.04.001. PubMed DOI

Koudelakova T.; Chovancova E.; Brezovsky J.; Monincova M.; Fortova A.; Jarkovsky J.; Damborsky J. Substrate Specificity of Haloalkane Dehalogenases. Biochem. J. 2011, 435 (2), 345–354. 10.1042/BJ20101405. PubMed DOI

Johnson S. R.; Fu X.; Viknander S.; Goldin C.; Monaco S.; Zelezniak A.; Yang K. K.. Computational scoring and experimental evaluation of enzymes generated by neural networks. Nat. Biotechnol., 2024. PubMed

Vasina M.; Kovar D.; Damborsky J.; Ding Y.; Yang T.; deMello A.; Mazurenko S.; Stavrakis S.; Prokop Z. In-Depth Analysis of Biocatalysts by Microfluidics: An Emerging Source of Data for Machine Learning. Biotechnol. Adv. 2023, 66, 108171.10.1016/j.biotechadv.2023.108171. PubMed DOI

Amani K.; Fish M.; Smith M. D.; Castroverde C. D. M.. NeuroFold: A Multimodal Approach to Generating Novel Protein Variants in Silico. bioRxiv, March 14, 2024. 10.1101/2024.03.12.584504. DOI

Sato Y.; Natsume R.; Tsuda M.; Damborsky J.; Nagata Y.; Senda T. Crystallization and Preliminary Crystallographic Analysis of a Haloalkane Dehalogenase, DbjA, from Bradyrhizobium Japonicum USDA110. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 2007, 63 (4), 294–296. 10.1107/S1744309107008652. PubMed DOI PMC

Cao Y.; Geddes T. A.; Yang J. Y. H.; Yang P. Ensemble Deep Learning in Bioinformatics. Nat. Mach. Intell. 2020, 2 (9), 500–508. 10.1038/s42256-020-0217-y. DOI

Rao R. M.; Liu J.; Verkuil R.; Meier J.; Canny J.; Abbeel P.; Sercu T.; Rives A.. MSA Transformer. In Proceedings of the 38th International Conference on Machine Learning; PMLR, 2021; pp 8844–8856.

Castro E.; Godavarthi A.; Rubinfien J.; Givechian K.; Bhaskar D.; Krishnaswamy S. Transformer-Based Protein Generation with Regularized Latent Space Optimization. Nat. Mach. Intell. 2022, 4 (10), 840–851. 10.1038/s42256-022-00532-1. DOI

Ganaie M. A.; Hu M.; Malik A. K.; Tanveer M.; Suganthan P. N. Ensemble Deep Learning: A Review. Eng. Appl. Artif. Intell. 2022, 115, 105151.10.1016/j.engappai.2022.105151. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace