Engineering Dehalogenase Enzymes Using Variational Autoencoder-Generated Latent Spaces and Microfluidics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40017771
PubMed Central
PMC11862945
DOI
10.1021/jacsau.4c01101
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Enzymes play a crucial role in sustainable industrial applications, with their optimization posing a formidable challenge due to the intricate interplay among residues. Computational methodologies predominantly rely on evolutionary insights of homologous sequences. However, deciphering the evolutionary variability and complex dependencies among residues presents substantial hurdles. Here, we present a new machine-learning method based on variational autoencoders and evolutionary sampling strategy to address those limitations. We customized our method to generate novel sequences of model enzymes, haloalkane dehalogenases. Three design-build-test cycles improved the solubility of variants from 11% to 75%. Thorough experimental validation including the microfluidic device MicroPEX resulted in 20 multiple-point variants. Nine of them, sharing as little as 67% sequence similarity with the template, showed a melting temperature increase of up to 9 °C and an average improvement of 3 °C. The most stable variant demonstrated a 3.5-fold increase in activity compared to the template. High-quality experimental data collected with 20 variants represent a valuable data set for the critical validation of novel protein design approaches. Python scripts, jupyter notebooks, and data sets are available on GitHub (https://github.com/loschmidt/vae-dehalogenases), and interactive calculations will be possible via https://loschmidt.chemi.muni.cz/fireprotasr/.
Zobrazit více v PubMed
Wu S.; Snajdrova R.; Moore J. C.; Baldenius K.; Bornscheuer U. T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem., Int. Ed. 2021, 60 (1), 88–119. 10.1002/anie.202006648. PubMed DOI PMC
Bell E. L.; Finnigan W.; France S. P.; Green A. P.; Hayes M. A.; Hepworth L. J.; Lovelock S. L.; Niikura H.; Osuna S.; Romero E.; Ryan K. S.; Turner N. J.; Flitsch S. L. Biocatalysis. Nat. Rev. Methods Primer 2021, 1 (1), 1–21. 10.1038/s43586-021-00044-z. DOI
Silvestre B. S.; Ţîrcă D. M. Innovations for Sustainable Development: Moving toward a Sustainable Future. J. Clean. Prod. 2019, 208, 325–332. 10.1016/j.jclepro.2018.09.244. DOI
Tiso T.; Winter B.; Wei R.; Hee J.; de Witt J.; Wierckx N.; Quicker P.; Bornscheuer U. T.; Bardow A.; Nogales J.; Blank L. M. The Metabolic Potential of Plastics as Biotechnological Carbon Sources - Review and Targets for the Future. Metab. Eng. 2022, 71, 77–98. 10.1016/j.ymben.2021.12.006. PubMed DOI
Planas-Iglesias J.; Marques S. M.; Pinto G. P.; Musil M.; Stourac J.; Damborsky J.; Bednar D. Computational Design of Enzymes for Biotechnological Applications. Biotechnol. Adv. 2021, 47, 107696.10.1016/j.biotechadv.2021.107696. PubMed DOI
Marques S. M.; Planas-Iglesias J.; Damborsky J. Web-Based Tools for Computational Enzyme Design. Curr. Opin. Struct. Biol. 2021, 69, 19–34. 10.1016/j.sbi.2021.01.010. PubMed DOI
Kamerlin S. C. L.; Warshel A. The Empirical Valence Bond Model: Theory and Applications. WIREs Comput. Mol. Sci. 2011, 1 (1), 30–45. 10.1002/wcms.10. DOI
Vardi-Kilshtain A.; Roca M.; Warshel A. The Empirical Valence Bond as an Effective Strategy for Computer-Aided Enzyme Design. Biotechnol. J. 2009, 4 (4), 495–500. 10.1002/biot.200800299. PubMed DOI PMC
Oanca G.; van der Ent F.; Åqvist J. Efficient Empirical Valence Bond Simulations with GROMACS. J. Chem. Theory Comput. 2023, 19 (17), 6037–6045. 10.1021/acs.jctc.3c00714. PubMed DOI PMC
Kubař T.; Elstner M.; Cui Q. Hybrid Quantum Mechanical/Molecular Mechanical Methods For Studying Energy Transduction in Biomolecular Machines. Annu. Rev. Biophys. 2023, 52 (1), 525–551. 10.1146/annurev-biophys-111622-091140. PubMed DOI PMC
van der Kamp M. W.; Mulholland A. J. Combined Quantum Mechanics/Molecular Mechanics (QM/MM) Methods in Computational Enzymology. Biochemistry 2013, 52 (16), 2708–2728. 10.1021/bi400215w. PubMed DOI
Baker D. What Has de Novo Protein Design Taught Us about Protein Folding and Biophysics?. Protein Sci. 2019, 28 (4), 678–683. 10.1002/pro.3588. PubMed DOI PMC
Taverna D. M.; Goldstein R. A. Why Are Proteins Marginally Stable?. Proteins Struct. Funct. Bioinforma. 2002, 46 (1), 105–109. 10.1002/prot.10016. PubMed DOI
Yang K. K.; Wu Z.; Arnold F. H. Machine-Learning-Guided Directed Evolution for Protein Engineering. Nat. Methods 2019, 16 (8), 687–694. 10.1038/s41592-019-0496-6. PubMed DOI
Wu Z.; Kan S. B. J.; Lewis R. D.; Wittmann B. J.; Arnold F. H. Machine Learning-Assisted Directed Protein Evolution with Combinatorial Libraries. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (18), 8852–8858. 10.1073/pnas.1901979116. PubMed DOI PMC
Jumper J.; Evans R.; Pritzel A.; Green T.; Figurnov M.; Ronneberger O.; Tunyasuvunakool K.; Bates R.; Žídek A.; Potapenko A.; Bridgland A.; Meyer C.; Kohl S. A. A.; Ballard A. J.; Cowie A.; Romera-Paredes B.; Nikolov S.; Jain R.; Adler J.; Back T.; Petersen S.; Reiman D.; Clancy E.; Zielinski M.; Steinegger M.; Pacholska M.; Berghammer T.; Bodenstein S.; Silver D.; Vinyals O.; Senior A. W.; Kavukcuoglu K.; Kohli P.; Hassabis D. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596 (7873), 583–589. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Jones B. J.; Kan C. N. E.; Luo C.; Kazlauskas R. J.. Chapter Six - Consensus Finder Web Tool to Predict Stabilizing Substitutions in Proteins. In Methods in Enzymology; Tawfik D. S., Ed.; Enzyme Engineering and Evolution: General Methods; Academic Press, 2020; Vol. 643, pp 129–148. 10.1016/bs.mie.2020.07.010. PubMed DOI
Xie W. J.; Asadi M.; Warshel A. Enhancing Computational Enzyme Design by a Maximum Entropy Strategy. Proc. Natl. Acad. Sci. U. S. A. 2022, 119 (7), e212235511910.1073/pnas.2122355119. PubMed DOI PMC
Gelfand N.; Orel V.; Cui W.; Damborský J.; Li C.; Prokop Z.; Xie W. J.; Warshel A. Biochemical and Computational Characterization of Haloalkane Dehalogenase Variants Designed by Generative AI: Accelerating the SN2 Step. J. Am. Chem. Soc. 2025, 147, 2747.10.1021/jacs.4c15551. PubMed DOI
Sumbalova L.; Stourac J.; Martinek T.; Bednar D.; Damborsky J. HotSpot Wizard 3.0: Web Server for Automated Design of Mutations and Smart Libraries Based on Sequence Input Information. Nucleic Acids Res. 2018, 46 (W1), W356–W362. 10.1093/nar/gky417. PubMed DOI PMC
Furukawa R.; Toma W.; Yamazaki K.; Akanuma S. Ancestral Sequence Reconstruction Produces Thermally Stable Enzymes with Mesophilic Enzyme-like Catalytic Properties. Sci. Rep. 2020, 10 (1), 15493.10.1038/s41598-020-72418-4. PubMed DOI PMC
Musil M.; Khan R. T.; Beier A.; Stourac J.; Konegger H.; Damborsky J.; Bednar D. FireProtASR: A Web Server for Fully Automated Ancestral Sequence Reconstruction. Brief. Bioinform. 2021, 22 (4), bbaa337.10.1093/bib/bbaa337. PubMed DOI PMC
Livada J.; Vargas A. M.; Martinez C. A.; Lewis R. D. Ancestral Sequence Reconstruction Enhances Gene Mining Efforts for Industrial Ene Reductases by Expanding Enzyme Panels with Thermostable Catalysts. ACS Catal. 2023, 13 (4), 2576–2585. 10.1021/acscatal.2c03859. DOI
Prakinee K.; Phaisan S.; Kongjaroon S.; Chaiyen P. Ancestral Sequence Reconstruction for Designing Biocatalysts and Investigating Their Functional Mechanisms. JACS Au 2024, 4 (12), 4571–4591. 10.1021/jacsau.4c00653. PubMed DOI PMC
Lehmann M.; Pasamontes L.; Lassen S. F.; Wyss M. The Consensus Concept for Thermostability Engineering of Proteins. Biochim. Biophys. Acta BBA - Protein Struct. Mol. Enzymol. 2000, 1543 (2), 408–415. 10.1016/S0167-4838(00)00238-7. PubMed DOI
Morcos F.; Pagnani A.; Lunt B.; Bertolino A.; Marks D. S.; Sander C.; Zecchina R.; Onuchic J. N.; Hwa T.; Weigt M. Direct-Coupling Analysis of Residue Coevolution Captures Native Contacts across Many Protein Families. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (49), E1293-E130110.1073/pnas.1111471108. PubMed DOI PMC
Alley E. C.; Khimulya G.; Biswas S.; AlQuraishi M.; Church G. M. Unified Rational Protein Engineering with Sequence-Based Deep Representation Learning. Nat. Methods 2019, 16 (12), 1315–1322. 10.1038/s41592-019-0598-1. PubMed DOI PMC
Hawkins-Hooker A.; Depardieu F.; Baur S.; Couairon G.; Chen A.; Bikard D. Generating Functional Protein Variants with Variational Autoencoders. PLOS Comput. Biol. 2021, 17 (2), e100873610.1371/journal.pcbi.1008736. PubMed DOI PMC
Lin Z.; Akin H.; Rao R.; Hie B.; Zhu Z.; Lu W.; Smetanin N.; Verkuil R.; Kabeli O.; Shmueli Y.; dos Santos Costa A.; Fazel-Zarandi M.; Sercu T.; Candido S.; Rives A. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379 (6637), 1123–1130. 10.1126/science.ade2574. PubMed DOI
Elnaggar A.; Essam H.; Salah-Eldin W.; Moustafa W.; Elkerdawy M.; Rochereau C.; Rost B.. Ankh: Optimized Protein Language Model Unlocks General-Purpose Modelling. arXiv, January 16, 2023. 10.48550/arXiv.2301.06568. DOI
Wu K. E.; Yang K. K.; van den Berg R.;. et al.Protein structure generation via folding diffusion. Nat. Commun., 15, 2024. 10.1038/s41467-024-45051-2. PubMed DOI PMC
Watson J. L.; Juergens D.; Bennett N. R.; Trippe B. L.; Yim J.; Eisenach H. E.; Ahern W.; Borst A. J.; Ragotte R. J.; Milles L. F.; Wicky B. I. M.; Hanikel N.; Pellock S. J.; Courbet A.; Sheffler W.; Wang J.; Venkatesh P.; Sappington I.; Torres S. V.; Lauko A.; De Bortoli V.; Mathieu E.; Ovchinnikov S.; Barzilay R.; Jaakkola T. S.; DiMaio F.; Baek M.; Baker D. De Novo Design of Protein Structure and Function with RFdiffusion. Nature 2023, 620 (7976), 1089–1100. 10.1038/s41586-023-06415-8. PubMed DOI PMC
Corso G.; Jing B.; Barzilay R.; Jaakkola T.. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. In Conference on Learning Representations (ICLR 2023), 2023.
Alamdari S.; Thakkar N.; van den Berg R.; Lu A.; Fusi N.; Amini A.; Yang K.. Protein Generation with Evolutionary Diffusion: Sequence Is All You Need; bioRxiv, 2023. 10.1101/2023.09.11.556673. DOI
Lisanza S. L.; Gershon J. M.; Tipps S. W. K.; Sims J. N.; Arnoldt L.; Hendel S. J.; Simma M. K.; Liu G.; Yase M.; Wu H.; Tharp C. D.; Li X.; Kang A.; Brackenbrough E.; Bera A. K.; Gerben S.; Wittmann B. J.; McShan A. C.; Baker D. Multistate and Functional Protein Design Using RoseTTAFold Sequence Space Diffusion. Nat. Biotechnol. 2024, 1–11. 10.1038/s41587-024-02395-w. PubMed DOI
Repecka D.; Jauniskis V.; Karpus L.; Rembeza E.; Rokaitis I.; Zrimec J.; Poviloniene S.; Laurynenas A.; Viknander S.; Abuajwa W.; Savolainen O.; Meskys R.; Engqvist M. K. M.; Zelezniak A. Expanding Functional Protein Sequence Spaces Using Generative Adversarial Networks. Nat. Mach. Intell. 2021, 3 (4), 324–333. 10.1038/s42256-021-00310-5. DOI
Kingma D. P.; Welling M.. Auto-Encoding Variational Bayes. arXiv, December 10, 2022. 10.48550/arXiv.1312.6114. DOI
Eguchi R. R.; Choe C. A.; Huang P.-S. Ig-VAE: Generative Modeling of Protein Structure by Direct 3D Coordinate Generation. PLOS Comput. Biol. 2022, 18 (6), e101027110.1371/journal.pcbi.1010271. PubMed DOI PMC
Gómez-Bombarelli R.; Wei J. N.; Duvenaud D.; Hernández-Lobato J. M.; Sánchez-Lengeling B.; Sheberla D.; Aguilera-Iparraguirre J.; Hirzel T. D.; Adams R. P.; Aspuru-Guzik A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci. 2018, 4 (2), 268–276. 10.1021/acscentsci.7b00572. PubMed DOI PMC
Lian X.; Praljak N.; Subramanian S. K.; Wasinger S.; Ranganathan R.; Ferguson A. L. Deep Learning-Enabled Design of Synthetic Orthologs of a Signaling Protein. Cell Syst. 2024, 15, 725.10.1016/j.cels.2024.07.005. PubMed DOI
Ding X.; Zou Z.; Brooks C. L. III Deciphering Protein Evolution and Fitness Landscapes with Latent Space Models. Nat. Commun. 2019, 10 (1), 5644.10.1038/s41467-019-13633-0. PubMed DOI PMC
Ziegler C.; Martin J.; Sinner C.; Morcos F. Latent Generative Landscapes as Maps of Functional Diversity in Protein Sequence Space. Nat. Commun. 2023, 14 (1), 2222.10.1038/s41467-023-37958-z. PubMed DOI PMC
Detlefsen N. S.; Hauberg S.; Boomsma W. Learning Meaningful Representations of Protein Sequences. Nat. Commun. 2022, 13 (1), 1914.10.1038/s41467-022-29443-w. PubMed DOI PMC
Barghout R. A.; Xu Z.; Betala S.; Mahadevan R. Advances in Generative Modeling Methods and Datasets to Design Novel Enzymes for Renewable Chemicals and Fuels. Curr. Opin. Biotechnol. 2023, 84, 103007.10.1016/j.copbio.2023.103007. PubMed DOI
Janssen D. B. Evolving Haloalkane Dehalogenases. Curr. Opin. Chem. Biol. 2004, 8 (2), 150–159. 10.1016/j.cbpa.2004.02.012. PubMed DOI
Koudelakova T.; Bidmanova S.; Dvorak P.; Pavelka A.; Chaloupkova R.; Prokop Z.; Damborsky J. Haloalkane Dehalogenases: Biotechnological Applications. Biotechnol. J. 2013, 8 (1), 32–45. 10.1002/biot.201100486. PubMed DOI
Hon J.; Borko S.; Stourac J.; Prokop Z.; Zendulka J.; Bednar D.; Martinek T.; Damborsky J. EnzymeMiner: Automated Mining of Soluble Enzymes with Diverse Structures, Catalytic Properties and Stabilities. Nucleic Acids Res. 2020, 48 (W1), W104–W109. 10.1093/nar/gkaa372. PubMed DOI PMC
Babkova P.; Sebestova E.; Brezovsky J.; Chaloupkova R.; Damborsky J. Ancestral Haloalkane Dehalogenases Show Robustness and Unique Substrate Specificity. ChemBioChem. 2017, 18 (14), 1448–1456. 10.1002/cbic.201700197. PubMed DOI
Kunka A.; Marques S. M.; Havlasek M.; Vasina M.; Velatova N.; Cengelova L.; Kovar D.; Damborsky J.; Marek M.; Bednar D.; Prokop Z. Advancing Enzyme’s Stability and Catalytic Efficiency through Synergy of Force-Field Calculations, Evolutionary Analysis, and Machine Learning. ACS Catal. 2023, 13 (19), 12506–12518. 10.1021/acscatal.3c02575. PubMed DOI PMC
Beerens K.; Mazurenko S.; Kunka A.; Marques S. M.; Hansen N.; Musil M.; Chaloupkova R.; Waterman J.; Brezovsky J.; Bednar D.; Prokop Z.; Damborsky J. Evolutionary Analysis As a Powerful Complement to Energy Calculations for Protein Stabilization. ACS Catal. 2018, 8 (10), 9420–9428. 10.1021/acscatal.8b01677. DOI
Sohn K.; Lee H.; Yan X.. Learning Structured Output Representation Using Deep Conditional Generative Models. In Advances in Neural Information Processing Systems; Curran Associates, Inc., 2015; Vol. 28.
Hon J.; Marusiak M.; Martinek T.; Kunka A.; Zendulka J.; Bednar D.; Damborsky J. SoluProt: Prediction of Soluble Protein Expression in Escherichia Coli. Bioinformatics 2021, 37 (1), 23–28. 10.1093/bioinformatics/btaa1102. PubMed DOI PMC
Yao Y.; Wang X.; Ma Y.; Fang H.; Wei J.; Chen L.; Anaissi A.; Braytee A.. Conditional Variational Autoencoder with Balanced Pre-Training for Generative Adversarial Networks. In 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA); 2022; pp 1–10. 10.1109/DSAA54385.2022.10032367. DOI
McGee F.; Hauri S.; Novinger Q.; Vucetic S.; Levy R. M.; Carnevale V.; Haldane A. The Generative Capacity of Probabilistic Protein Sequence Models. Nat. Commun. 2021, 12 (1), 6302.10.1038/s41467-021-26529-9. PubMed DOI PMC
Mirdita M.; Schütze K.; Moriwaki Y.; Heo L.; Ovchinnikov S.; Steinegger M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19 (6), 679–682. 10.1038/s41592-022-01488-1. PubMed DOI PMC
The PyMOL Molecular Graphics System, Version 1.2r3pre; Schrödinger, LLC.
Shroff R.; Cole A. W.; Diaz D. J.; Morrow B. R.; Donnell I.; Annapareddy A.; Gollihar J.; Ellington A. D.; Thyer R. Discovery of Novel Gain-of-Function Mutations Guided by Structure-Based Deep Learning. ACS Synth. Biol. 2020, 9 (11), 2927–2935. 10.1021/acssynbio.0c00345. PubMed DOI
Aslan-Üzel A. S.; Beier A.; Kovář D.; Cziegler C.; Padhi S. K.; Schuiten E. D.; Dörr M.; Böttcher D.; Hollmann F.; Rudroff F.; Mihovilovic M. D.; Buryška T.; Damborský J.; Prokop Z.; Badenhorst C. P. S.; Bornscheuer U. T. An Ultrasensitive Fluorescence Assay for the Detection of Halides and Enzymatic Dehalogenation. ChemCatChem. 2020, 12 (7), 2032–2039. 10.1002/cctc.201901891. PubMed DOI PMC
Drew E. D.; Janes R. W. PDBMD2CD: Providing Predicted Protein Circular Dichroism Spectra from Multiple Molecular Dynamics-Generated Protein Structures. Nucleic Acids Res. 2020, 48 (W1), W17–W24. 10.1093/nar/gkaa296. PubMed DOI PMC
Micsonai A.; Moussong É.; Wien F.; Boros E.; Vadászi H.; Murvai N.; Lee Y.-H.; Molnár T.; Réfrégiers M.; Goto Y.; Tantos Á.; Kardos J. BeStSel: Webserver for Secondary Structure and Fold Prediction for Protein CD Spectroscopy. Nucleic Acids Res. 2022, 50 (W1), W90–W98. 10.1093/nar/gkac345. PubMed DOI PMC
Vasina M.; Vanacek P.; Hon J.; Kovar D.; Faldynova H.; Kunka A.; Buryska T.; Badenhorst C. P. S.; Mazurenko S.; Bednar D.; Stavrakis S.; Bornscheuer U. T.; deMello A.; Damborsky J.; Prokop Z. Advanced Database Mining of Efficient Haloalkane Dehalogenases by Sequence and Structure Bioinformatics and Microfluidics. Chem. Catal. 2022, 2 (10), 2704–2725. 10.1016/j.checat.2022.09.011. DOI
Buryska T.; Vasina M.; Gielen F.; Vanacek P.; van Vliet L.; Jezek J.; Pilat Z.; Zemanek P.; Damborsky J.; Hollfelder F.; Prokop Z. Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics. Anal. Chem. 2019, 91 (15), 10008–10015. 10.1021/acs.analchem.9b01839. PubMed DOI
Vasina M.; Vanacek P.; Damborsky J.; Prokop Z.. Chapter Three - Exploration of Enzyme Diversity: High-Throughput Techniques for Protein Production and Microscale Biochemical Characterization. In Methods in Enzymology; Tawfik D. S., Ed.; Enzyme Engineering and Evolution: General Methods; Academic Press, 2020; Vol. 643, pp 51–85. 10.1016/bs.mie.2020.05.004. PubMed DOI
Wong K. M.; Suchard M. A.; Huelsenbeck J. P. Alignment Uncertainty and Genomic Analysis. Science 2008, 319 (5862), 473–476. 10.1126/science.1151532. PubMed DOI
Jongkind E. P. J.; Domenech J.; Govers A.; van den Broek M.; Daran J.-M.; Grogan G.; Paul C. E. Discovery and Synthetic Applications of a NAD(P)H-Dependent Reductive Aminase from Rhodococcus Erythropolis. ACS Catal. 2025, 15, 211–219. 10.1021/acscatal.4c04935. PubMed DOI PMC
Love A. C.; Purdy T. N.; Hubert F. M.; Kirwan E. J.; Holland D. C.; Moore B. S. Discovery of Latent Cannabichromene Cyclase Activity in Marine Bacterial Flavoenzymes. ACS Synth. Biol. 2024, 13 (4), 1343–1354. 10.1021/acssynbio.4c00051. PubMed DOI PMC
Pardo I.; Bednar D.; Calero P.; Volke D. C.; Damborský J.; Nikel P. I. A Nonconventional Archaeal Fluorinase Identified by In Silico Mining for Enhanced Fluorine Biocatalysis. ACS Catal. 2022, 12 (11), 6570–6577. 10.1021/acscatal.2c01184. PubMed DOI PMC
Johnson S. R.; Monaco S.; Massie K.; Syed Z.. Generating Novel Protein Sequences Using Gibbs Sampling of Masked Language Models. bioRxiv, January 27, 2021. 10.1101/2021.01.26.428322. DOI
Costello Z.; Martin H. G.. How to Hallucinate Functional Proteins. arXiv, March 1, 2019. 10.48550/arXiv.1903.00458. DOI
Spence M. A.; Kaczmarski J. A.; Saunders J. W.; Jackson C. J. Ancestral Sequence Reconstruction for Protein Engineers. Curr. Opin. Struct. Biol. 2021, 69, 131–141. 10.1016/j.sbi.2021.04.001. PubMed DOI
Koudelakova T.; Chovancova E.; Brezovsky J.; Monincova M.; Fortova A.; Jarkovsky J.; Damborsky J. Substrate Specificity of Haloalkane Dehalogenases. Biochem. J. 2011, 435 (2), 345–354. 10.1042/BJ20101405. PubMed DOI
Johnson S. R.; Fu X.; Viknander S.; Goldin C.; Monaco S.; Zelezniak A.; Yang K. K.. Computational scoring and experimental evaluation of enzymes generated by neural networks. Nat. Biotechnol., 2024. PubMed
Vasina M.; Kovar D.; Damborsky J.; Ding Y.; Yang T.; deMello A.; Mazurenko S.; Stavrakis S.; Prokop Z. In-Depth Analysis of Biocatalysts by Microfluidics: An Emerging Source of Data for Machine Learning. Biotechnol. Adv. 2023, 66, 108171.10.1016/j.biotechadv.2023.108171. PubMed DOI
Amani K.; Fish M.; Smith M. D.; Castroverde C. D. M.. NeuroFold: A Multimodal Approach to Generating Novel Protein Variants in Silico. bioRxiv, March 14, 2024. 10.1101/2024.03.12.584504. DOI
Sato Y.; Natsume R.; Tsuda M.; Damborsky J.; Nagata Y.; Senda T. Crystallization and Preliminary Crystallographic Analysis of a Haloalkane Dehalogenase, DbjA, from Bradyrhizobium Japonicum USDA110. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. 2007, 63 (4), 294–296. 10.1107/S1744309107008652. PubMed DOI PMC
Cao Y.; Geddes T. A.; Yang J. Y. H.; Yang P. Ensemble Deep Learning in Bioinformatics. Nat. Mach. Intell. 2020, 2 (9), 500–508. 10.1038/s42256-020-0217-y. DOI
Rao R. M.; Liu J.; Verkuil R.; Meier J.; Canny J.; Abbeel P.; Sercu T.; Rives A.. MSA Transformer. In Proceedings of the 38th International Conference on Machine Learning; PMLR, 2021; pp 8844–8856.
Castro E.; Godavarthi A.; Rubinfien J.; Givechian K.; Bhaskar D.; Krishnaswamy S. Transformer-Based Protein Generation with Regularized Latent Space Optimization. Nat. Mach. Intell. 2022, 4 (10), 840–851. 10.1038/s42256-022-00532-1. DOI
Ganaie M. A.; Hu M.; Malik A. K.; Tanveer M.; Suganthan P. N. Ensemble Deep Learning: A Review. Eng. Appl. Artif. Intell. 2022, 115, 105151.10.1016/j.engappai.2022.105151. DOI