• This record comes from PubMed

Advancing Enzyme's Stability and Catalytic Efficiency through Synergy of Force-Field Calculations, Evolutionary Analysis, and Machine Learning

. 2023 Oct 06 ; 13 (19) : 12506-12518. [epub] 20230911

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Thermostability is an essential requirement for the use of enzymes in the bioindustry. Here, we compare different protein stabilization strategies using a challenging target, a stable haloalkane dehalogenase DhaA115. We observe better performance of automated stabilization platforms FireProt and PROSS in designing multiple-point mutations over the introduction of disulfide bonds and strengthening the intra- and the inter-domain contacts by in silico saturation mutagenesis. We reveal that the performance of automated stabilization platforms was still compromised due to the introduction of some destabilizing mutations. Notably, we show that their prediction accuracy can be improved by applying manual curation or machine learning for the removal of potentially destabilizing mutations, yielding highly stable haloalkane dehalogenases with enhanced catalytic properties. A comparison of crystallographic structures revealed that current stabilization rounds were not accompanied by large backbone re-arrangements previously observed during the engineering stability of DhaA115. Stabilization was achieved by improving local contacts including protein-water interactions. Our study provides guidance for further improvement of automated structure-based computational tools for protein stabilization.

See more in PubMed

Musil M.; Konegger H.; Hon J.; Bednar D.; Damborsky J. Computational Design of Stable and Soluble Biocatalysts. ACS Catal. 2019, 9, 1033–1054. 10.1021/acscatal.8b03613. DOI

Broom A.; Trainor K.; Jacobi Z.; Meiering E. M. Computational Modeling of Protein Stability: Quantitative Analysis Reveals Solutions to Pervasive Problems. Structure 2020, 28, 717.e3–726.e3. 10.1016/j.str.2020.04.003. PubMed DOI

Dou Z.; Sun Y.; Jiang X.; Wu X.; Li Y.; Gong B.; Wang L. Data-driven strategies for the computational design of enzyme thermal stability: trends, perspectives, and prospects. Acta Biochim. Biophys. Sin. 2023, 55, 343–355. 10.3724/abbs.2023033. PubMed DOI PMC

Ming Y.; Wang W.; Yin R.; Zeng M.; Tang L.; Tang S.; Li M. A review of enzyme design in catalytic stability by artificial intelligence. Briefings Bioinf. 2023, 24, bbad06510.1093/bib/bbad065. PubMed DOI

Siddiqui K. S. Defying the activity–stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit. Rev. Biotechnol. 2017, 37, 309–322. 10.3109/07388551.2016.1144045. PubMed DOI

Wickstrom L.; Gallicchio E.; Levy R. M. The linear interaction energy method for the prediction of protein stability changes upon mutation. Proteins 2012, 80, 111–125. 10.1002/prot.23168. PubMed DOI PMC

Dehouck Y.; Grosfils A.; Folch B.; Gilis D.; Bogaerts P.; Rooman M. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics 2009, 25, 2537–2543. 10.1093/bioinformatics/btp445. PubMed DOI

Schymkowitz J.; Borg J.; Stricher F.; Nys R.; Rousseau F.; Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005, 33, W382–W388. 10.1093/nar/gki387. PubMed DOI PMC

Alford R. F.; Leaver-Fay A.; Jeliazkov J. R.; O’Meara M. J.; DiMaio F. P.; Park H.; Shapalov M. V.; Renfrew P. D.; Mulligan V. K.; Kappel K.; Labonte J. W.; Pacella M. S.; Bonneau R.; Bradley P.; Dunbrack R. L.; Das R.; Baker D.; Kuhlman B.; Kortemme T.; Gray J. J. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. J. Chem. Theory Comput. 2017, 13, 3031–3048. 10.1021/acs.jctc.7b00125. PubMed DOI PMC

Porebski B. T.; Buckle A. M. Consensus protein design. Protein Eng., Des. Sel. 2016, 29, 245–251. 10.1093/protein/gzw015. PubMed DOI PMC

Musil M.; Khan R. T.; Beier A.; Stourac J.; Konegger H.; Damborsky J.; Bednar D. FireProtASR: A Web Server for Fully Automated Ancestral Sequence Reconstruction. Briefings Bioinf. 2021, 22, bbaa33710.1093/bib/bbaa337. PubMed DOI PMC

Folkman L.; Stantic B.; Sattar A.; Zhou Y. EASE-MM: Sequence-Based Prediction of Mutation-Induced Stability Changes with Feature-Based Multiple Models. J. Mol. Biol. 2016, 428, 1394–1405. 10.1016/j.jmb.2016.01.012. PubMed DOI

Shroff R.; Cole A. W.; Diaz D. J.; Morrow B. R.; Donnell I.; Annapareddy A.; Gollihar J.; Ellington A. D.; Thyer R. Discovery of Novel Gain-of-Function Mutations Guided by Structure-Based Deep Learning. ACS Synth. Biol. 2020, 9, 2927–2935. 10.1021/acssynbio.0c00345. PubMed DOI

Huang L. T.; Gromiha M. M.; Ho S. Y. iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations. Bioinformatics 2007, 23, 1292–1293. 10.1093/bioinformatics/btm100. PubMed DOI

Bednar D.; Beerens K.; Sebestova E.; Bendl J.; Khare S.; Chaloupkova R.; Prokop Z.; Brezovsky J.; Baker D.; Damborsky J. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants. PLoS Comput. Biol. 2015, 11, e100455610.1371/journal.pcbi.1004556. PubMed DOI PMC

Musil M.; Stourac J.; Bendl J.; Brezovsky J.; Prokop Z.; Zendulka J.; Martinek T.; Bednar D.; Damborsky J. FireProt: web server for automated design of thermostable proteins. Nucleic Acids Res. 2017, 45, W393–W399. 10.1093/nar/gkx285. PubMed DOI PMC

Weinstein J. J.; Goldenzweig A.; Hoch S.; Fleishman S. J. PROSS 2: a new server for the design of stable and highly expressed protein variants. Bioinformatics 2021, 37, 123–125. 10.1093/bioinformatics/btaa1071. PubMed DOI PMC

Goldenzweig A.; Goldsmith M.; Hill S. E.; Gertman O.; Laurino P.; Ashani Y.; Dym O.; Unger T.; Albeck S.; Prilusky J.; Lieberman R. L.; Aharoni A.; Silman I.; Sussman J. L.; Tawfik D. S.; Fleishman S. J. Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability. Mol. Cell 2016, 63, 337–346. 10.1016/j.molcel.2016.06.012. PubMed DOI PMC

Kellogg E. H.; Leaver-Fay A.; Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability: Conformational Sampling in Computing Mutation-Induced Changes. Proteins 2011, 79, 830–838. 10.1002/prot.22921. PubMed DOI PMC

Peleg Y.; Vincentelli R.; Collins B. M.; Chen K. E.; Livingstone E. K.; Weeratunga S.; Leneva N.; Guo Q.; Remans K.; Perez K.; Bjerga G. E. K.; Larsen Ø.; Vanek O.; Skorepa O.; Jacquemin S.; Poterszman A.; Kjær S.; Christodoulou E.; Albeck S.; Dym O.; Ainbinder E.; Unger T.; Schuetz A.; Matthes S.; Bader M.; De Marco A.; Storici P.; Semrau M. S.; Stolt-Bergner P.; Aigner C.; Suppmann S.; Goldenzweig A.; Fleishman S. J. Community-Wide Experimental Evaluation of the PROSS Stability-Design Method. J. Mol. Biol. 2021, 433, 16696410.1016/j.jmb.2021.166964. PubMed DOI PMC

Markova K.; Chmelova K.; Marques S. M.; Carpentier P.; Bednar D.; Damborsky J.; Marek M. Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst. Chem. Sci. 2020, 11, 11162–11178. 10.1039/d0sc03367g. PubMed DOI PMC

Koudelakova T.; Chovancova E.; Brezovsky J.; Monincova M.; Fortova A.; Jarkovsky J.; Damborsky J. Substrate Specificity of Haloalkane Dehalogenases. Biochem. J. 2011, 435, 345–354. 10.1042/BJ20101405. PubMed DOI

Bloom D. J.; Labthavikul S. T.; Otey C. R.; Arnold F. H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 5869–5874. 10.1073/pnas.0510098103. PubMed DOI PMC

Trudeau D. L.; Tawfik D. S. Protein engineers turned evolutionists—the quest for the optimal starting point. Curr. Opin. Biotechnol. 2019, 60, 46–52. 10.1016/j.copbio.2018.12.002. PubMed DOI

Lu H.; Diaz D. J.; Czarnecki N. J.; Zhu C.; Kim W.; Shroff R.; Acosta D. J.; Alexander B. R.; Cole O.; Zhang Y.; Lynd N. A.; Ellington A. D.; Alper H. S. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 2022, 604, 662–667. 10.1038/s41586-022-04599-z. PubMed DOI

Yang Y. J.; Pei X. Q.; Liu Y.; Wu Z. L. Thermostabilizing ketoreductase ChKRED20 by consensus mutagenesis at dimeric interfaces. Enzyme Microb. Technol. 2022, 158, 11005210.1016/j.enzmictec.2022.110052. PubMed DOI

Aalbers F. S.; Furst M. J. L. J.; Rovida S.; Trajkovic M.; Castellanos J. R. G.; Bartsch S.; Vogel A.; Mattevi A.; Fraaije M. W. Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering. Elife 2020, 9, e5463910.7554/eLife.54639. PubMed DOI PMC

Wu B.; Wijma H. J.; Song L.; Rozeboom H. J.; Poloni C.; Tian Y.; Arif M. I.; Nuijens T.; Quaedflieg P. J. L. M.; Szymanski W.; Feringa B. L.; Janssen D. B. Versatile Peptide C-Terminal Functionalization via a Computationally Engineered Peptide Amidase. ACS Catal. 2016, 6, 5405–5414. 10.1021/acscatal.6b01062. DOI

Markova K.; Kunka A.; Chmelova K.; Havlasek M.; Babkova P.; Marques S. M.; Vasina M.; Planas-Inglesias J.; Chaloupkova R.; Bednar D.; Prokop Z.; Damborsky J.; Marek M. Computational Enzyme Stabilization Can Affect Folding Energy Landscapes and Lead to Catalytically Enhanced Domain-Swapped Dimers. ACS Catal. 2021, 11, 12864–12885. 10.1021/acscatal.1c03343. DOI

Craig D. B.; Dombkowski A. A. Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC Bioinf. 2013, 14, 346.10.1186/1471-2105-14-346. PubMed DOI PMC

Sumbalova L.; Stourac J.; Martinek T.; Bednar D.; Damborsky J. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 2018, 46, W356–W362. 10.1093/nar/gky417. PubMed DOI PMC

Guerois R.; Nielsen J. E.; Serrano L. Predicting Changes in the Stability of Proteins and Protein Complexes: A Study of More Than 1000 Mutations. J. Mol. Biol. 2002, 320, 369–387. 10.1016/S0022-2836(02)00442-4. PubMed DOI

Ittisoponpisan S.; Islam S. A.; Khanna T.; Alhuzimi E.; David A.; Sternberg M. J. E. Can Predicted Protein 3D Structures Provide Reliable Insights into whether Missense Variants Are Disease Associated?. J. Mol. Biol. 2019, 431, 2197–2212. 10.1016/j.jmb.2019.04.009. PubMed DOI PMC

Paik I.; Ngo P. H. T.; Shroff R.; Diaz D. J.; Maranhao A. C.; Walker D. J. F.; Bhadra S.; Ellington A. D. Improved Bst DNA Polymerase Variants Derived via a Machine Learning Approach. Biochemistry 2023, 62, 410–418. 10.1021/acs.biochem.1c00451. PubMed DOI PMC

Mazurenko S. Predicting Protein Stability and Solubility Changes Upon Mutations: Data Perspective. ChemCatChem 2020, 12, 5590–5598. 10.1002/cctc.202000933. DOI

Mazurenko S.; Stourac J.; Kunka A.; Nedeljkovic S.; Bednar D.; Prokop Z.; Damborsky J. CalFitter: A Web Server for Analysis of Protein Thermal Denaturation Data. Nucleic Acids Res. 2018, 46, W344–W349. 10.1093/nar/gky358. PubMed DOI PMC

Kunka A.; Lacko D.; Stourac J.; Damborsky J.; Prokop Z.; Mazurenko S. CalFitter 2.0: Leveraging the power of singular value decomposition to analyze protein thermostability. Nucleic Acids Res. 2022, 50, W145–W151. 10.1093/nar/gkac378. PubMed DOI PMC

Vasina M.; Vanacek P.; Damborsky J.; Prokop Z.; Exploration of enzyme diversity: High-throughput techniques for protein production and microscale biochemical characterization. In Methods in Enzymology; Elsevier, 2020; pp 51–85. PubMed

Buryska T.; Vasina M.; Gielen F.; Vanacek P.; van Vliet L.; Jezek L.; Pilat Z.; Zemanek P.; Damborsky J.; Hollfelder F.; Prokop Z. Controlled oil/water partitioning of hydrophobic substrates extending the bioanalytical applications of droplet-based microfluidics. Anal. Chem. 2019, 91, 10008–10015. 10.1021/acs.analchem.9b01839. PubMed DOI

Bosma T.; Damborsky J.; Stucki G.; Janssen D. B. Biodegradation of 1,2,3-Trichloropropane through Directed Evolution and Heterologous Expression of a Haloalkane Dehalogenase Gene. Appl. Environ. Microbiol. 2002, 68, 3582–3587. 10.1128/AEM.68.7.3582-3587.2002. PubMed DOI PMC

O’Meara M. J.; Leaver-Fay A.; Tyka M. D.; Stein A.; Houlihan K.; DiMaio F.; Bradley P.; Kortemme T.; Baker D.; Snoeyink J.; Kuhlman B. Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. J. Chem. Theory Comput. 2015, 11, 609–622. 10.1021/ct500864r. PubMed DOI PMC

Dvorak P.; Bidmanova S.; Damborsky J.; Prokop Z. Immobilized Synthetic Pathway for Biodegradation of Toxic Recalcitrant Pollutant 1,2,3-Trichloropropane. Environ. Sci. Technol. 2014, 48, 6859–6866. 10.1021/es500396r. PubMed DOI

Vasin M.; Vanacek P.; Hon J.; Kovar D.; Faldynova H.; Kunka A.; Buryska T.; Badenhorst C. P. S.; Mazurenko S.; Bednar D.; Stavrakis S.; Bornscheuer U. T.; deMello A.; Damborsky J.; Prokop Z. Advanced Database Mining of Efficient Haloalkane Dehalogenases by Sequence and Structure Bioin-formatics and Microfluidics. Chem Catal. 2022, 2 (10), 2704–2725. 10.1016/j.checat.2022.09.011. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...