Computer-assisted stabilization of fibroblast growth factor FGF-18

. 2023 ; 21 () : 5144-5152. [epub] 20231009

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37920818
Odkazy

PubMed 37920818
PubMed Central PMC10618113
DOI 10.1016/j.csbj.2023.10.009
PII: S2001-0370(23)00366-5
Knihovny.cz E-zdroje

The fibroblast growth factors (FGF) family holds significant potential for addressing chronic diseases. Specifically, recombinant FGF18 shows promise in treating osteoarthritis by stimulating cartilage formation. However, recent phase 2 clinical trial results of sprifermin (recombinant FGF18) indicate insufficient efficacy. Leveraging our expertise in rational protein engineering, we conducted a study to enhance the stability of FGF18. As a result, we obtained a stabilized variant called FGF18-E4, which exhibited improved stability with 16 °C higher melting temperature, resistance to trypsin and a 2.5-fold increase in production yields. Moreover, the FGF18-E4 maintained mitogenic activity after 1-week incubation at 37 °C and 1-day at 50 °C. Additionally, the inserted mutations did not affect its binding to the fibroblast growth factor receptors, making FGF18-E4 a promising candidate for advancing FGF-based osteoarthritis treatment.

Zobrazit více v PubMed

Ornitz D.M., Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis. 2022 doi: 10.1002/wsbm.1549. No. November 2021. PubMed DOI PMC

Turner N., Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–129. doi: 10.1038/nrc2780. PubMed DOI

Yun Y.R., Won J.E., Jeon E., Lee S., Kang W., Jo H., et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010;1(1):1–18. doi: 10.4061/2010/218142. PubMed DOI PMC

Ornitz D.M., Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–266. doi: 10.1002/wdev.176. PubMed DOI PMC

Beenken A., Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–253. doi: 10.1038/nrd2792. PubMed DOI PMC

Spielberger R., Stiff P., Bensinger W., Gentile T., Weisdorf D., Kewalramani T., et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med. 2004;351(25):2590–2598. doi: 10.1056/nejmoa040125. PubMed DOI

Liu Z., Lavine K.J., Hung I.H., Ornitz D.M. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol. 2007;302(1):80–91. doi: 10.1016/j.ydbio.2006.08.071. PubMed DOI

Murugaiyan K., Amirthalingam S., Hwang N.S.Y., Jayakumar R. Role of FGF-18 in bone regeneration. J Funct Biomater. 2023;14(1) doi: 10.3390/jfb14010036. PubMed DOI PMC

Haque T., Nakada S., Hamdy R.C. A review of FGF18: its expression, signaling pathways and possible functions during embryogenesis and post-natal development. Histol Histopathol. 2007;22(1–3):97–105. doi: 10.14670/HH-22.97. PubMed DOI

Yao X., zhang J., Jing X., Ye Y., Guo J., Sun K., et al. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacol Res. 2019;139:314–324. doi: 10.1016/j.phrs.2018.09.026. PubMed DOI

Vos T., Allen C., Arora M., Barber R.M., Brown A., Carter A., et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1545–1602. doi: 10.1016/S0140-6736(16)31678-6. PubMed DOI PMC

Long H., Liu Q., Yin H., Wang K., Diao N., Zhang Y., et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019. Arthritis Rheumatol. 2022;74(7):1172–1183. doi: 10.1002/art.42089. PubMed DOI PMC

Hochberg M.C., Guermazi A., Guehring H., Aydemir A., Wax S., Fleuranceau-Morel P., et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial. JAMA - J Am Med Assoc. 2019;322(14):1360–1370. doi: 10.1001/jama.2019.14735. PubMed DOI PMC

Dahlberg L.E., Aydemir A., Muurahainen N., Gühring H., Fredberg Edebo H., Krarup-Jensen N., et al. A first-in-human, double-blind, randomised, placebo-controlled, dose ascending study of intra-articular RhFGF18 (Sprifermin) in patients with advanced knee osteoarthritis. Clin Exp Rheumatol. 2016;34(3):445–450. PubMed

Lohmander L.S., Hellot S., Dreher D., Krantz E.F.W., Kruger D.S., Guermazi A., et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheuma. 2014;66(7):1820–1831. doi: 10.1002/art.38614. PubMed DOI

Buchtova M., Chaloupkova R., Zakrzewska M., Vesela I., Cela P., Barathova J., et al. Instability restricts signaling of multiple fibroblast growth factors. Cell Mol Life Sci. 2015;72(12):2445–2459. doi: 10.1007/s00018-015-1856-8. PubMed DOI PMC

Dvorak P., Bednar D., Vanacek P., Balek L., Eiselleova L., Stepankova V., et al. Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol Bioeng. 2018;115(4):850–862. doi: 10.1002/bit.26531. PubMed DOI

Bednar D., Beerens K., Sebestova E., Bendl J., Khare S., Chaloupkova R., et al. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput Biol. 2015;11(11) doi: 10.1371/journal.pcbi.1004556. PubMed DOI PMC

Ladel C.H., Barbero L., Riva S., Guehring H. Tissue distribution of sprifermin (recombinant human fibroblast Growth Factor 18) in the rat following intravenous and intra-articular injection. Osteoarthr Cartil Open. 2020;2(3) doi: 10.1016/j.ocarto.2020.100068. PubMed DOI PMC

Sayers E.W., Agarwala R., Bolton E.E., Brister J.R., Canese K., Clark K., et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2019;47(D1):D23–D28. doi: 10.1093/nar/gky1069. PubMed DOI PMC

Li W., Godzik A. Cd-Hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI

Frickey T., Lupas A. CLANS: a java application for visualizing protein families based on pairwise similarity. Bioinformatics. 2004;20(18):3702–3704. doi: 10.1093/bioinformatics/bth444. PubMed DOI

Edgar R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004:5. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC

Brown A., Adam L.E., Blundell T.L. The crystal structure of fibroblast growth factor 18 (FGF18. Protein Cell. 2014;5(5):343–347. doi: 10.1007/s13238-014-0033-4. PubMed DOI PMC

Schymkowitz J., Borg J., Stricher F., Nys R., Rousseau F., Serrano L. The FoldX web server: an online force Field. Nucleic Acids Res. 2005;33(SUPPL. 2):382–388. doi: 10.1093/nar/gki387. PubMed DOI PMC

Alford R.F., Leaver-Fay A., Jeliazkov J.R., O’Meara M.J., DiMaio F.P., Park H., et al. The rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13(6):3031–3048. doi: 10.1021/acs.jctc.7b00125. PubMed DOI PMC

Kellogg E.H., Leaver-Fay A., Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins Struct Funct Bioinforma. 2011;79(3):830–838. doi: 10.1002/prot.22921. PubMed DOI PMC

Ashkenazy H., Abadi S., Martz E., Chay O., Mayrose I., Pupko T., et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44(W1):W344–W350. doi: 10.1093/NAR/GKW408. PubMed DOI PMC

Koledova Z., Sumbal J., Rabata A., De La Bourdonnaye G., Chaloupkova R., Hrdlickova B., et al. Fibroblast growth factor 2 protein stability provides decreased dependence on heparin for induction of FGFR signaling and alters ERK signaling dynamics. Front Cell Dev Biol. 2019:7. doi: 10.3389/fcell.2019.00331. PubMed DOI PMC

Ornitz D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996;271(25):15292–15297. doi: 10.1074/jbc.271.25.15292. PubMed DOI

Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., et al. Protein identification and analysis tools on the ExPASy server. Proteom Protoc Handb. 2005:571–607. doi: 10.1385/1-59259-890-0:571. DOI

Kunka A., Marques S.M., Havlasek M., Vasina M., Velatova N., Cengelova L., et al. Advancing enzyme’s stability and catalytic efficiency through synergy of force-field calculations, evolutionary analysis, and machine learning. ACS Catal. 2023:12506–12518. doi: 10.1021/acscatal.3c02575. PubMed DOI PMC

Zhang X., Ibrahimi O.A., Olsen S.K., Umemori H., Mohammadi M., Ornitz D.M. Receptor specificity of the fibroblast growth factor family: the complete mammalian FGF family. J Biol Chem. 2006;281(23):15694–15700. doi: 10.1074/jbc.M601252200. PubMed DOI PMC

Sennett M.L., Meloni G.R., Farran A.J.E., Guehring H., Mauck R.L., Dodge G.R. Sprifermin treatment enhances cartilage integration in an in vitro repair model. J Orthop Res. 2018;36(10):2648–2656. doi: 10.1002/jor.24048. PubMed DOI PMC

Reker D., Kjelgaard-Petersen C.F., Siebuhr A.S., Michaelis M., Gigout A., Karsdal M.A., et al. Sprifermin (RhFGF18) modulates extracellular matrix turnover in cartilage explants ex vivo. J Transl Med. 2017;15(1):1–12. doi: 10.1186/s12967-017-1356-8. PubMed DOI PMC

Zhou Z., Song W., Zhang G., Zhan S., Cai Z., Yu W., et al. The recombinant human fibroblast growth factor-18 (Sprifermin) improves tendon-to-bone healing by promoting chondrogenesis in a rat rotator cuff repair model. J Shoulder Elb Surg. 2022;31(8):1617–1627. doi: 10.1016/j.jse.2022.01.137. PubMed DOI

Gigout A., Guehring H., Froemel D., Meurer A., Ladel C., Reker D., et al. Sprifermin (RhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthr Cartil. 2017;25(11):1858–1867. doi: 10.1016/j.joca.2017.08.004. PubMed DOI

Eckstein F., Hochberg M.C., Guehring H., Moreau F., Ona V., Bihlet A.R., et al. Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study. Ann Rheum Dis. 2021;80(8):1062–1069. doi: 10.1136/annrheumdis-2020-219181. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Computer-aided engineering of stabilized fibroblast growth factor 21

. 2024 Dec ; 23 () : 942-951. [epub] 20240207

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace