Computer-assisted stabilization of fibroblast growth factor FGF-18
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37920818
PubMed Central
PMC10618113
DOI
10.1016/j.csbj.2023.10.009
PII: S2001-0370(23)00366-5
Knihovny.cz E-zdroje
- Klíčová slova
- Computer-assisted stabilization, FGF-18, Fibroblast growth factor, Improved yield, Protease, Resistance to, Thermostability,
- Publikační typ
- časopisecké články MeSH
The fibroblast growth factors (FGF) family holds significant potential for addressing chronic diseases. Specifically, recombinant FGF18 shows promise in treating osteoarthritis by stimulating cartilage formation. However, recent phase 2 clinical trial results of sprifermin (recombinant FGF18) indicate insufficient efficacy. Leveraging our expertise in rational protein engineering, we conducted a study to enhance the stability of FGF18. As a result, we obtained a stabilized variant called FGF18-E4, which exhibited improved stability with 16 °C higher melting temperature, resistance to trypsin and a 2.5-fold increase in production yields. Moreover, the FGF18-E4 maintained mitogenic activity after 1-week incubation at 37 °C and 1-day at 50 °C. Additionally, the inserted mutations did not affect its binding to the fibroblast growth factor receptors, making FGF18-E4 a promising candidate for advancing FGF-based osteoarthritis treatment.
Zobrazit více v PubMed
Ornitz D.M., Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis. 2022 doi: 10.1002/wsbm.1549. No. November 2021. PubMed DOI PMC
Turner N., Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–129. doi: 10.1038/nrc2780. PubMed DOI
Yun Y.R., Won J.E., Jeon E., Lee S., Kang W., Jo H., et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010;1(1):1–18. doi: 10.4061/2010/218142. PubMed DOI PMC
Ornitz D.M., Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–266. doi: 10.1002/wdev.176. PubMed DOI PMC
Beenken A., Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–253. doi: 10.1038/nrd2792. PubMed DOI PMC
Spielberger R., Stiff P., Bensinger W., Gentile T., Weisdorf D., Kewalramani T., et al. Palifermin for oral mucositis after intensive therapy for hematologic cancers. N Engl J Med. 2004;351(25):2590–2598. doi: 10.1056/nejmoa040125. PubMed DOI
Liu Z., Lavine K.J., Hung I.H., Ornitz D.M. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Dev Biol. 2007;302(1):80–91. doi: 10.1016/j.ydbio.2006.08.071. PubMed DOI
Murugaiyan K., Amirthalingam S., Hwang N.S.Y., Jayakumar R. Role of FGF-18 in bone regeneration. J Funct Biomater. 2023;14(1) doi: 10.3390/jfb14010036. PubMed DOI PMC
Haque T., Nakada S., Hamdy R.C. A review of FGF18: its expression, signaling pathways and possible functions during embryogenesis and post-natal development. Histol Histopathol. 2007;22(1–3):97–105. doi: 10.14670/HH-22.97. PubMed DOI
Yao X., zhang J., Jing X., Ye Y., Guo J., Sun K., et al. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacol Res. 2019;139:314–324. doi: 10.1016/j.phrs.2018.09.026. PubMed DOI
Vos T., Allen C., Arora M., Barber R.M., Brown A., Carter A., et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1545–1602. doi: 10.1016/S0140-6736(16)31678-6. PubMed DOI PMC
Long H., Liu Q., Yin H., Wang K., Diao N., Zhang Y., et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019. Arthritis Rheumatol. 2022;74(7):1172–1183. doi: 10.1002/art.42089. PubMed DOI PMC
Hochberg M.C., Guermazi A., Guehring H., Aydemir A., Wax S., Fleuranceau-Morel P., et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial. JAMA - J Am Med Assoc. 2019;322(14):1360–1370. doi: 10.1001/jama.2019.14735. PubMed DOI PMC
Dahlberg L.E., Aydemir A., Muurahainen N., Gühring H., Fredberg Edebo H., Krarup-Jensen N., et al. A first-in-human, double-blind, randomised, placebo-controlled, dose ascending study of intra-articular RhFGF18 (Sprifermin) in patients with advanced knee osteoarthritis. Clin Exp Rheumatol. 2016;34(3):445–450. PubMed
Lohmander L.S., Hellot S., Dreher D., Krantz E.F.W., Kruger D.S., Guermazi A., et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheuma. 2014;66(7):1820–1831. doi: 10.1002/art.38614. PubMed DOI
Buchtova M., Chaloupkova R., Zakrzewska M., Vesela I., Cela P., Barathova J., et al. Instability restricts signaling of multiple fibroblast growth factors. Cell Mol Life Sci. 2015;72(12):2445–2459. doi: 10.1007/s00018-015-1856-8. PubMed DOI PMC
Dvorak P., Bednar D., Vanacek P., Balek L., Eiselleova L., Stepankova V., et al. Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol Bioeng. 2018;115(4):850–862. doi: 10.1002/bit.26531. PubMed DOI
Bednar D., Beerens K., Sebestova E., Bendl J., Khare S., Chaloupkova R., et al. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput Biol. 2015;11(11) doi: 10.1371/journal.pcbi.1004556. PubMed DOI PMC
Ladel C.H., Barbero L., Riva S., Guehring H. Tissue distribution of sprifermin (recombinant human fibroblast Growth Factor 18) in the rat following intravenous and intra-articular injection. Osteoarthr Cartil Open. 2020;2(3) doi: 10.1016/j.ocarto.2020.100068. PubMed DOI PMC
Sayers E.W., Agarwala R., Bolton E.E., Brister J.R., Canese K., Clark K., et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2019;47(D1):D23–D28. doi: 10.1093/nar/gky1069. PubMed DOI PMC
Li W., Godzik A. Cd-Hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
Frickey T., Lupas A. CLANS: a java application for visualizing protein families based on pairwise similarity. Bioinformatics. 2004;20(18):3702–3704. doi: 10.1093/bioinformatics/bth444. PubMed DOI
Edgar R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004:5. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC
Brown A., Adam L.E., Blundell T.L. The crystal structure of fibroblast growth factor 18 (FGF18. Protein Cell. 2014;5(5):343–347. doi: 10.1007/s13238-014-0033-4. PubMed DOI PMC
Schymkowitz J., Borg J., Stricher F., Nys R., Rousseau F., Serrano L. The FoldX web server: an online force Field. Nucleic Acids Res. 2005;33(SUPPL. 2):382–388. doi: 10.1093/nar/gki387. PubMed DOI PMC
Alford R.F., Leaver-Fay A., Jeliazkov J.R., O’Meara M.J., DiMaio F.P., Park H., et al. The rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13(6):3031–3048. doi: 10.1021/acs.jctc.7b00125. PubMed DOI PMC
Kellogg E.H., Leaver-Fay A., Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins Struct Funct Bioinforma. 2011;79(3):830–838. doi: 10.1002/prot.22921. PubMed DOI PMC
Ashkenazy H., Abadi S., Martz E., Chay O., Mayrose I., Pupko T., et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44(W1):W344–W350. doi: 10.1093/NAR/GKW408. PubMed DOI PMC
Koledova Z., Sumbal J., Rabata A., De La Bourdonnaye G., Chaloupkova R., Hrdlickova B., et al. Fibroblast growth factor 2 protein stability provides decreased dependence on heparin for induction of FGFR signaling and alters ERK signaling dynamics. Front Cell Dev Biol. 2019:7. doi: 10.3389/fcell.2019.00331. PubMed DOI PMC
Ornitz D.M., Xu J., Colvin J.S., McEwen D.G., MacArthur C.A., Coulier F., et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996;271(25):15292–15297. doi: 10.1074/jbc.271.25.15292. PubMed DOI
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., et al. Protein identification and analysis tools on the ExPASy server. Proteom Protoc Handb. 2005:571–607. doi: 10.1385/1-59259-890-0:571. DOI
Kunka A., Marques S.M., Havlasek M., Vasina M., Velatova N., Cengelova L., et al. Advancing enzyme’s stability and catalytic efficiency through synergy of force-field calculations, evolutionary analysis, and machine learning. ACS Catal. 2023:12506–12518. doi: 10.1021/acscatal.3c02575. PubMed DOI PMC
Zhang X., Ibrahimi O.A., Olsen S.K., Umemori H., Mohammadi M., Ornitz D.M. Receptor specificity of the fibroblast growth factor family: the complete mammalian FGF family. J Biol Chem. 2006;281(23):15694–15700. doi: 10.1074/jbc.M601252200. PubMed DOI PMC
Sennett M.L., Meloni G.R., Farran A.J.E., Guehring H., Mauck R.L., Dodge G.R. Sprifermin treatment enhances cartilage integration in an in vitro repair model. J Orthop Res. 2018;36(10):2648–2656. doi: 10.1002/jor.24048. PubMed DOI PMC
Reker D., Kjelgaard-Petersen C.F., Siebuhr A.S., Michaelis M., Gigout A., Karsdal M.A., et al. Sprifermin (RhFGF18) modulates extracellular matrix turnover in cartilage explants ex vivo. J Transl Med. 2017;15(1):1–12. doi: 10.1186/s12967-017-1356-8. PubMed DOI PMC
Zhou Z., Song W., Zhang G., Zhan S., Cai Z., Yu W., et al. The recombinant human fibroblast growth factor-18 (Sprifermin) improves tendon-to-bone healing by promoting chondrogenesis in a rat rotator cuff repair model. J Shoulder Elb Surg. 2022;31(8):1617–1627. doi: 10.1016/j.jse.2022.01.137. PubMed DOI
Gigout A., Guehring H., Froemel D., Meurer A., Ladel C., Reker D., et al. Sprifermin (RhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthr Cartil. 2017;25(11):1858–1867. doi: 10.1016/j.joca.2017.08.004. PubMed DOI
Eckstein F., Hochberg M.C., Guehring H., Moreau F., Ona V., Bihlet A.R., et al. Long-term structural and symptomatic effects of intra-articular sprifermin in patients with knee osteoarthritis: 5-year results from the FORWARD study. Ann Rheum Dis. 2021;80(8):1062–1069. doi: 10.1136/annrheumdis-2020-219181. PubMed DOI PMC
Computer-aided engineering of stabilized fibroblast growth factor 21