CalFitter 2.0: Leveraging the power of singular value decomposition to analyse protein thermostability

. 2022 Jul 05 ; 50 (W1) : W145-W151.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35580052

The importance of the quantitative description of protein unfolding and aggregation for the rational design of stability or understanding the molecular basis of protein misfolding diseases is well established. Protein thermostability is typically assessed by calorimetric or spectroscopic techniques that monitor different complementary signals during unfolding. The CalFitter webserver has already proved integral to deriving invaluable energy parameters by global data analysis. Here, we introduce CalFitter 2.0, which newly incorporates singular value decomposition (SVD) of multi-wavelength spectral datasets into the global fitting pipeline. Processed time- or temperature-evolved SVD components can now be fitted together with other experimental data types. Moreover, deconvoluted basis spectra provide spectral fingerprints of relevant macrostates populated during unfolding, which greatly enriches the information gains of the CalFitter output. The SVD analysis is fully automated in a highly interactive module, providing access to the results to users without any prior knowledge of the underlying mathematics. Additionally, a novel data uploading wizard has been implemented to facilitate rapid and easy uploading of multiple datasets. Together, the newly introduced changes significantly improve the user experience, making this software a unique, robust, and interactive platform for the analysis of protein thermal denaturation data. The webserver is freely accessible at https://loschmidt.chemi.muni.cz/calfitter.

Zobrazit více v PubMed

Chiti F., Dobson C.M.. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 2017; 86:27–68. PubMed

Bommarius A.S., Paye M.F.. Stabilizing biocatalysts. Chem. Soc. Rev. 2013; 42:6534. PubMed

Nisthal A., Wang C.Y., Ary M.L., Mayo S.L. Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis. PNAS. 2019; 116:16367–16377. PubMed PMC

Beerens K., Mazurenko S., Kunka A., Marques S.M., Hansen N., Musil M., Chaloupkova R., Waterman J., Brezovsky J., Bednar D.et al. .. Evolutionary analysis as a powerful complement to energy calculations for protein stabilization. ACS Catal. 2018; 8:9420–9428.

Sanchez-Ruiz J.M. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys. J. 1992; 61:921–935. PubMed PMC

Ibarra-Molero B., Naganathan A.N., Sanchez-Ruiz J.M., Muñoz V.. Modern analysis of protein folding by differential scanning calorimetry. Methods in Enzymology. 2016; 567:Elsevier; 281–318. PubMed

Stourac J., Dubrava J., Musil M., Horackova J., Damborsky J., Mazurenko S., Bednar D.. FireProtDB: database of manually curated protein stability data. Nucleic Acids Res. 2021; 49:D319–D324. PubMed PMC

Musil M., Konegger H., Hon J., Bednar D., Damborsky J.. Computational design of stable and soluble biocatalysts. ACS Catal. 2019; 9:1033–1054.

Mazurenko S., Stourac J., Kunka A., Nedeljković S., Bednar D., Prokop Z., Damborsky J.. CalFitter: a web server for analysis of protein thermal denaturation data. Nucleic Acids Res. 2018; 46:W344–W349. PubMed PMC

Nemergut M., Zoldak G., Schaefer J.V., Kast F., Miskovsky P., Plückthun A., Sedlak E.. Analysis of IgG kinetic stability by differential scanning calorimetry, probe fluorescence and light scattering: kinetic stability analysis of igG. Protein Sci. 2017; 26:2229–2239. PubMed PMC

Mazurenko S., Kunka A., Beerens K., Johnson C.M., Damborsky J., Prokop Z.. Exploration of protein unfolding by modelling calorimetry data from reheating. Sci. Rep. 2017; 7:16321. PubMed PMC

Samaga Y.B.L., Raghunathan S., Priyakumar U.D.. SCONES: self-consistent neural network for protein stability prediction upon mutation. J. Phys. Chem. B. 2021; 125:10657–10671. PubMed

Marques S.M., Planas-Iglesias J., Damborsky J.. Web-based tools for computational enzyme design. Curr. Opin. Struct. Biol. 2021; 69:19–34. PubMed

Markova K., Kunka A., Chmelova K., Havlasek M., Babkova P., Marques S.M., Vasina M., Planas-Iglesias J., Chaloupkova R., Bednar D.et al. .. Computational enzyme stabilization can affect folding energy landscapes and lead to catalytically enhanced domain-swapped dimers. ACS Catalysis. 2021; 11:12864–12885.

Óskarsson K.R., Sævarsson A.F., Kristjánsson M.M.. Thermostabilization of VPR, a kinetically stable cold adapted subtilase, via multiple proline substitutions into surface loops. Sci. Rep. 2020; 10:1045. PubMed PMC

Valadares V.S., Martins L.C., Roman E.A., Valente A.P., Cino E.A., Moraes A.H.. Conformational dynamics of tetracenomycin aromatase/cyclase regulate polyketide binding and enzyme aggregation propensity. Biochim. Biophys. Acta (BBA) - Gen. Subj. 2021; 1865:129949. PubMed

Rodrigues J.V., Shakhnovich E.I.. Adaptation to mutational inactivation of an essential gene converges to an accessible suboptimal fitness peak. Elife. 2019; 8:e50509. PubMed PMC

Zoldak G., Jancura D., Sedlak E.. The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions. Protein Sci. 2017; 26:1236–1239. PubMed PMC

Laptenok S.P., Visser N.V., Engel R., Westphal A.H., van Hoek A., van Mierlo C.P.M., van Stokkum I.H.M., van Amerongen H., Visser A.J.W.G.. A general approach for detecting folding intermediates from steady-state and time-resolved fluorescence of single-tryptophan-containing proteins. Biochemistry. 2011; 50:3441–3450. PubMed

Wang I., Chen S.-Y., Hsu S.-T.D.. Folding analysis of the most complex Stevedore's protein knot. Sci. Rep. 2016; 6:31514. PubMed PMC

Kim T.W., Lee S.J., Jo J., Kim J.G., Ki H., Kim C.W., Cho K.H., Choi J., Lee J.H., Wulff M.et al. .. Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering. Proc. Natl. Acad. Sci. U.S.A. 2020; 117:14996–15005. PubMed PMC

Henry L., Panman M.R., Isaksson L., Claesson E., Kosheleva I., Henning R., Westenhoff S., Berntsson O.. Real-time tracking of protein unfolding with time-resolved X-ray solution scattering. Struct. Dyn. 2020; 7:054702. PubMed PMC

Luan B., Shan B., Baiz C., Tokmakoff A., Raleigh D.P.. Cooperative cold denaturation: the case of the C-terminal domain of ribosomal protein L9. Biochemistry. 2013; 52:2402–2409. PubMed

Dingfelder F., Benke S., Nettels D., Schuler B.. Mapping an equilibrium folding intermediate of the cytolytic pore toxin ClyA with single-molecule FRET. J. Phys. Chem. B. 2018; 122:11251–11261. PubMed

Liu H., Yin P., He S., Sun Z., Tao Y., Huang Y., Zhuang H., Zhang G., Wei S.. ATP-Induced noncooperative thermal unfolding of hen lysozyme. Biochem. Biophys. Res. Commun. 2010; 397:598–602. PubMed

Galantini L., Leggio C., Konarev P.V., Pavel N.V.. Human serum albumin binding ibuprofen: a 3D description of the unfolding pathway in urea. Biophys. Chem. 2010; 147:111–122. PubMed

Harder M.E., Deinzer M.L., Leid M.E., Schimerlik M.I.. Global analysis of three-state protein unfolding data. Protein Sci. 2004; 13:2207–2222. PubMed PMC

Fotouhi L., Yousefinejad S., Salehi N., Saboury A.A., Sheibani N., Moosavi-Movahedi A.A.. Application of merged spectroscopic data combined with chemometric analysis for resolution of hemoglobin intermediates during chemical unfolding. Spectrochim. Acta Part A. 2015; 136:1974–1981. PubMed PMC

Jaumot J., Vives M., Gargallo R.. Application of multivariate resolution methods to the study of biochemical and biophysical processes. Anal. Biochem. 2004; 327:1–13. PubMed

Enoki S., Maki K., Inobe T., Takahashi K., Kamagata K., Oroguchi T., Nakatani H., Tomoyori K., Kuwajima K.. The equilibrium unfolding intermediate observed at pH 4 and its relationship with the kinetic folding intermediates in green fluorescent protein. J. Mol. Biol. 2006; 361:969–982. PubMed

Curnow P., Booth P.J.. Combined kinetic and thermodynamic analysis of Alpha-helical membrane protein unfolding. Proc. Natl. Acad. Sci. U.S.A. 104:18970–18975. PubMed PMC

Segel D.J., Bachmann A., Hofrichter J., Hodgson K.O., Doniach S., Kiefhaber T.. Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. J. Mol. Biol. 1999; 288:489–499. PubMed

Henry E.R., Hofrichter J.. Singular value decomposition: application to analysis of experimental data. Methods in Enzymology. 1992; 210:Elsevier; 129–192.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...