CalFitter 2.0: Leveraging the power of singular value decomposition to analyse protein thermostability
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35580052
PubMed Central
PMC9252748
DOI
10.1093/nar/gkac378
PII: 6586862
Knihovny.cz E-zdroje
- MeSH
- denaturace proteinů MeSH
- proteiny * chemie MeSH
- rozbalení proteinů * MeSH
- software MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny * MeSH
The importance of the quantitative description of protein unfolding and aggregation for the rational design of stability or understanding the molecular basis of protein misfolding diseases is well established. Protein thermostability is typically assessed by calorimetric or spectroscopic techniques that monitor different complementary signals during unfolding. The CalFitter webserver has already proved integral to deriving invaluable energy parameters by global data analysis. Here, we introduce CalFitter 2.0, which newly incorporates singular value decomposition (SVD) of multi-wavelength spectral datasets into the global fitting pipeline. Processed time- or temperature-evolved SVD components can now be fitted together with other experimental data types. Moreover, deconvoluted basis spectra provide spectral fingerprints of relevant macrostates populated during unfolding, which greatly enriches the information gains of the CalFitter output. The SVD analysis is fully automated in a highly interactive module, providing access to the results to users without any prior knowledge of the underlying mathematics. Additionally, a novel data uploading wizard has been implemented to facilitate rapid and easy uploading of multiple datasets. Together, the newly introduced changes significantly improve the user experience, making this software a unique, robust, and interactive platform for the analysis of protein thermal denaturation data. The webserver is freely accessible at https://loschmidt.chemi.muni.cz/calfitter.
Faculty of Information Technology Brno University of Technology Brno Czech Republic
International Centre for Clinical Research St Anne's University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Chiti F., Dobson C.M.. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 2017; 86:27–68. PubMed
Bommarius A.S., Paye M.F.. Stabilizing biocatalysts. Chem. Soc. Rev. 2013; 42:6534. PubMed
Nisthal A., Wang C.Y., Ary M.L., Mayo S.L. Protein stability engineering insights revealed by domain-wide comprehensive mutagenesis. PNAS. 2019; 116:16367–16377. PubMed PMC
Beerens K., Mazurenko S., Kunka A., Marques S.M., Hansen N., Musil M., Chaloupkova R., Waterman J., Brezovsky J., Bednar D.et al. .. Evolutionary analysis as a powerful complement to energy calculations for protein stabilization. ACS Catal. 2018; 8:9420–9428.
Sanchez-Ruiz J.M. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys. J. 1992; 61:921–935. PubMed PMC
Ibarra-Molero B., Naganathan A.N., Sanchez-Ruiz J.M., Muñoz V.. Modern analysis of protein folding by differential scanning calorimetry. Methods in Enzymology. 2016; 567:Elsevier; 281–318. PubMed
Stourac J., Dubrava J., Musil M., Horackova J., Damborsky J., Mazurenko S., Bednar D.. FireProtDB: database of manually curated protein stability data. Nucleic Acids Res. 2021; 49:D319–D324. PubMed PMC
Musil M., Konegger H., Hon J., Bednar D., Damborsky J.. Computational design of stable and soluble biocatalysts. ACS Catal. 2019; 9:1033–1054.
Mazurenko S., Stourac J., Kunka A., Nedeljković S., Bednar D., Prokop Z., Damborsky J.. CalFitter: a web server for analysis of protein thermal denaturation data. Nucleic Acids Res. 2018; 46:W344–W349. PubMed PMC
Nemergut M., Zoldak G., Schaefer J.V., Kast F., Miskovsky P., Plückthun A., Sedlak E.. Analysis of IgG kinetic stability by differential scanning calorimetry, probe fluorescence and light scattering: kinetic stability analysis of igG. Protein Sci. 2017; 26:2229–2239. PubMed PMC
Mazurenko S., Kunka A., Beerens K., Johnson C.M., Damborsky J., Prokop Z.. Exploration of protein unfolding by modelling calorimetry data from reheating. Sci. Rep. 2017; 7:16321. PubMed PMC
Samaga Y.B.L., Raghunathan S., Priyakumar U.D.. SCONES: self-consistent neural network for protein stability prediction upon mutation. J. Phys. Chem. B. 2021; 125:10657–10671. PubMed
Marques S.M., Planas-Iglesias J., Damborsky J.. Web-based tools for computational enzyme design. Curr. Opin. Struct. Biol. 2021; 69:19–34. PubMed
Markova K., Kunka A., Chmelova K., Havlasek M., Babkova P., Marques S.M., Vasina M., Planas-Iglesias J., Chaloupkova R., Bednar D.et al. .. Computational enzyme stabilization can affect folding energy landscapes and lead to catalytically enhanced domain-swapped dimers. ACS Catalysis. 2021; 11:12864–12885.
Óskarsson K.R., Sævarsson A.F., Kristjánsson M.M.. Thermostabilization of VPR, a kinetically stable cold adapted subtilase, via multiple proline substitutions into surface loops. Sci. Rep. 2020; 10:1045. PubMed PMC
Valadares V.S., Martins L.C., Roman E.A., Valente A.P., Cino E.A., Moraes A.H.. Conformational dynamics of tetracenomycin aromatase/cyclase regulate polyketide binding and enzyme aggregation propensity. Biochim. Biophys. Acta (BBA) - Gen. Subj. 2021; 1865:129949. PubMed
Rodrigues J.V., Shakhnovich E.I.. Adaptation to mutational inactivation of an essential gene converges to an accessible suboptimal fitness peak. Elife. 2019; 8:e50509. PubMed PMC
Zoldak G., Jancura D., Sedlak E.. The fluorescence intensities ratio is not a reliable parameter for evaluation of protein unfolding transitions. Protein Sci. 2017; 26:1236–1239. PubMed PMC
Laptenok S.P., Visser N.V., Engel R., Westphal A.H., van Hoek A., van Mierlo C.P.M., van Stokkum I.H.M., van Amerongen H., Visser A.J.W.G.. A general approach for detecting folding intermediates from steady-state and time-resolved fluorescence of single-tryptophan-containing proteins. Biochemistry. 2011; 50:3441–3450. PubMed
Wang I., Chen S.-Y., Hsu S.-T.D.. Folding analysis of the most complex Stevedore's protein knot. Sci. Rep. 2016; 6:31514. PubMed PMC
Kim T.W., Lee S.J., Jo J., Kim J.G., Ki H., Kim C.W., Cho K.H., Choi J., Lee J.H., Wulff M.et al. .. Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering. Proc. Natl. Acad. Sci. U.S.A. 2020; 117:14996–15005. PubMed PMC
Henry L., Panman M.R., Isaksson L., Claesson E., Kosheleva I., Henning R., Westenhoff S., Berntsson O.. Real-time tracking of protein unfolding with time-resolved X-ray solution scattering. Struct. Dyn. 2020; 7:054702. PubMed PMC
Luan B., Shan B., Baiz C., Tokmakoff A., Raleigh D.P.. Cooperative cold denaturation: the case of the C-terminal domain of ribosomal protein L9. Biochemistry. 2013; 52:2402–2409. PubMed
Dingfelder F., Benke S., Nettels D., Schuler B.. Mapping an equilibrium folding intermediate of the cytolytic pore toxin ClyA with single-molecule FRET. J. Phys. Chem. B. 2018; 122:11251–11261. PubMed
Liu H., Yin P., He S., Sun Z., Tao Y., Huang Y., Zhuang H., Zhang G., Wei S.. ATP-Induced noncooperative thermal unfolding of hen lysozyme. Biochem. Biophys. Res. Commun. 2010; 397:598–602. PubMed
Galantini L., Leggio C., Konarev P.V., Pavel N.V.. Human serum albumin binding ibuprofen: a 3D description of the unfolding pathway in urea. Biophys. Chem. 2010; 147:111–122. PubMed
Harder M.E., Deinzer M.L., Leid M.E., Schimerlik M.I.. Global analysis of three-state protein unfolding data. Protein Sci. 2004; 13:2207–2222. PubMed PMC
Fotouhi L., Yousefinejad S., Salehi N., Saboury A.A., Sheibani N., Moosavi-Movahedi A.A.. Application of merged spectroscopic data combined with chemometric analysis for resolution of hemoglobin intermediates during chemical unfolding. Spectrochim. Acta Part A. 2015; 136:1974–1981. PubMed PMC
Jaumot J., Vives M., Gargallo R.. Application of multivariate resolution methods to the study of biochemical and biophysical processes. Anal. Biochem. 2004; 327:1–13. PubMed
Enoki S., Maki K., Inobe T., Takahashi K., Kamagata K., Oroguchi T., Nakatani H., Tomoyori K., Kuwajima K.. The equilibrium unfolding intermediate observed at pH 4 and its relationship with the kinetic folding intermediates in green fluorescent protein. J. Mol. Biol. 2006; 361:969–982. PubMed
Curnow P., Booth P.J.. Combined kinetic and thermodynamic analysis of Alpha-helical membrane protein unfolding. Proc. Natl. Acad. Sci. U.S.A. 104:18970–18975. PubMed PMC
Segel D.J., Bachmann A., Hofrichter J., Hodgson K.O., Doniach S., Kiefhaber T.. Characterization of transient intermediates in lysozyme folding with time-resolved small-angle X-ray scattering. J. Mol. Biol. 1999; 288:489–499. PubMed
Henry E.R., Hofrichter J.. Singular value decomposition: application to analysis of experimental data. Methods in Enzymology. 1992; 210:Elsevier; 129–192.