Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_U105178788
Medical Research Council - United Kingdom
PubMed
29176711
PubMed Central
PMC5701188
DOI
10.1038/s41598-017-16360-y
PII: 10.1038/s41598-017-16360-y
Knihovny.cz E-zdroje
- MeSH
- kalorimetrie metody MeSH
- kinetika MeSH
- kuřecí embryo MeSH
- muramidasa chemie metabolismus MeSH
- proteinové inženýrství MeSH
- rozbalení proteinů MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- muramidasa MeSH
Studies of protein unfolding mechanisms are critical for understanding protein functions inside cells, de novo protein design as well as defining the role of protein misfolding in neurodegenerative disorders. Calorimetry has proven indispensable in this regard for recording full energetic profiles of protein unfolding and permitting data fitting based on unfolding pathway models. While both kinetic and thermodynamic protein stability are analysed by varying scan rates and reheating, the latter is rarely used in curve-fitting, leading to a significant loss of information from experiments. To extract this information, we propose fitting both first and second scans simultaneously. Four most common single-peak transition models are considered: (i) fully reversible, (ii) fully irreversible, (iii) partially reversible transitions, and (iv) general three-state models. The method is validated using calorimetry data for chicken egg lysozyme, mutated Protein A, three wild-types of haloalkane dehalogenases, and a mutant stabilized by protein engineering. We show that modelling of reheating increases the precision of determination of unfolding mechanisms, free energies, temperatures, and heat capacity differences. Moreover, this modelling indicates whether alternative refolding pathways might occur upon cooling. The Matlab-based data fitting software tool and its user guide are provided as a supplement.
Zobrazit více v PubMed
Koga N, et al. Principles for designing ideal protein structures. Nature. 2012;491(7423):222–227. doi: 10.1038/nature11600. PubMed DOI PMC
Baker D. Protein folding, structure prediction and design. Biochemical Society Transactions. 2014;42(2):225–229. doi: 10.1042/BST20130055. PubMed DOI
Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell Biology. 2015;16(1):18–29. doi: 10.1038/nrm3920. PubMed DOI PMC
Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. The Journal of Cell Biology. 2012;197(7):857–867. doi: 10.1083/jcb.201110131. PubMed DOI PMC
Dill KA, MacCallum JL. The protein-folding problem. 50 years on. Science. 2012;338(6110):1042–1046. PubMed
Englander SW, Mayne L, Kan Z-Y, Hu W. Protein folding—how and why: By hydrogen exchange, fragment separation, and mass spectrometry. Annual Review of Biophysics. 2016;45:135–152. doi: 10.1146/annurev-biophys-062215-011121. PubMed DOI PMC
Zhuravleva A, Korzhnev DM. Protein folding by NMR. Progress in Nuclear Magnetic Resonance Spectroscopy. 2017;100:52–77. doi: 10.1016/j.pnmrs.2016.10.002. PubMed DOI
Johnson CM. Differential scanning calorimetry as a tool for protein folding and stability. Archives of Biochemistry and Biophysics. 2013;531:100–109. doi: 10.1016/j.abb.2012.09.008. PubMed DOI
Privalov, P. L., Microcalorimetry of Macromolecules: The Physical Basis of Biological Structures (Wiley, Baltimore, 2012).
Strucksberg, K. H., Rosenkranz, T. & Fitter, J. Reversible and irreversible unfolding of multi-domain proteins. Biochimica et Biophysica Acta Proteins and Proteomics1774(12), 1591–1603 (2007). PubMed
Ibarra-Molero B, Naganathan AN, Sanchez-Ruiz JM. Modern analysis of protein folding by differential scanning calorimetry. Methods in Enzymology. 2016;567:277–314. PubMed
Rao V, Hemanth G, Shachi G. Using the folding landscapes of proteins to understand protein function. Current Opinion in Structural Biology. 2016;36:67–74. doi: 10.1016/j.sbi.2016.01.001. PubMed DOI
Sanchez-Ruiz JM. Protein kinetic stability. Biophysical Chemistry. 2010;148(1):1–15. doi: 10.1016/j.bpc.2010.02.004. PubMed DOI
Becktel WJ, Schellman JA. Protein stability curves. Biopolymers. 1987;26(11):1859–1877. doi: 10.1002/bip.360261104. PubMed DOI
Privalov PL. Cold denaturation of protein. Critical Reviews in Biochemistry and Molecular Biology. 1990;25(4):281–306. doi: 10.3109/10409239009090612. PubMed DOI
Toledo-Núñez C, Vera-Robles LI, Arroyo-Maya IJ, Hernández-Arana A. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control. Analytical Biochemistry. 2016;509:104–110. doi: 10.1016/j.ab.2016.07.006. PubMed DOI
Freire, E., TheThermodynamic Linkage Between Protein Structure, Stability, and Function. Protein Structure, Stability, and Folding, 37–68 (2001). PubMed
Makhatadze GI, Privalov PL. Energetics of protein structure. Advances in Protein Chemistry. 1995;5:507–510. PubMed
Roberts CJ. Non‐native protein aggregation kinetics. Biotechnology and Bioengineering. 2007;98(5):927–938. doi: 10.1002/bit.21627. PubMed DOI
Privalov PL, Dragan AI. Microcalorimetry of biological macromolecules. Biophysical Chemistry. 2007;126:16–24. doi: 10.1016/j.bpc.2006.05.004. PubMed DOI
Lyubarev AE, Kurganov BI. Modeling of Irreversible Thermal Protein Denaturation at Varying Temperature. II. The Complete Kinetic Model of Lumry and Eyring. Biochemistry Moscow. 1999;64:832–838. PubMed
Arroyo-Reyna A, Tello-Solis SR, Rojo-Dominguez A. Stability parameters for one-step mechanism of irreversible protein denaturation: a method based on nonlinear regression of calorimetric peaks with nonzero delta Cp. Analytical Biochemistry. 2003;328:123–13. doi: 10.1016/j.ab.2004.02.021. PubMed DOI
Lepock JR, et al. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry. 1992;31:12706–12712. doi: 10.1021/bi00165a023. PubMed DOI
Lyubarev AE, Kurganov BI. Analysis of DSC data relating to proteins undergoing irreversible thermal denaturation. Journal of Thermal Analysis and Calorimetry. 2000;62:49–60. doi: 10.1023/A:1010102525964. DOI
Sedlák E, Schaefer JV, Marek J, Gimeson P, Plückthun A. Advanced analyses of kinetic stabilities of iggs modified by mutations and glycosylation. Protein Science. 2015;24(7):1100–1113. doi: 10.1002/pro.2691. PubMed DOI PMC
Vermeer AW, Bremer MG, Norde W. Structural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic Teflon surface studied by circular dichroism spectroscopy. Biochimica et Biophysica Acta - General Subjects. 1998;1425(1):1–12. doi: 10.1016/S0304-4165(98)00048-8. PubMed DOI
Zhadan GG, et al. Protein involvement in thermally induced structural transitions of pig erythrocyte ghosts. International Journal of Biochemistry and Molecular Biology. 1997;42:11–20. PubMed
Singh N, Liu Z, Fisher HF. The existence of a hexameric intermediate with molten-globule-like properties in the thermal denaturation of bovine-liver glutamate dehydrogenase. Biophysical Chemistry. 1996;63:27–36. doi: 10.1016/S0301-4622(96)02192-8. PubMed DOI
Markov DI, Zubov EO, Nikolaeva OP, Kurganov BI, Levitsky DI. Thermal denaturation and aggregation of myosin subfragment 1 isoforms with different essential light chains. International Journal of Molecular Sciences. 2010;11(4194-4226):4194–4226. doi: 10.3390/ijms11114194. PubMed DOI PMC
Andrews, J. M. & Roberts, C. J., A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding. The Journal of Physical Chemistry B, 7897–7913 (2007). PubMed
Privalov PL, Khechinashvili NN. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. Journal of Molecular Biology. 1974;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. PubMed DOI
Milardi D, La Rosa C, Grasso D. Extended theoretical analysis of irreversible protein thermal unfolding. Biophysical Chemistry. 1994;52:183–189. doi: 10.1016/0301-4622(94)00033-G. PubMed DOI
Pavlova M, et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nature Chemical Biology. 2009;5:727–733. doi: 10.1038/nchembio.205. PubMed DOI
Stepankova V, Damborsky J, Chaloupkova R. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases. Biotechnology Journal. 2013;8:719–729. doi: 10.1002/biot.201200378. PubMed DOI
Sato S, Religa TL, Fersht AR. Φ-Analysis of the folding of the B domain of protein a using multiple optical probes. Journal of Molecular Biology. 2006;360:850–864. doi: 10.1016/j.jmb.2006.05.051. PubMed DOI
Sanchez-Ruiz JM. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophysical Journal. 1992;61(4):921–935. doi: 10.1016/S0006-3495(92)81899-4. PubMed DOI PMC
Privalov PL, Makhatadze GI. Contribution of hydration and non-covalent interactions to the heat capacity effect on protein unfolding. Journal of Molecular Biology. 1992;224(3):715–723. doi: 10.1016/0022-2836(92)90555-X. PubMed DOI
Rodriguez‐Larrea, D., Ibarra‐Molero, B., de Maria, L., Borchert, T. V. & Sanchez‐Ruiz, J. M., Beyond Lumry–Eyring: An unexpected pattern of operational reversibility/irreversibility in protein denaturation. Proteins: Structure, Function, and Bioinformatics, 19–24 (2008). PubMed
Goyal M, Chaudhuri TP, Kuwajima K. Irreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning Calorimetry, Circular Dichroism, and Turbidity Measurements. PLoS ONE. 2014;9:e115877. doi: 10.1371/journal.pone.0115877. PubMed DOI PMC
Branchu S, Forbes RT, York P, Nyqvist H. A central composite design to investigate the thermal stabilization of lysozyme. Pharmaceutical Research. 1999;16:702–708. doi: 10.1023/A:1018876625126. PubMed DOI
Sassi P, Giugliarelli A, Paolantoni M, Morresi A, Onori G. Unfolding and aggregation of lysozyme: A thermodynamic and kinetic study by FTIR spectroscopy. Biophysical Chemistry. 2011;158:46–53. doi: 10.1016/j.bpc.2011.05.002. PubMed DOI
Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC. Ancestral lysozymes reconstructed, neutrality tested and thermostability linked to hydrocarbon packing. Nature. 1990;345(6270):86–89. doi: 10.1038/345086a0. PubMed DOI
Shih P, Kirsch JF, Holland DR. Thermal stability determinants of chicken egg‐white lysozyme core mutants: Hydrophobicity, packing volume, and conserved buried water molecules. Protein Science. 1995;4(10):2050–2062. doi: 10.1002/pro.5560041010. PubMed DOI PMC
CalFitter: a web server for analysis of protein thermal denaturation data