Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating

. 2017 Nov 24 ; 7 (1) : 16321. [epub] 20171124

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29176711

Grantová podpora
MC_U105178788 Medical Research Council - United Kingdom

Odkazy

PubMed 29176711
PubMed Central PMC5701188
DOI 10.1038/s41598-017-16360-y
PII: 10.1038/s41598-017-16360-y
Knihovny.cz E-zdroje

Studies of protein unfolding mechanisms are critical for understanding protein functions inside cells, de novo protein design as well as defining the role of protein misfolding in neurodegenerative disorders. Calorimetry has proven indispensable in this regard for recording full energetic profiles of protein unfolding and permitting data fitting based on unfolding pathway models. While both kinetic and thermodynamic protein stability are analysed by varying scan rates and reheating, the latter is rarely used in curve-fitting, leading to a significant loss of information from experiments. To extract this information, we propose fitting both first and second scans simultaneously. Four most common single-peak transition models are considered: (i) fully reversible, (ii) fully irreversible, (iii) partially reversible transitions, and (iv) general three-state models. The method is validated using calorimetry data for chicken egg lysozyme, mutated Protein A, three wild-types of haloalkane dehalogenases, and a mutant stabilized by protein engineering. We show that modelling of reheating increases the precision of determination of unfolding mechanisms, free energies, temperatures, and heat capacity differences. Moreover, this modelling indicates whether alternative refolding pathways might occur upon cooling. The Matlab-based data fitting software tool and its user guide are provided as a supplement.

Zobrazit více v PubMed

Koga N, et al. Principles for designing ideal protein structures. Nature. 2012;491(7423):222–227. doi: 10.1038/nature11600. PubMed DOI PMC

Baker D. Protein folding, structure prediction and design. Biochemical Society Transactions. 2014;42(2):225–229. doi: 10.1042/BST20130055. PubMed DOI

Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell Biology. 2015;16(1):18–29. doi: 10.1038/nrm3920. PubMed DOI PMC

Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. The Journal of Cell Biology. 2012;197(7):857–867. doi: 10.1083/jcb.201110131. PubMed DOI PMC

Dill KA, MacCallum JL. The protein-folding problem. 50 years on. Science. 2012;338(6110):1042–1046. PubMed

Englander SW, Mayne L, Kan Z-Y, Hu W. Protein folding—how and why: By hydrogen exchange, fragment separation, and mass spectrometry. Annual Review of Biophysics. 2016;45:135–152. doi: 10.1146/annurev-biophys-062215-011121. PubMed DOI PMC

Zhuravleva A, Korzhnev DM. Protein folding by NMR. Progress in Nuclear Magnetic Resonance Spectroscopy. 2017;100:52–77. doi: 10.1016/j.pnmrs.2016.10.002. PubMed DOI

Johnson CM. Differential scanning calorimetry as a tool for protein folding and stability. Archives of Biochemistry and Biophysics. 2013;531:100–109. doi: 10.1016/j.abb.2012.09.008. PubMed DOI

Privalov, P. L., Microcalorimetry of Macromolecules: The Physical Basis of Biological Structures (Wiley, Baltimore, 2012).

Strucksberg, K. H., Rosenkranz, T. & Fitter, J. Reversible and irreversible unfolding of multi-domain proteins. Biochimica et Biophysica Acta Proteins and Proteomics1774(12), 1591–1603 (2007). PubMed

Ibarra-Molero B, Naganathan AN, Sanchez-Ruiz JM. Modern analysis of protein folding by differential scanning calorimetry. Methods in Enzymology. 2016;567:277–314. PubMed

Rao V, Hemanth G, Shachi G. Using the folding landscapes of proteins to understand protein function. Current Opinion in Structural Biology. 2016;36:67–74. doi: 10.1016/j.sbi.2016.01.001. PubMed DOI

Sanchez-Ruiz JM. Protein kinetic stability. Biophysical Chemistry. 2010;148(1):1–15. doi: 10.1016/j.bpc.2010.02.004. PubMed DOI

Becktel WJ, Schellman JA. Protein stability curves. Biopolymers. 1987;26(11):1859–1877. doi: 10.1002/bip.360261104. PubMed DOI

Privalov PL. Cold denaturation of protein. Critical Reviews in Biochemistry and Molecular Biology. 1990;25(4):281–306. doi: 10.3109/10409239009090612. PubMed DOI

Toledo-Núñez C, Vera-Robles LI, Arroyo-Maya IJ, Hernández-Arana A. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control. Analytical Biochemistry. 2016;509:104–110. doi: 10.1016/j.ab.2016.07.006. PubMed DOI

Freire, E., TheThermodynamic Linkage Between Protein Structure, Stability, and Function. Protein Structure, Stability, and Folding, 37–68 (2001). PubMed

Makhatadze GI, Privalov PL. Energetics of protein structure. Advances in Protein Chemistry. 1995;5:507–510. PubMed

Roberts CJ. Non‐native protein aggregation kinetics. Biotechnology and Bioengineering. 2007;98(5):927–938. doi: 10.1002/bit.21627. PubMed DOI

Privalov PL, Dragan AI. Microcalorimetry of biological macromolecules. Biophysical Chemistry. 2007;126:16–24. doi: 10.1016/j.bpc.2006.05.004. PubMed DOI

Lyubarev AE, Kurganov BI. Modeling of Irreversible Thermal Protein Denaturation at Varying Temperature. II. The Complete Kinetic Model of Lumry and Eyring. Biochemistry Moscow. 1999;64:832–838. PubMed

Arroyo-Reyna A, Tello-Solis SR, Rojo-Dominguez A. Stability parameters for one-step mechanism of irreversible protein denaturation: a method based on nonlinear regression of calorimetric peaks with nonzero delta Cp. Analytical Biochemistry. 2003;328:123–13. doi: 10.1016/j.ab.2004.02.021. PubMed DOI

Lepock JR, et al. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry. 1992;31:12706–12712. doi: 10.1021/bi00165a023. PubMed DOI

Lyubarev AE, Kurganov BI. Analysis of DSC data relating to proteins undergoing irreversible thermal denaturation. Journal of Thermal Analysis and Calorimetry. 2000;62:49–60. doi: 10.1023/A:1010102525964. DOI

Sedlák E, Schaefer JV, Marek J, Gimeson P, Plückthun A. Advanced analyses of kinetic stabilities of iggs modified by mutations and glycosylation. Protein Science. 2015;24(7):1100–1113. doi: 10.1002/pro.2691. PubMed DOI PMC

Vermeer AW, Bremer MG, Norde W. Structural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic Teflon surface studied by circular dichroism spectroscopy. Biochimica et Biophysica Acta - General Subjects. 1998;1425(1):1–12. doi: 10.1016/S0304-4165(98)00048-8. PubMed DOI

Zhadan GG, et al. Protein involvement in thermally induced structural transitions of pig erythrocyte ghosts. International Journal of Biochemistry and Molecular Biology. 1997;42:11–20. PubMed

Singh N, Liu Z, Fisher HF. The existence of a hexameric intermediate with molten-globule-like properties in the thermal denaturation of bovine-liver glutamate dehydrogenase. Biophysical Chemistry. 1996;63:27–36. doi: 10.1016/S0301-4622(96)02192-8. PubMed DOI

Markov DI, Zubov EO, Nikolaeva OP, Kurganov BI, Levitsky DI. Thermal denaturation and aggregation of myosin subfragment 1 isoforms with different essential light chains. International Journal of Molecular Sciences. 2010;11(4194-4226):4194–4226. doi: 10.3390/ijms11114194. PubMed DOI PMC

Andrews, J. M. & Roberts, C. J., A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation with pre-equilibrated unfolding. The Journal of Physical Chemistry B, 7897–7913 (2007). PubMed

Privalov PL, Khechinashvili NN. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. Journal of Molecular Biology. 1974;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. PubMed DOI

Milardi D, La Rosa C, Grasso D. Extended theoretical analysis of irreversible protein thermal unfolding. Biophysical Chemistry. 1994;52:183–189. doi: 10.1016/0301-4622(94)00033-G. PubMed DOI

Pavlova M, et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nature Chemical Biology. 2009;5:727–733. doi: 10.1038/nchembio.205. PubMed DOI

Stepankova V, Damborsky J, Chaloupkova R. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases. Biotechnology Journal. 2013;8:719–729. doi: 10.1002/biot.201200378. PubMed DOI

Sato S, Religa TL, Fersht AR. Φ-Analysis of the folding of the B domain of protein a using multiple optical probes. Journal of Molecular Biology. 2006;360:850–864. doi: 10.1016/j.jmb.2006.05.051. PubMed DOI

Sanchez-Ruiz JM. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophysical Journal. 1992;61(4):921–935. doi: 10.1016/S0006-3495(92)81899-4. PubMed DOI PMC

Privalov PL, Makhatadze GI. Contribution of hydration and non-covalent interactions to the heat capacity effect on protein unfolding. Journal of Molecular Biology. 1992;224(3):715–723. doi: 10.1016/0022-2836(92)90555-X. PubMed DOI

Rodriguez‐Larrea, D., Ibarra‐Molero, B., de Maria, L., Borchert, T. V. & Sanchez‐Ruiz, J. M., Beyond Lumry–Eyring: An unexpected pattern of operational reversibility/irreversibility in protein denaturation. Proteins: Structure, Function, and Bioinformatics, 19–24 (2008). PubMed

Goyal M, Chaudhuri TP, Kuwajima K. Irreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning Calorimetry, Circular Dichroism, and Turbidity Measurements. PLoS ONE. 2014;9:e115877. doi: 10.1371/journal.pone.0115877. PubMed DOI PMC

Branchu S, Forbes RT, York P, Nyqvist H. A central composite design to investigate the thermal stabilization of lysozyme. Pharmaceutical Research. 1999;16:702–708. doi: 10.1023/A:1018876625126. PubMed DOI

Sassi P, Giugliarelli A, Paolantoni M, Morresi A, Onori G. Unfolding and aggregation of lysozyme: A thermodynamic and kinetic study by FTIR spectroscopy. Biophysical Chemistry. 2011;158:46–53. doi: 10.1016/j.bpc.2011.05.002. PubMed DOI

Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC. Ancestral lysozymes reconstructed, neutrality tested and thermostability linked to hydrocarbon packing. Nature. 1990;345(6270):86–89. doi: 10.1038/345086a0. PubMed DOI

Shih P, Kirsch JF, Holland DR. Thermal stability determinants of chicken egg‐white lysozyme core mutants: Hydrophobicity, packing volume, and conserved buried water molecules. Protein Science. 1995;4(10):2050–2062. doi: 10.1002/pro.5560041010. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...