Construction of the miRNA-mRNA regulatory network and analysis of hub genes in oral squamous cell carcinoma

. 2022 Sep ; 166 (3) : 280-289. [epub] 20220203

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35132271

BACKGROUND: Oral squamous cell carcinoma (OSCC) severely affects the quality of life and the 5-year survival rate is low. Exploring the potential miRNA-mRNA regulatory network and analyzing hub genes and clinical data can provide a theoretical basis for further elucidating the pathogenesis of OSCC. METHODS: The miRNA expression datasets of GSE113956 and GSE124566 and mRNA expression datasets of GSE31056, GSE37991 and GSE13601 were obtained from the Gene Expression Omnibus databases. The differentially expressed miRNAs (DEMs) and mRNAs (DEGs) were screened using GEO2R. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by DAVID database. The PPI network was established through STRING database and the hub genes were preliminarily screened out by Cytoscape software. After identifying the hub genes in the TCGA database, we predicted the potential DEM transcription factors, constructed a miRNA-mRNA regulatory network, and analyzed the relationship between the hub genes and clinical data. RESULTS: A total of 28 DEMs and 764 DEGs were screened out, which were composed of 285 up-regulated genes and 479 down-regulated genes. Enrichment analysis showed that up-regulation of DEGs were mainly enriched in extracellular matrix organization and cancer-related pathway, while down-regulation of DEGs were mainly enriched in muscular system process and adrenaline signal transduction. After preliminary screening by PPI network and identification in TCGA, the up-regulated FN1, COL1A1, COL1A2, AURKA, CCNB1, CCNA2, SPP1, CDC6, and down-regulated ACTN2, TTN, IGF1, CAV3, MYL2, DMD, LDB3, CSRP3, ACTA1, PPARG were identified as hub genes. The miRNA-mRNA regulation network showed that hsa-miR-513b was the DEM with the most regulation, and COL1A1 was the DEG with the most regulation. In addition, CDC6, AURKA, CCNB1 and CCNA2 were related to overall survival and tumor differentiation. CONCLUSIONS: The regulatory relationship of hsa-miR-513b/ CDC6, CCNB1, CCNA2 and the regulatory relationship of hsa-miR-342-5p /AURKA were not only verified in the miRNA-mRNA regulatory network but also related to overall survival and tumor differentiation. These results indicated that they participated in the cellular regulatory process, and provided a molecular mechanism model for the study of pathogenesis.

Zobrazit více v PubMed

Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61(2):69-90. doi:10.3322/caac.20107 PubMed DOI

Sankaranarayanan R, Swaminathan R, Brenner H, Chen K, Chia KS, Chen JG, Law SC, Ahn YO, Xiang YB, Yeole BB, Shin HR, Shanta V, Woo ZH, Martin N, Sumitsawan Y, Sriplung H, Barboza AO, Eser S, Nene BM, Suwanrungruang K, Jayalekshmi P, Dikshit R, Wabinga H, Esteban DB, Laudico A, Bhurgri Y, Bah E, Al-Hamdan N. Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol 2010;11(2):165-73. doi: 10.1016/S1470-2045(09)70335-3 PubMed DOI

Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 2009;45(4-5):309-16. doi: 10.1016/j.oraloncology.2008.06.002 PubMed DOI

Coleman MP, Quaresma M, Berrino F, Lutz JM, De Angelis R, Capocaccia R, Baili P, Rachet B, Gatta G, Hakulinen T, Micheli A, Sant M, Weir HK, Elwood JM, Tsukuma H, Koifman S, E Silva GA, Francisci S, Santaquilani M, Verdecchia A, Storm HH, Young JL; CONCORD Working Group. Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol 2008;9(8):730-56. doi: 10.1016/S1470-2045(08)70179-7 PubMed DOI

Schminke B, Shomroni O, Salinas G, Bremmer F, Kauffmann P, Schliephake H, Oyelami F, Rahat MA, Brockmeyer P. Prognostic factor identification by screening changes in differentially expressed genes in oral squamous cell carcinoma. Oral Dis 2021 Apr 19. [Epub ahead of print] doi: 10.1111/odi.13879 PubMed DOI

Mondal P, Kaur B, Natesh J, Meeran SM. The emerging role of miRNA in the perturbation of tumor immune microenvironment in chemoresistance: Therapeutic implications. Semin Cell Dev Biol 2021 Apr 14. [Epub ahead of print] doi: 10.1016/j.semcdb.2021.04.001 PubMed DOI

Wang Y, Hao W, Wang H. miR-557 suppressed the malignant behaviours of osteosarcoma cells by reducing HOXB9 and deactivating the EMT process. Artif Cells Nanomed Biotechnol 2021;49(1):230-39. doi: 10.1080/21691401.2021.1890100 PubMed DOI

Jia B, Zhang S, Wu S, Zhu Q, Li W. MiR-770 promotes oral squamous cell carcinoma migration and invasion by regulating the Sirt7/Smad4 pathway. IUBMB Life 2021;73(1):264-72. doi: 10.1002/iub.2426 PubMed DOI

Wang L, Ge S, Zhou F. MicroRNA-487a-3p inhibits the growth and invasiveness of oral squamous cell carcinoma by targeting PPM1A. Bioengineered 2021;12(1):937-47. doi: 10.1080/21655979.2021.1884396 PubMed DOI

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 2013;41(Database issue):D991-5. doi: 10.1093/nar/gks1193 PubMed DOI

Dweep H, Sticht C, Pandey P, Gretz N. miRWalk-database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform 2011;44(5):839-47. doi: 10.1016/j.jbi.2011.05.002 PubMed DOI

Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4(1):44-57. doi: 10.1038/nprot.2008.211 PubMed DOI

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47(D1):D607-D613. doi: 10.1093/nar/gky1131 PubMed DOI

Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, Tang Y, Chen YG, Jin CN, Yu Y, Xu JT, Li YM, Cai XX, Zhou ZY, Chen XH, Pei YY, Hu L, Su JJ, Cui SD, Wang F, Xie YY, Ding SY, Luo MF, Chou CH, Chang NW, Chen KW, Cheng YH, Wan XH, Hsu WL, Lee TY, Wei FX, Huang HD. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res 2020;48(D1):D148-D154. doi: 10.1093/nar/gkz896 PubMed DOI

Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4:e05005. doi: 10.7554/eLife.05005 PubMed DOI

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394-424. doi: 10.3322/caac.21492 PubMed DOI

Jiang S, Dong Y. Human papillomavirus and oral squamous cell carcinoma: A review of HPV-positive oral squamous cell carcinoma and possible strategies for future. Curr Probl Cancer 2017;41(5):323-27. doi: 10.1016/j.currproblcancer.2017.02.006 PubMed DOI

Zhang Yun, Li Shengmei, Zhang Yuan, Chang Qunan. Relationship between expression of transcription factor FoxO1 and miR-142-3p in oral squamous cell carcinoma and its significance. J West Med 2020;32(09):1333-1336+1341. doi:10.3969/j.issn.1672-3511.2020.09.016 DOI

Liu J, Jiang X, Zou A, Mai Z, Huang Z, Sun L, Zhao J. circIGHG-Induced Epithelial-to-Mesenchymal Transition Promotes Oral Squamous Cell Carcinoma Progression via miR-142-5p/IGF2BP3 Signaling. Cancer Res 2021;81(2):344-55. doi: 10.1158/0008-5472.CAN-20-0554 PubMed DOI

Shi Y, Li Y, Wu W, Xu B, Ju J. MiR-181d functions as a potential tumor suppressor in oral squamous cell carcinoma by targeting K-ras. Int J Clin Exp Pathol 2017;10(7):7847-55.

Wang L, Wei Y, Yan Y, Wang H, Yang J, Zheng Z, Zha J, Bo P, Tang Y, Guo X, Chen W, Zhu X, Ge L. CircDOCK1 suppresses cell apoptosis via inhibition of miR‑196a‑5p by targeting BIRC3 in OSCC. Oncol Rep 2018;39(3):951-66. doi: 10.3892/or.2017.6174 PubMed DOI

Li X, He J, Shao M, Cui B, Peng F, Li J, Ran Y, Jin D, Kong J, Chang J, Duan L, Yang X, Luo Y, Lu Y, Lin B, Liu T. Downregulation of miR-218-5p promotes invasion of oral squamous cell carcinoma cells via activation of CD44-ROCK signaling. Biomed Pharmacother 2018;106:646-54. doi: 10.1016/j.biopha.2018.06.151 PubMed DOI

Kurihara-Shimomura M, Sasahira T, Shimomura H, Nakashima C, Kirita T. The Oncogenic Activity of miR-29b-1-5p Induces the Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma. J Clin Med 2019;8(2):273. doi: 10.3390/jcm8020273 PubMed DOI

Li J, Chen W, Luo L, Liao L, Deng X, Wang Y. The microRNA miR-29c-5p inhibits cell proliferation and migration by targeting TMEM98 in head and neck carcinoma. Aging (Albany NY) 2020;13(1):769-81. doi: 10.18632/aging.202183 PubMed DOI

Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G, Wan X. Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming. Front Oncol 2021;11:626577. doi: 10.3389/fonc.2021.626577 PubMed DOI

Buchheit CL, Rayavarapu RR, Schafer ZT. The regulation of cancer cell death and metabolism by extracellular matrix attachment. Semin Cell Dev Biol 2012;23(4):402-11. doi: 10.1016/j.semcdb.2012.04.007 PubMed DOI

Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S. Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol 2011;4(5):476-95.

Russell FM, Hardie DG. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Int J Mol Sci 2020;22(1):186. doi: 10.3390/ijms22010186 PubMed DOI

Bhatti GK, Khullar N, Sidhu IS, Navik US, Reddy AP, Reddy PH, Bhatti JS. Emerging role of non-coding RNA in health and disease. Metab Brain Dis 2021;36(6):1119-134. doi: 10.1007/s11011-021-00739-y PubMed DOI

Kim S, Lee JW, Park YS. The Application of Next-Generation Sequencing to Define Factors Related to Oral Cancer and Discover Novel Biomarkers. Life (Basel) 2020;10(10):228. doi: 10.3390/life10100228 PubMed DOI

Chen Z, Tao Q, Qiao B, Zhang L. Silencing of LINC01116 suppresses the development of oral squamous cell carcinoma by up-regulating microRNA-136 to inhibit FN1. Cancer Manag Res 2019;11:6043-59. doi: 10.2147/CMAR.S197583 PubMed DOI

He B, Lin X, Tian F, Yu W, Qiao B. MiR-133a-3p Inhibits Oral Squamous Cell Carcinoma (OSCC) Proliferation and Invasion by Suppressing COL1A1. J Cell Biochem 2018;119(1):338-46. doi: 10.1002/jcb.26182 PubMed DOI

Qin L, Zhan Z, Wei C, Li X, Zhang T, Li J. Hsa‑circRNA‑G004213 promotes cisplatin sensitivity by regulating miR‑513b‑5p/PRPF39 in liver cancer. Mol Med Rep 2021;23(6):421. doi: 10.3892/mmr.2021.12060 PubMed DOI

Lu C, Jia S, Zhao S, Shao X. MiR-342 regulates cell proliferation and apoptosis in hepatocellular carcinoma through Wnt/β-catenin signaling pathway. Cancer Biomark 2019;25(1):115-26. doi:10.3233/CBM-192399 PubMed DOI

Yang H, Li Q, Niu J, Li B, Jiang D, Wan Z, Yang Q, Jiang F, Wei P, Bai S. microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10. Oncotarget 2016;7(3):2709-20. doi: 10.18632/oncotarget.6458 PubMed DOI

Wang C, Zhang W, Xing S, Wang Z, Wang J, Qu J. MiR-342-3p inhibits cell migration and invasion through suppressing forkhead box protein Q1 in ovarian carcinoma. Anticancer Drugs 2019;30(9):917-24. doi: 10.1097/CAD.0000000000000801 PubMed DOI

Monteiro LS, Diniz-Freitas M, Warnakulasuriya S, Garcia-Caballero T, Forteza-Vila J, Fraga M. Prognostic Significance of Cyclins A2, B1, D1, and E1 and CCND1 Numerical Aberrations in Oral Squamous Cell Carcinomas. Anal Cell Pathol (Amst) 2018;2018:7253510. doi: 10.1155/2018/7253510 PubMed DOI

Khumukcham SS, Samanthapudi VSK, Penugurti V, Kumari A, Kesavan PS, Velatooru LR, Kotla SR, Mazumder A, Manavathi B. Hematopoietic PBX-interacting protein is a substrate and an inhibitor of the APC/C-Cdc20 complex and regulates mitosis by stabilizing cyclin B1. J Biol Chem 2019;294(26):10236-252. doi: 10.1074/jbc.RA118.006733 PubMed DOI

Liu A, Zeng S, Lu X, Xiong Q, Xue Y, Tong L, Xu W, Sun Y, Zhang Z, Xu C. Overexpression of G2 and S phase-expressed-1 contributes to cell proliferation, migration, and invasion via regulating p53/FoxM1/CCNB1 pathway and predicts poor prognosis in bladder cancer. Int J Biol Macromol 2019;123:322-34. doi: 10.1016/j.ijbiomac.2018.11.032 PubMed DOI

Wang Pu,Wei Libin,Ni Guangxiao.The effect of CCNB1 gene on the proliferation, invasion and migration of oral squamous cell carcinoma cells by regulating the PI3K/Akt signaling pathway. Journal of Practical Oncology 2020;34(02):144-49. doi: 10.11904 /j.issn.1002-3070.2020.02.011

Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer 2021;20(1):15. doi: 10.1186/s12943-020-01305-3 PubMed DOI

Dawei H, Honggang D, Qian W. AURKA contributes to the progression of oral squamous cell carcinoma (OSCC) through modulating epithelial-to-mesenchymal transition (EMT) and apoptosis via the regulation of ROS. Biochem Biophys Res Commun 2018;507(1-4):83-90. doi: 10.1016/j.bbrc.2018.10.170 PubMed DOI

Yang Z, Liang X, Fu Y, Liu Y, Zheng L, Liu F, Li T, Yin X, Qiao X, Xu X. Identification of AUNIP as a candidate diagnostic and prognostic biomarker for oral squamous cell carcinoma. EBioMedicine 2019;47:44-57. doi: 10.1016/j.ebiom.2019.08.013 PubMed DOI

Feng CJ, Li HJ, Li JN, Lu YJ, Liao GQ. Expression of Mcm7 and Cdc6 in oral squamous cell carcinoma and precancerous lesions. Anticancer Res 2008;28(6A):3763-9. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...