CalFitter: a web server for analysis of protein thermal denaturation data
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29762722
PubMed Central
PMC6031030
DOI
10.1093/nar/gky358
PII: 4995690
Knihovny.cz E-zdroje
- MeSH
- denaturace proteinů * MeSH
- internet * MeSH
- molekulární modely MeSH
- rozbalení proteinů MeSH
- sbalování proteinů MeSH
- software * MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Despite significant advances in the understanding of protein structure-function relationships, revealing protein folding pathways still poses a challenge due to a limited number of relevant experimental tools. Widely-used experimental techniques, such as calorimetry or spectroscopy, critically depend on a proper data analysis. Currently, there are only separate data analysis tools available for each type of experiment with a limited model selection. To address this problem, we have developed the CalFitter web server to be a unified platform for comprehensive data fitting and analysis of protein thermal denaturation data. The server allows simultaneous global data fitting using any combination of input data types and offers 12 protein unfolding pathway models for selection, including irreversible transitions often missing from other tools. The data fitting produces optimal parameter values, their confidence intervals, and statistical information to define unfolding pathways. The server provides an interactive and easy-to-use interface that allows users to directly analyse input datasets and simulate modelled output based on the model parameters. CalFitter web server is available free at https://loschmidt.chemi.muni.cz/calfitter/.
Zobrazit více v PubMed
Dill K.A., MacCallum J.L.. The protein-folding problem, 50 years on. Science. 2012; 338:1042–1046. PubMed
Orengo C.A., Pearl F.M.G., Bray J.E., Todd A.E., Martin A., Lo Conte L., Thornton J.M.. The CATH database provides insights into protein structure/function relationships. Nucleic Acids Res. 1999; 27:275–279. PubMed PMC
Fersht A.R., Matouschek A., Serrano L.. The folding of an enzyme: I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 1992; 224:771–782. PubMed
Yang H., Liu L., Li J., Chen J., Du G.. Rational design to improve protein thermostability: recent advances and prospects. ChemBioEng Rev. 2015; 2:87–94.
Knowles T.P., Vendruscolo M., Dobson C.M.. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 2014; 15:384–396. PubMed
Sancho J. The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques… plus the structure of the equilibrium intermediates at the same time. Arch. Biochem. Biophys. 2013; 531:4–13. PubMed
Temel D.B., Landsman P., Brader M.L.. Orthogonal methods for characterizing the unfolding of therapeutic monoclonal antibodies: differential scanning calorimetry, isothermal chemical denaturation, and intrinsic fluorescence with concomitant static light scattering. Methods Enzymol. 2016; 567:359–389. PubMed
Gelman H., Gruebele M.. Fast protein folding kinetics. Q. Rev. Biophys. 2014; 47:95–142. PubMed PMC
Goyal M., Chaudhuri T.K., Kuwajima K.. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements. PloS One. 2014; 9:e115877. PubMed PMC
Dimitriadis G., Drysdale A., Myers J.K., Arora P., Radford S.E., Oas T.G., Smith D.A.. Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump. Proc. Natl. Acad. Sci. U.S.A. 2004; 101:3809–3814. PubMed PMC
Lepock J.R., Ritchie K.P., Kolios M.C., Rodahl A.M., Heinz K.A., Kruuv J.. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of reversible and irreversible protein denaturation. Biochemistry. 1992; 31:12706–12712. PubMed
Sanchez-Ruiz J.M. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys. J. 1992; 61:921–935. PubMed PMC
Privalov P.L., Dragan A.I.. Microcalorimetry of biological macromolecules. Biophys. Chem. 2007; 126:16–24. PubMed
Tsytlonok M., Itzhaki L.S.. The how's and why's of protein folding intermediates. Arch. Biochem. Biophys. 2013; 531:14–23. PubMed
Neudecker P., Robustelli P., Cavalli A., Walsh P., Lundstrom P., Zarrine-Afsar A., Sharpe S., Vendruscolo M., Kay L.E.. Structure of an intermediate state in protein folding and aggregation. Science. 2012; 336:362–366. PubMed
Bowman G.R., Beauchamp K.A., Boxer G., Pande V.S.. Progress and challenges in the automated construction of Markov state models for full protein systems. J. Chem. Phys. 2009; 131:124101. PubMed PMC
Wei G., Xi W., Nussinov R., Ma B.. Protein ensembles: how does nature harness thermodynamic fluctuations for life? the diverse functional roles of conformational ensembles in the cell. Chem. Rev. 2016; 116:6516–6551. PubMed PMC
Johnson K.A. Fitting enzyme kinetic data with KinTek global kinetic explorer. Methods Enzymol. 2009; 467:601–626. PubMed
Kuzmič P. DynaFit—a software package for enzymology. Methods Enzymol. 2009; 467:247–280. PubMed
Niklasson M., Andresen C., Helander S., Roth M.G., Zimdahl Kahlin A., Lindqvist Appell M., Mårtensson L., Lundström P.. Robust and convenient analysis of protein thermal and chemical stability. Prot. Sci. 2015; 24:2055–2062. PubMed PMC
Harder M.E., Deinzer M.L., Leid M.E., Schimerlik M.I.. Global analysis of threestate protein unfolding data. Prot. Sci. 2004; 13:2207–2222. PubMed PMC
Li A., Ziehr J.L., Johnson K.A.. A new general method for simultaneous fitting of temperature and concentration dependence of reaction rates yields kinetic and thermodynamic parameters for HIV reverse transcriptase specificity. J. Biol. Chem. 2017; 292:6695–6702. PubMed PMC
Yi Q., Scalley M.L., Simons K.T., Gladwin S.T., Baker D.. Characterization of the free energy spectrum of peptostreptococcal protein L. Fold. Des. 1997; 2:271–280. PubMed
Mazurenko S., Kunka A., Beerens K., Johnson C.M., Damborsky J., Prokop Z.. Exploration of protein unfolding by modelling calorimetry data from reheating. Sci. Rep. 2017; 7:16321. PubMed PMC
Ibarra-Molero B., Naganathan A.N., Sanchez-Ruiz J.M., Muñoz V.. Modern analysis of protein folding by differential scanning calorimetry. Methods Enzymol. 2016; 567:281–318. PubMed
Rodriguez‐Larrea D., Ibarra‐Molero B., de Maria L., Borchert T.V., Sanchez-Ruiz J.M.. Beyond Lumry–Eyring: an unexpected pattern of operational reversibility/irreversibility in protein denaturation. Prot. Struct. Funct. Bioinf. 2008; 70:19–24. PubMed
Lyubarev A.E., Kurganov B.I.. Analysis of DSC data relating to proteins undergoing irreversible thermal denaturation. J. Therm. Anal. Cal. 2000; 62:51–62.
Milardi D., La Rosa C., Grasso D.. Extended theoretical analysis of irreversible protein thermal unfolding. Biophys. Chem. 1994; 52:183–189. PubMed
Kirk P., Thorne T., Stumpf M.P.. Model selection in systems and synthetic biology. Curr. Opin. Biotechnol. 2013; 24:767–774. PubMed
Dvorak P., Bednar D., Vanacek P., Balek L., Eiselleova L., Stepankova V., Sebestova E., Kunova Bosakova M., Konecna Z., Mazurenko S. et al. . Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol. Bioeng. 2018; 115:850–862. PubMed