Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35495708
PubMed Central
PMC9045801
DOI
10.3389/fmicb.2022.835274
Knihovny.cz E-zdroje
- Klíčová slova
- canopy cover, deadwood, decomposition, ecology, fungal community, microclimate, succession, temperate forest,
- Publikační typ
- časopisecké články MeSH
Fine woody debris (FWD) represents the majority of the deadwood stock in managed forests and serves as an important biodiversity hotspot and refuge for many organisms, including deadwood fungi. Wood decomposition in forests, representing an important input of nutrients into forest soils, is mainly driven by fungal communities that undergo continuous changes during deadwood decomposition. However, while the assembly processes of fungal communities in long-lasting coarse woody debris have been repeatedly explored, similar information for the more ephemeral habitat of fine deadwood is missing. Here, we followed the fate of FWD of Fagus sylvatica and Abies alba in a Central European forest to describe the assembly and diversity patterns of fungal communities over 6 years. Importantly, the effect of microclimate on deadwood properties and fungal communities was addressed by comparing FWD decomposition in closed forests and under open canopies because the large surface-to-volume ratio of FWD makes it highly sensitive to temperature and moisture fluctuations. Indeed, fungal biomass increases and pH decreases were significantly higher in FWD under closed canopy in the initial stages of decomposition indicating higher fungal activity and hence decay processes. The assembly patterns of the fungal community were strongly affected by both tree species and microclimatic conditions. The communities in the open/closed canopies and in each tree species were different throughout the whole succession with only limited convergence in time in terms of both species and ecological guild composition. Decomposition under the open canopy was characterized by high sample-to-sample variability, showing the diversification of fungal resources. Tree species-specific fungi were detected among the abundant species mostly during the initial decomposition, whereas fungi associated with certain canopy cover treatments were present evenly during decomposition. The species diversity of forest stands and the variability in microclimatic conditions both promote the diversity of fine woody debris fungi in a forest.
Animal Ecology Department of Ecology Faculty of Biology Philipps Universität Marburg Marburg Germany
Bavarian Forest National Park Grafenau Germany
Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
Zobrazit více v PubMed
Abrego N., Norberg A., Ovaskainen O. (2017). Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. DOI
Algora Gallardo C., Baldrian P., López-Mondéjar R. (2021). Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass. DOI
Angst Š, Baldrian P., Harantová L., Cajthaml T., Frouz J. (2018). Different twig litter ( PubMed DOI
Angst Š, Harantová L., Baldrian P., Angst G., Cajthaml T., Straková P., et al. (2019). Tree species identity alters decomposition of understory litter and associated microbial communities: a case study. DOI
Arnstadt T., Hoppe B., Kahl T., Kellner H., Krüger D., Bauhus J., et al. (2016). Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of DOI
Aronesty E. (2013). Comparison of sequencing utility programs. DOI
Atrena A., Banelytė G. G., Læssøe T., Riis-Hansen R., Bruun H. H., Rahbek C., et al. (2020). Quality of substrate and forest structure determine macrofungal richness along a gradient of management intensity in beech forests. DOI
Baber K., Otto P., Kahl T., Gossner M. M., Wirth C., Gminder A., et al. (2016). Disentangling the effects of forest-stand type and dead-wood origin of the early successional stage on the diversity of wood-inhabiting fungi. DOI
Baldrian P. (2017). Forest microbiome: diversity, complexity and dynamics. PubMed DOI
Baldrian P., Zrůstová P., Tláskal V., Davidová A., Merhautová V., Vrška T. (2016). Fungi associated with decomposing deadwood in a natural beech-dominated forest. DOI
Bani A., Pioli S., Ventura M., Panzacchi P., Borruso L., Tognetti R., et al. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. DOI
Bässler C., Ernst R., Cadotte M., Heibl C., Müller J. (2014). Near-to-nature logging influences fungal community assembly processes in a temperate forest. DOI
Bässler C., Müller J., Dziock F., Brandl R. (2010). Effects of resource availability and climate on the diversity of wood-decaying fungi. DOI
Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., et al. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. DOI
Berbeco M. R., Melillo J. M., Orians C. M. (2012). Soil warming accelerates decomposition of fine woody debris. DOI
Bhatnagar J. M., Peay K. G., Treseder K. K. (2018). Litter chemistry influences decomposition through activity of specific microbial functional guilds. DOI
Boddy L. (2000). Interspecific combative interactions between wood-decaying basidiomycetes. PubMed DOI
Boddy L., Hiscox J. (2017). “Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic fungi,” in DOI
Bolte A., Czajkowski T., Kompa T. (2007). The north-eastern distribution range of European beech – a review. DOI
Brabcová V., Štursová M., Baldrian P. (2018). Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. DOI
Brazee N. J., Lindner D. L., D’Amato A. W., Fraver S., Forrester J. A., Mladenoff D. J. (2014). Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris. DOI
Christensen M., Hahn K., Mountford E. P., Ódor P., Standovár T., Rozenbergar D., et al. (2005). Dead wood in European beech ( DOI
De Frenne P., Zellweger F., Rodríguez-Sánchez F., Scheffers B. R., Hylander K., Luoto M., et al. (2019). Global buffering of temperatures under forest canopies. PubMed DOI
Domke G. M., Perry C. H., Walters B. F., Woodall C. W., Russell M. B., Smith J. E. (2016). Estimating litter carbon stocks on forest land in the United States. PubMed DOI
Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. PubMed DOI
Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. PubMed DOI
Eichlerová I., Homolka L., Žifčáková L., Lisá L., Dobiášová P., Baldrian P. (2015). Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. DOI
Fasth B. G., Harmon M. E., Sexton J., White P. (2011). Decomposition of fine woody debris in a deciduous forest in North Carolina. DOI
Forest Europe (2015).
Forrester J. A., Mladenoff D. J., Gower S. T., Stoffel J. L. (2012). Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. DOI
Frey S. J. K., Hadley A. S., Johnson S. L., Schulze M., Jones J. A., Betts M. G. (2016). Spatial models reveal the microclimatic buffering capacity of old-growth forests. PubMed DOI PMC
Harmon M. E., Fasth B. G., Yatskov M., Kastendick D., Rock J., Woodall C. W. (2020). Release of coarse woody detritus-related carbon: a synthesis across forest biomes. PubMed DOI PMC
Harris N. L., Gibbs D. A., Baccini A., Birdsey R. A., de Bruin S., Farina M., et al. (2021). Global maps of twenty-first century forest carbon fluxes. DOI
Heilmann-Clausen J., Christensen M. (2004). Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. DOI
Hiscox J., Savoury M., Müller C. T., Lindahl B. D., Rogers H. J., Boddy L. (2015). Priority effects during fungal community establishment in beech wood. PubMed DOI PMC
Horák J., Kout J., Vodka Š, Donato D. C. (2016). Dead wood dependent organisms in one of the oldest protected forests of Europe: investigating the contrasting effects of within-stand variation in a highly diversified environment. DOI
Ihrmark K., Bödeker I. T. M., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., et al. (2012). New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. PubMed DOI
Johnston S. R., Boddy L., Weightman A. J. (2016). Bacteria in decomposing wood and their interactions with wood-decay fungi. PubMed DOI
Juutilainen K., Mönkkönen M., Kotiranta H., Halme P. (2014). The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. DOI
Juutilainen K., Mönkkönen M., Kotiranta H., Halme P. (2017). Resource use of wood-inhabiting fungi in different boreal forest types. DOI
Kahl T., Arnstadt T., Baber K., Baessler C., Bauhus J., Borken W., et al. (2017). Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. DOI
Kohout P., Sudová R., Brabcová V., Vosolsobě S., Baldrian P., Albrechtová J. (2021). Forest microhabitat affects succession of fungal communities on decomposing fine tree roots. PubMed DOI PMC
Krah F. S., Seibold S., Brandl R., Baldrian P., Müller J., Bässler C. (2018). Independent effects of host and environment on the diversity of wood-inhabiting fungi. DOI
Král K., Daněk P., Janík D., Krůček M., Vrška T. (2018). How cyclical and predictable are Central European temperate forest dynamics in terms of development phases? DOI
Král K., Janík D., Vrška T., Adam D., Hort L., Unar P., et al. (2010). Local variability of stand structural features in beech dominated natural forests of Central Europe: implications for sampling. DOI
Küffer N., Senn-Irlet B. (2005). Influence of forest management on the species richness and composition of wood-inhabiting Basidiomycetes in Swiss forests. DOI
Lepinay C., Jiráska L., Tláskal V., Brabcová V., Vrška T., Baldrian P. (2021a). Successional development of fungal communities associated with decomposing deadwood in a natural mixed temperate forest. PubMed DOI PMC
Lepinay C., Tláskal V., Vrška T., Brabcová V., Baldrian P. (2021b). Successional development of wood-inhabiting fungi associated with dominant tree species in a natural temperate floodplain forest. DOI
Mašínová T., Yurkov A., Baldrian P. (2018). Forest soil yeasts: decomposition potential and the utilization of carbon sources. DOI
Menkis A., Allmer J., Vasiliauskas R., Lygis V., Stenlid J., Finlay R. (2004). Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. PubMed DOI
Müller J., Brustel H., Brin A., Bussler H., Bouget C., Obermaier E., et al. (2015). Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. DOI
Müller J., Ulyshen M., Seibold S., Cadotte M., Chao A., Bässler C., et al. (2020). Primary determinants of communities in deadwood vary among taxa but are regionally consistent. DOI
Müller-Using S., Bartsch N. (2009). Decay dynamic of coarse and fine woody debris of a beech ( DOI
Nilsson R. H., Larsson K. H., Taylor A. F. S., Bengtsson-Palme J., Jeppesen T. S., Schigel D., et al. (2019). The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. PubMed DOI PMC
Nordén B., Ryberg M., Götmark F., Olausson B. (2004). Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. DOI
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2020).
Ostrogović M. Z., Marjanović H., Balenović I., Sever K., Jazbec A. (2015). Decomposition of fine woody debris from main tree species in lowland oak forests. DOI
Ovaskainen O., Schigel D., Ali-Kovero H., Auvinen P., Paulin L., Nordén B., et al. (2013). Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. PubMed DOI PMC
Parfitt D., Hunt J., Dockrell D., Rogers H. J., Boddy L. (2010). Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. DOI
Peršoh D., Borken W. (2017). Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. DOI
Põlme S., Abarenkov K., Henrik Nilsson R., Lindahl B. D., Clemmensen K. E., Kauserud H., et al. (2020). FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. DOI
Přívětivý T., Adam D., Vrška T. (2018). Decay dynamics of DOI
Přívětivý T., Šamonil P. (2021). Variation in downed deadwood density, biomass, and moisture during decomposition in a natural temperate forest. DOI
Přívětivý T., Janík D., Unar P., Adam D., Král K., Vrška T. (2016). How do environmental conditions affect the deadwood decomposition of European beech ( DOI
Purahong W., Wubet T., Krüger D., Buscot F. (2018). Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. PubMed DOI PMC
Purhonen J., Ovaskainen O., Halme P., Komonen A., Huhtinen S., Kotiranta H., et al. (2020). Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. DOI
R Core Team (2020).
Rajala T., Peltoniemi M., Pennanen T., Mäkipää R. (2012). Fungal community dynamics in relation to substrate quality of decaying PubMed DOI
Rayner A. D. M., Boddy L. (1988).
Ricker M. C., Blosser G. D., Conner W. H., Lockaby B. G. (2019). Wood biomass and carbon pools within a floodplain forest of the Congaree River, South Carolina, USA. DOI
Ricker M. C., Lockaby B. G., Blosser G. D., Conner W. H. (2016). Rapid wood decay and nutrient mineralization in an old-growth bottomland hardwood forest. DOI
Rinne K. T., Rajala T., Peltoniemi K., Chen J., Smolander A., Mäkipää R. (2017). Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. DOI
Šamonil P., Daněk P., Tláskal V., Tejneckě V., Drěbek O. (2020). Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. DOI
Sandström J., Bernes C., Junninen K., Lõhmus A., Macdonald E., Müller J., et al. (2019). Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. DOI
Scharenbroch B. C., Bockheim J. G. (2007). Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. DOI
Seibold S., Bässler C., Baldrian P., Reinhard L., Thorn S., Ulyshen M. D., et al. (2016a). Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. DOI
Seibold S., Bässler C., Brandl R., Büche B., Szallies A., Thorn S., et al. (2016b). Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. DOI
Seibold S., Bässler C., Brandl R., Gossner M. M., Thorn S., Ulyshen M. D., et al. (2015). Experimental studies of dead-wood biodiversity - A review identifying global gaps in knowledge. DOI
Seibold S., Hagge J., Müller J., Gruppe A., Brandl R., Bässler C., et al. (2018). Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. DOI
Seibold S., Rammer W., Hothorn T., Seidl R., Ulyshen M. D., Lorz J., et al. (2021). The contribution of insects to global forest deadwood decomposition. PubMed DOI
Šnajdr J., Valášková V., Merhautová V., Herinková J., Cajthaml T., Baldrian P. (2008). Spatial variability of enzyme activities and microbial biomass in the upper layers of DOI
Sommerfeld A., Senf C., Buma B., D’Amato A. W., Després T., Díaz-Hormazábal I., et al. (2018). Patterns and drivers of recent disturbances across the temperate forest biome. PubMed DOI PMC
Song Z., Kennedy P. G., Liew F. J., Schilling J. S. (2017). Fungal endophytes as priority colonizers initiating wood decomposition. DOI
Stokland J. N., Siitonen J., Jonsson B. G. (2012).
Štursová M., Šnajdr J., Koukol O., Tláskal V., Cajthaml T., Baldrian P. (2020). Long-term decomposition of litter in the montane forest and the definition of fungal traits in the successional space. DOI
Tláskal V., Baldrian P. (2021). Deadwood-inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. PubMed DOI PMC
Tláskal V., Brabcová V., Větrovský T., Jomura M., López-Mondéjar R., Oliveira Monteiro L. M., et al. (2021). Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. PubMed DOI PMC
Urbanová M., Šnajdr J., Baldrian P. (2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. DOI
Větrovský T., Baldrian P. (2015). An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. DOI
Větrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. PubMed DOI PMC
Větrovský T., Kohout P., Kopeckı M., Machac A., Man M., Bahnmann B. D., et al. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. PubMed DOI PMC
Větrovský T., Morais D., Kohout P., Lepinay C., Algora C., Awokunle Hollá S., et al. (2020). GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. PubMed DOI PMC
Voříšková J., Baldrian P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. PubMed DOI PMC
Forest microbiome and global change