Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate

. 2022 ; 13 () : 835274. [epub] 20220413

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35495708

Fine woody debris (FWD) represents the majority of the deadwood stock in managed forests and serves as an important biodiversity hotspot and refuge for many organisms, including deadwood fungi. Wood decomposition in forests, representing an important input of nutrients into forest soils, is mainly driven by fungal communities that undergo continuous changes during deadwood decomposition. However, while the assembly processes of fungal communities in long-lasting coarse woody debris have been repeatedly explored, similar information for the more ephemeral habitat of fine deadwood is missing. Here, we followed the fate of FWD of Fagus sylvatica and Abies alba in a Central European forest to describe the assembly and diversity patterns of fungal communities over 6 years. Importantly, the effect of microclimate on deadwood properties and fungal communities was addressed by comparing FWD decomposition in closed forests and under open canopies because the large surface-to-volume ratio of FWD makes it highly sensitive to temperature and moisture fluctuations. Indeed, fungal biomass increases and pH decreases were significantly higher in FWD under closed canopy in the initial stages of decomposition indicating higher fungal activity and hence decay processes. The assembly patterns of the fungal community were strongly affected by both tree species and microclimatic conditions. The communities in the open/closed canopies and in each tree species were different throughout the whole succession with only limited convergence in time in terms of both species and ecological guild composition. Decomposition under the open canopy was characterized by high sample-to-sample variability, showing the diversification of fungal resources. Tree species-specific fungi were detected among the abundant species mostly during the initial decomposition, whereas fungi associated with certain canopy cover treatments were present evenly during decomposition. The species diversity of forest stands and the variability in microclimatic conditions both promote the diversity of fine woody debris fungi in a forest.

Zobrazit více v PubMed

Abrego N., Norberg A., Ovaskainen O. (2017). Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol. 105 1070–1081. 10.1111/1365-2745.12722 DOI

Algora Gallardo C., Baldrian P., López-Mondéjar R. (2021). Litter-inhabiting fungi show high level of specialization towards biopolymers composing plant and fungal biomass. Biol. Fertil. Soils 57 77–88. 10.1007/S00374-020-01507-3 DOI

Angst Š, Baldrian P., Harantová L., Cajthaml T., Frouz J. (2018). Different twig litter (Salix caprea) diameter does affect microbial community activity and composition but not decay rate. FEMS Microbiol. Ecol. 94:fiy126. 10.1093/femsec/fiy126 PubMed DOI

Angst Š, Harantová L., Baldrian P., Angst G., Cajthaml T., Straková P., et al. (2019). Tree species identity alters decomposition of understory litter and associated microbial communities: a case study. Biol. Fertil. Soils 55 525–538. 10.1007/s00374-019-01360-z DOI

Arnstadt T., Hoppe B., Kahl T., Kellner H., Krüger D., Bauhus J., et al. (2016). Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. For. Ecol. Manage. 382 129–142. 10.1016/j.foreco.2016.10.004 DOI

Aronesty E. (2013). Comparison of sequencing utility programs. Open Bioinform. J. 7 1–8. 10.2174/1875036201307010001 DOI

Atrena A., Banelytė G. G., Læssøe T., Riis-Hansen R., Bruun H. H., Rahbek C., et al. (2020). Quality of substrate and forest structure determine macrofungal richness along a gradient of management intensity in beech forests. For. Ecol. Manage. 478:118512. 10.1016/j.foreco.2020.118512 DOI

Baber K., Otto P., Kahl T., Gossner M. M., Wirth C., Gminder A., et al. (2016). Disentangling the effects of forest-stand type and dead-wood origin of the early successional stage on the diversity of wood-inhabiting fungi. For. Ecol. Manage. 377 161–169. 10.1016/j.foreco.2016.07.011 DOI

Baldrian P. (2017). Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev. 41 109–130. 10.1093/femsre/fuw040 PubMed DOI

Baldrian P., Zrůstová P., Tláskal V., Davidová A., Merhautová V., Vrška T. (2016). Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 23 109–122. 10.1016/j.funeco.2016.07.001 DOI

Bani A., Pioli S., Ventura M., Panzacchi P., Borruso L., Tognetti R., et al. (2018). The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil Ecol. 126 75–84. 10.1016/j.apsoil.2018.02.017 DOI

Bässler C., Ernst R., Cadotte M., Heibl C., Müller J. (2014). Near-to-nature logging influences fungal community assembly processes in a temperate forest. J. Appl. Ecol. 51 939–948. 10.1111/1365-2664.12267 DOI

Bässler C., Müller J., Dziock F., Brandl R. (2010). Effects of resource availability and climate on the diversity of wood-decaying fungi. J. Ecol. 98 822–832. 10.1111/j.1365-2745.2010.01669.x DOI

Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., et al. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4 914–919. 10.1111/2041-210X.12073 DOI

Berbeco M. R., Melillo J. M., Orians C. M. (2012). Soil warming accelerates decomposition of fine woody debris. Plant Soil 356 405–417. 10.1007/s11104-012-1130-x DOI

Bhatnagar J. M., Peay K. G., Treseder K. K. (2018). Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecol. Monogr. 88 429–444. 10.1002/ecm.1303 DOI

Boddy L. (2000). Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 31 185–194. 10.1016/S0168-6496(99)00093-8 PubMed DOI

Boddy L., Hiscox J. (2017). “Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic fungi,” in The Fungal Kingdom, eds Howlett B. J., Stukenbrock E. H., Heitman J., Gow N. A. R., Crous P. W., James T. Y. (Washington, DC: American Society of Microbiology; ), 293–308. 10.1128/microbiolspec.funk-0019-2016 DOI

Bolte A., Czajkowski T., Kompa T. (2007). The north-eastern distribution range of European beech – a review. Forestry 80 413–429. 10.1093/forestry/cpm028 DOI

Brabcová V., Štursová M., Baldrian P. (2018). Nutrient content affects the turnover of fungal biomass in forest topsoil and the composition of associated microbial communities. Soil Biol. Biochem. 118 187–198. 10.1016/j.soilbio.2017.12.012 DOI

Brazee N. J., Lindner D. L., D’Amato A. W., Fraver S., Forrester J. A., Mladenoff D. J. (2014). Disturbance and diversity of wood-inhabiting fungi: effects of canopy gaps and downed woody debris. Biodivers. Conserv. 23 2155–2172. 10.1007/s10531-014-0710-x DOI

Christensen M., Hahn K., Mountford E. P., Ódor P., Standovár T., Rozenbergar D., et al. (2005). Dead wood in European beech (Fagus sylvatica) forest reserves. For. Ecol. Manage. 210 267–282. 10.1016/j.foreco.2005.02.032 DOI

De Frenne P., Zellweger F., Rodríguez-Sánchez F., Scheffers B. R., Hylander K., Luoto M., et al. (2019). Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3 744–749. 10.1038/s41559-019-0842-1 PubMed DOI

Domke G. M., Perry C. H., Walters B. F., Woodall C. W., Russell M. B., Smith J. E. (2016). Estimating litter carbon stocks on forest land in the United States. Sci. Total Environ. 557–558 469–478. 10.1016/j.scitotenv.2016.03.090 PubMed DOI

Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI

Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10 996–998. 10.1038/nmeth.2604 PubMed DOI

Eichlerová I., Homolka L., Žifčáková L., Lisá L., Dobiášová P., Baldrian P. (2015). Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. Fungal Ecol. 13 10–22. 10.1016/j.funeco.2014.08.002 DOI

Fasth B. G., Harmon M. E., Sexton J., White P. (2011). Decomposition of fine woody debris in a deciduous forest in North Carolina. J. Torrey Bot. Soc. 138 192–206. 10.3159/TORREY-D-10-00009.1 PubMed DOI

Forest Europe (2015). State of Europe’s Forests. Ministerial Conference on the Protection of Forests in Europe. Madrid: Forest Europe, Liaison Unit Madrid.

Forrester J. A., Mladenoff D. J., Gower S. T., Stoffel J. L. (2012). Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. For. Ecol. Manage. 265 124–132. 10.1016/j.foreco.2011.10.038 DOI

Frey S. J. K., Hadley A. S., Johnson S. L., Schulze M., Jones J. A., Betts M. G. (2016). Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2:e1501392. 10.1126/sciadv.1501392 PubMed DOI PMC

Harmon M. E., Fasth B. G., Yatskov M., Kastendick D., Rock J., Woodall C. W. (2020). Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manage. 15:1. 10.1186/s13021-019-0136-6 PubMed DOI PMC

Harris N. L., Gibbs D. A., Baccini A., Birdsey R. A., de Bruin S., Farina M., et al. (2021). Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11 234–240. 10.1038/s41558-020-00976-6 DOI

Heilmann-Clausen J., Christensen M. (2004). Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For. Ecol. Manage. 201 105–117. 10.1016/j.foreco.2004.07.010 DOI

Hiscox J., Savoury M., Müller C. T., Lindahl B. D., Rogers H. J., Boddy L. (2015). Priority effects during fungal community establishment in beech wood. ISME J. 9 2246–2260. 10.1038/ismej.2015.38 PubMed DOI PMC

Horák J., Kout J., Vodka Š, Donato D. C. (2016). Dead wood dependent organisms in one of the oldest protected forests of Europe: investigating the contrasting effects of within-stand variation in a highly diversified environment. For. Ecol. Manage. 363 229–236. 10.1016/j.foreco.2015.12.041 DOI

Ihrmark K., Bödeker I. T. M., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., et al. (2012). New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82 666–677. 10.1111/j.1574-6941.2012.01437.x PubMed DOI

Johnston S. R., Boddy L., Weightman A. J. (2016). Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol. Ecol. 92:fiw179. 10.1093/femsec/fiw179 PubMed DOI

Juutilainen K., Mönkkönen M., Kotiranta H., Halme P. (2014). The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. For. Ecol. Manage. 313 283–291. 10.1016/j.foreco.2013.11.019 DOI

Juutilainen K., Mönkkönen M., Kotiranta H., Halme P. (2017). Resource use of wood-inhabiting fungi in different boreal forest types. Fungal Ecol. 27 96–106. 10.1016/j.funeco.2017.03.003 DOI

Kahl T., Arnstadt T., Baber K., Baessler C., Bauhus J., Borken W., et al. (2017). Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manage. 391 86–95. 10.1016/j.foreco.2017.02.012 DOI

Kohout P., Sudová R., Brabcová V., Vosolsobě S., Baldrian P., Albrechtová J. (2021). Forest microhabitat affects succession of fungal communities on decomposing fine tree roots. Front. Microbiol. 12:541583. 10.3389/fmicb.2021.541583 PubMed DOI PMC

Krah F. S., Seibold S., Brandl R., Baldrian P., Müller J., Bässler C. (2018). Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 106 1428–1442. 10.1111/1365-2745.12939 DOI

Král K., Daněk P., Janík D., Krůček M., Vrška T. (2018). How cyclical and predictable are Central European temperate forest dynamics in terms of development phases? J. Veg. Sci. 29 84–97. 10.1111/JVS.12590 DOI

Král K., Janík D., Vrška T., Adam D., Hort L., Unar P., et al. (2010). Local variability of stand structural features in beech dominated natural forests of Central Europe: implications for sampling. For. Ecol. Manage. 260 2196–2203. 10.1016/j.foreco.2010.09.020 DOI

Küffer N., Senn-Irlet B. (2005). Influence of forest management on the species richness and composition of wood-inhabiting Basidiomycetes in Swiss forests. Biodivers. Conserv. 14 2419–2435. 10.1007/s10531-004-0151-z DOI

Lepinay C., Jiráska L., Tláskal V., Brabcová V., Vrška T., Baldrian P. (2021a). Successional development of fungal communities associated with decomposing deadwood in a natural mixed temperate forest. J. Fungi 7:412. 10.3390/jof7060412 PubMed DOI PMC

Lepinay C., Tláskal V., Vrška T., Brabcová V., Baldrian P. (2021b). Successional development of wood-inhabiting fungi associated with dominant tree species in a natural temperate floodplain forest. Fungal Ecol. 2021:101116. 10.1016/j.funeco.2021.101116 DOI

Mašínová T., Yurkov A., Baldrian P. (2018). Forest soil yeasts: decomposition potential and the utilization of carbon sources. Fungal Ecol. 34 10–19. 10.1016/j.funeco.2018.03.005 DOI

Menkis A., Allmer J., Vasiliauskas R., Lygis V., Stenlid J., Finlay R. (2004). Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol. Res. 108 965–973. 10.1017/S0953756204000668 PubMed DOI

Müller J., Brustel H., Brin A., Bussler H., Bouget C., Obermaier E., et al. (2015). Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography (Cop.). 38 499–509. 10.1111/ecog.00908 DOI

Müller J., Ulyshen M., Seibold S., Cadotte M., Chao A., Bässler C., et al. (2020). Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos 129 1579–1588. 10.1111/oik.07335 DOI

Müller-Using S., Bartsch N. (2009). Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. Eur. J. For. Res. 128 287–296. 10.1007/s10342-009-0264-8 DOI

Nilsson R. H., Larsson K. H., Taylor A. F. S., Bengtsson-Palme J., Jeppesen T. S., Schigel D., et al. (2019). The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47 D259–D264. 10.1093/nar/gky1022 PubMed DOI PMC

Nordén B., Ryberg M., Götmark F., Olausson B. (2004). Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol. Conserv. 117 1–10. 10.1016/S0006-3207(03)00235-0 DOI

Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2020). Vegan: Community Ecology Package. R Package Version 2.5-7. Available online at: https://cran.r-project.org/package=vegan

Ostrogović M. Z., Marjanović H., Balenović I., Sever K., Jazbec A. (2015). Decomposition of fine woody debris from main tree species in lowland oak forests. Polish J. Ecol. 63 247–259. 10.3161/15052249PJE2015.63.2.008 DOI

Ovaskainen O., Schigel D., Ali-Kovero H., Auvinen P., Paulin L., Nordén B., et al. (2013). Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J. 7 1696–1709. 10.1038/ismej.2013.61 PubMed DOI PMC

Parfitt D., Hunt J., Dockrell D., Rogers H. J., Boddy L. (2010). Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol. 3 338–346. 10.1016/j.funeco.2010.02.001 DOI

Peršoh D., Borken W. (2017). Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biol. Biochem. 115 516–525. 10.1016/j.soilbio.2017.09.017 DOI

Põlme S., Abarenkov K., Henrik Nilsson R., Lindahl B. D., Clemmensen K. E., Kauserud H., et al. (2020). FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105 1–16. 10.1007/s13225-020-00466-2 DOI

Přívětivý T., Adam D., Vrška T. (2018). Decay dynamics of Abies alba and Picea abies deadwood in relation to environmental conditions. For. Ecol. Manage. 427 250–259. 10.1016/J.FORECO.2018.06.008 DOI

Přívětivý T., Šamonil P. (2021). Variation in downed deadwood density, biomass, and moisture during decomposition in a natural temperate forest. Forests 12:1352. 10.3390/F12101352 DOI

Přívětivý T., Janík D., Unar P., Adam D., Král K., Vrška T. (2016). How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)? For. Ecol. Manage. 381 177–187. 10.1016/j.foreco.2016.09.033 DOI

Purahong W., Wubet T., Krüger D., Buscot F. (2018). Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME J. 12 289–295. 10.1038/ismej.2017.177 PubMed DOI PMC

Purhonen J., Ovaskainen O., Halme P., Komonen A., Huhtinen S., Kotiranta H., et al. (2020). Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecol. 46:100863. 10.1016/j.funeco.2019.08.007 DOI

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rajala T., Peltoniemi M., Pennanen T., Mäkipää R. (2012). Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol. Ecol. 81 494–505. 10.1111/j.1574-6941.2012.01376.x PubMed DOI

Rayner A. D. M., Boddy L. (1988). Fungal Decomposition of Wood: Its Biology And Ecology. Hoboken. NJ: John Wiley & Sons Ltd.

Ricker M. C., Blosser G. D., Conner W. H., Lockaby B. G. (2019). Wood biomass and carbon pools within a floodplain forest of the Congaree River, South Carolina, USA. Wetlands 39 1003–1013. 10.1007/s13157-019-01150-1 DOI

Ricker M. C., Lockaby B. G., Blosser G. D., Conner W. H. (2016). Rapid wood decay and nutrient mineralization in an old-growth bottomland hardwood forest. Biogeochemistry 127 323–338. 10.1007/s10533-016-0183-y DOI

Rinne K. T., Rajala T., Peltoniemi K., Chen J., Smolander A., Mäkipää R. (2017). Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Funct. Ecol. 31 530–541. 10.1111/1365-2435.12734 DOI

Šamonil P., Daněk P., Tláskal V., Tejneckě V., Drěbek O. (2020). Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. Geoderma 376:114499. 10.1016/j.geoderma.2020.114499 DOI

Sandström J., Bernes C., Junninen K., Lõhmus A., Macdonald E., Müller J., et al. (2019). Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. J. Appl. Ecol. 56 1770–1781. 10.1111/1365-2664.13395 DOI

Scharenbroch B. C., Bockheim J. G. (2007). Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil 294 219–233. 10.1007/s11104-007-9248-y DOI

Seibold S., Bässler C., Baldrian P., Reinhard L., Thorn S., Ulyshen M. D., et al. (2016a). Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol. Conserv. 204 181–188. 10.1016/j.biocon.2016.09.031 DOI

Seibold S., Bässler C., Brandl R., Büche B., Szallies A., Thorn S., et al. (2016b). Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J. Appl. Ecol. 53 934–943. 10.1111/1365-2664.12607 DOI

Seibold S., Bässler C., Brandl R., Gossner M. M., Thorn S., Ulyshen M. D., et al. (2015). Experimental studies of dead-wood biodiversity - A review identifying global gaps in knowledge. Biol. Conserv. 191 139–149. 10.1016/j.biocon.2015.06.006 DOI

Seibold S., Hagge J., Müller J., Gruppe A., Brandl R., Bässler C., et al. (2018). Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For. Ecol. Manage. 409 564–570. 10.1016/j.foreco.2017.11.052 DOI

Seibold S., Rammer W., Hothorn T., Seidl R., Ulyshen M. D., Lorz J., et al. (2021). The contribution of insects to global forest deadwood decomposition. Nature 597 77–81. 10.1038/S41586-021-03740-8 PubMed DOI

Šnajdr J., Valášková V., Merhautová V., Herinková J., Cajthaml T., Baldrian P. (2008). Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 40 2068–2075. 10.1016/j.soilbio.2008.01.015 DOI

Sommerfeld A., Senf C., Buma B., D’Amato A. W., Després T., Díaz-Hormazábal I., et al. (2018). Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 9:4355. 10.1038/s41467-018-06788-9 PubMed DOI PMC

Song Z., Kennedy P. G., Liew F. J., Schilling J. S. (2017). Fungal endophytes as priority colonizers initiating wood decomposition. Funct. Ecol. 31 407–418. 10.1111/1365-2435.12735 DOI

Stokland J. N., Siitonen J., Jonsson B. G. (2012). Biodiversity in Dead Wood. Cambridge: Cambridge University Press.

Štursová M., Šnajdr J., Koukol O., Tláskal V., Cajthaml T., Baldrian P. (2020). Long-term decomposition of litter in the montane forest and the definition of fungal traits in the successional space. Fungal Ecol. 46:100913. 10.1016/j.funeco.2020.100913 DOI

Tláskal V., Baldrian P. (2021). Deadwood-inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. Front. Microbiol. 12:685303. 10.3389/FMICB.2021.685303 PubMed DOI PMC

Tláskal V., Brabcová V., Větrovský T., Jomura M., López-Mondéjar R., Oliveira Monteiro L. M., et al. (2021). Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 6:e01078–20. 10.1128/mSystems.01078-20 PubMed DOI PMC

Urbanová M., Šnajdr J., Baldrian P. (2015). Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84 53–64. 10.1016/j.soilbio.2015.02.011 DOI

Větrovský T., Baldrian P. (2015). An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biol. Fertil. Soils 51 827–837. 10.1007/s00374-015-1029-9 DOI

Větrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34 2292–2294. 10.1093/bioinformatics/bty071 PubMed DOI PMC

Větrovský T., Kohout P., Kopeckı M., Machac A., Man M., Bahnmann B. D., et al. (2019). A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10:5142. 10.1038/s41467-019-13164-8 PubMed DOI PMC

Větrovský T., Morais D., Kohout P., Lepinay C., Algora C., Awokunle Hollá S., et al. (2020). GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7:228. 10.1038/s41597-020-0567-7 PubMed DOI PMC

Voříšková J., Baldrian P. (2013). Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7 477–486. 10.1038/ismej.2012.116 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...