Effects of experimental canopy openness on wood-inhabiting fungal fruiting diversity across succession
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BA 5127/3-1
Deutsche Forschungsgemeinschaft
21-09334J
Grantová Agentura České Republiky
PubMed
38997416
PubMed Central
PMC11245472
DOI
10.1038/s41598-024-67216-1
PII: 10.1038/s41598-024-67216-1
Knihovny.cz E-zdroje
- Klíčová slova
- Canopy mortality, Climate change, Dead wood, Forest management, Fungi, Microclimate, Succession,
- MeSH
- biodiverzita * MeSH
- dřevo * mikrobiologie MeSH
- houby * MeSH
- lesy * MeSH
- plodnice hub růst a vývoj MeSH
- stromy mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
While the succession of terrestrial plant communities is well studied, less is known about succession on dead wood, especially how it is affected by environmental factors. While temperate forests face increasing canopy mortality, which causes considerable changes in microclimates, it remains unclear how canopy openness affects fungal succession. Here, we used a large real-world experiment to study the effect of closed and opened canopy on treatment-based alpha and beta fungal fruiting diversity. We found increasing diversity in early and decreasing diversity at later stages of succession under both canopies, with a stronger decrease under open canopies. However, the slopes of the diversity versus time relationships did not differ significantly between canopy treatments. The community dissimilarity remained mainly stable between canopies at ca. 25% of species exclusively associated with either canopy treatment. Species exclusive in either canopy treatment showed very low number of occupied objects compared to species occurring in both treatments. Our study showed that canopy loss subtly affected fungal fruiting succession on dead wood, suggesting that most species in the local species pool are specialized or can tolerate variable conditions. Our study indicates that the fruiting of the fungal community on dead wood is resilient against the predicted increase in canopy loss in temperate forests.
Bavarian Forest National Park Grafenau Germany
Fungal Ecology and BayCEER University of Bayreuth Universitätsstr 30 95440 Bayreuth Germany
Global Change Research Institute of the Czech Academy of Sciences 603 00 Brno Czech Republic
Zobrazit více v PubMed
Seidl R, Schelhaas M-J, Lexer MJ. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Change Biol. 2011;17:2842–2852. doi: 10.1111/j.1365-2486.2011.02452.x. DOI
Seidl R, et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017;7:395–402. doi: 10.1038/nclimate3303. PubMed DOI PMC
Senf C, et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 2018;9:4978. doi: 10.1038/s41467-018-07539-6. PubMed DOI PMC
Bässler C, et al. Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecol. Ind. 2016;65:149–160. doi: 10.1016/j.ecolind.2015.07.008. DOI
Scharenbroch BC, Bockheim JG. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil. 2007;294:219–233. doi: 10.1007/s11104-007-9248-y. DOI
Thom D, Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016;91:760–781. doi: 10.1111/brv.12193. PubMed DOI PMC
Zellweger F, et al. Forest microclimate dynamics drive plant responses to warming. Science. 2020;368:772–775. doi: 10.1126/science.aba6880. PubMed DOI
Buma B, Wessman CA. Disturbance interactions can impact resilience mechanisms of forests. Ecosphere. 2011;2:art64. doi: 10.1890/ES11-00038.1. DOI
Senf C, Sebald J, Seidl R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth. 2021;4:749–755. doi: 10.1016/j.oneear.2021.04.008. DOI
Hararuk O, Kurz WA, Didion M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 2020;7:36. doi: 10.1186/s40663-020-00248-x. DOI
Gossner MM, et al. Deadwood enrichment in European forests: Which tree species should be used to promote saproxylic beetle diversity? Biol. Conserv. 2016;201:92–102. doi: 10.1016/j.biocon.2016.06.032. DOI
Seibold S, et al. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J. Appl. Ecol. 2016;53:934–943. doi: 10.1111/1365-2664.12607. DOI
Krah F-S, et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 2018;106:1428–1442. doi: 10.1111/1365-2745.12939. DOI
Vogel S, Gossner MM, Mergner U, Müller J, Thorn S. Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: An experimental approach. J. Appl. Ecol. 2020;57:2075–2085. doi: 10.1111/1365-2664.13648. DOI
Brabcova V, et al. Fungal community development in decomposing fine deadwood is largely affected by microclimate. Front. Microbiol. 2022 doi: 10.3389/fmicb.2022.835274. PubMed DOI PMC
Clay N. Let sleeping logs lie: Beta diversity increases in deadwood beetle communities over time. J. Anim. Ecol. 2023;92:948–952. doi: 10.1111/1365-2656.13908. PubMed DOI
Delgado-Baquerizo M, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020;4:210–220. doi: 10.1038/s41559-019-1084-y. PubMed DOI
Floudas D, et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336:1715–1719. doi: 10.1126/science.1221748. PubMed DOI
Lustenhouwer N, et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl. Acad. Sci. 2020;117:11551–11558. doi: 10.1073/pnas.1909166117. PubMed DOI PMC
Lindhe A, Åsenblad N, Toresson H-G. Cut logs and high stumps of spruce, birch, aspen and oak–nine years of saproxylic fungi succession. Biol. Conserv. 2004;119:443–454. doi: 10.1016/j.biocon.2004.01.005. DOI
Müller J, et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos. 2020;129:1579–1588. doi: 10.1111/oik.07335. DOI
Lindner DL, et al. Initial fungal colonizer affects mass loss and fungal community development in Picea abies logs 6 yr after inoculation. Fungal Ecol. 2011;4:449–460. doi: 10.1016/j.funeco.2011.07.001. DOI
Perreault L, et al. Linking wood-decay fungal communities to decay rates: Using a long-term experimental manipulation of deadwood and canopy gaps. Fungal Ecol. 2023;62:101220. doi: 10.1016/j.funeco.2022.101220. DOI
Norberg A, Halme P, Kotiaho JS, Toivanen T, Ovaskainen O. Experimentally induced community assembly of polypores reveals the importance of both environmental filtering and assembly history. Fungal Ecol. 2019;41:137–146. doi: 10.1016/j.funeco.2019.05.003. DOI
Hart SC, et al. Fungal community dynamics in coarse woody debris across decay stage, tree species, and stand development stage in northern boreal forests. Can. J. For. Res. 2023 doi: 10.1139/cjfr-2023-0061. DOI
Holec J, Kučera T, Běťák J, Hort L. Macrofungi on large decaying spruce trunks in a Central European old-growth forest: what factors affect their species richness and composition? Mycol Progress. 2020;19:53–66. doi: 10.1007/s11557-019-01541-y. DOI
Holec J, Kučera T. Richness and composition of macrofungi on large decaying trees in a Central European old-growth forest: a case study on silver fir (Abies alba) Mycol Progress. 2020;19:1429–1443. doi: 10.1007/s11557-020-01637-w. DOI
Jomura M, Yoshida R, Michalčíková L, Tláskal V, Baldrian P. Factors controlling dead wood decomposition in an old-growth temperate forest in central Europe. J. Fungi. 2022;8:673. doi: 10.3390/jof8070673. PubMed DOI PMC
Lepinay C, Tláskal V, Vrška T, Brabcová V, Baldrian P. Successional development of wood-inhabiting fungi associated with dominant tree species in a natural temperate floodplain forest. Fungal Ecol. 2022;59:101116. doi: 10.1016/j.funeco.2021.101116. DOI
Ovaskainen O, et al. Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J. 2013;7:1696–1709. doi: 10.1038/ismej.2013.61. PubMed DOI PMC
Kielak AM, Scheublin TR, Mendes LW, van Veen JA, Kuramae EE. Bacterial community succession in pine-wood decomposition. Front. Microbiol. 2016;7:231. doi: 10.3389/fmicb.2016.00231. PubMed DOI PMC
Fukami T, et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 2010;13:675–684. doi: 10.1111/j.1461-0248.2010.01465.x. PubMed DOI
Frankland JC. Fungal succession: Unravelling the unpredictable. Mycol. Res. 1998;102:1–15. doi: 10.1017/S0953756297005364. DOI
Fukasawa Y, Osono T, Takeda H. Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of Fagus crenata. J. For. Res. 2009;14:20–29. doi: 10.1007/s10310-008-0098-0. DOI
Boddy L. Microclimate and moisture dynamics of wood decomposing in terrestrial ecosystems. Soil Biol. Biochem. 1983;15:149–157. doi: 10.1016/0038-0717(83)90096-2. DOI
Tedersoo L, et al. Fungal biogeography: Global diversity and geography of soil fungi. Science. 2014;346:1256688. doi: 10.1126/science.1256688. PubMed DOI
Andrew C, et al. Continental-scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. J. Biogeograph. 2018;45:1942–1953. doi: 10.1111/jbi.13374. DOI
Krah FS, Büntgen U, Bässler C. Temperature affects the timing and duration of fungal fruiting patterns across major terrestrial biomes. Ecol. Lett. 2023 doi: 10.1111/ele.14275. PubMed DOI
Maynard DS, et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat. Microbiol. 2019;4:846–853. doi: 10.1038/s41564-019-0361-5. PubMed DOI
Větrovskỳ T, et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data. 2020;7:1–14. PubMed PMC
Boddy, L. & Heilmann-Clausen, J. Chapter 12 Basidiomycete community development in temperate angiosperm wood. British Mycological Society Symposia Series28, 211–237 (2008).
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. 0012–961584, 45–67 (2014).
Bässler C, Förster B, Moning C, Müller J. The BIOKLIM Project : Biodiversity research between climate change and wilding in a temperate montane forest - the conceptual framework aims and structure of the BIOKLIM Project. Waldökologie, Landschaftsforschung und Naturschutz. 2009;7:21–34.
Bässler C, Müller J, Dziock F, Brandl R. Effects of resource availability and climate on the diversity of wood-decaying fungi. J. Ecol. 2010 doi: 10.1111/j.1365-2745.2010.01669.x. DOI
Krah F-S, et al. Fungal fruit body assemblages are tougher in harsh microclimates. Sci Rep. 2022;12:1633. doi: 10.1038/s41598-022-05715-9. PubMed DOI PMC
Müller, J. & Vierling, K. Assessing Biodiversity by Airborne Laser Scanning. in Forestry applications of airborne laser scanning (eds. Maltamo, M., Næsset, E. & Vauhkonen, J.) 357–374 (Springer, Dordrecht and Heidelberg and New York and London, 2014). 10.1007/978-94-017-8663-8.
Halme P, Kotiaho JS. The importance of timing and number of surveys in fungal biodiversity research. Biodiv. Conserv. 2012;21:205–219. doi: 10.1007/s10531-011-0176-z. DOI
Crous PW, et al. MycoBank: An online initiative to launch mycology into the 21st century. Stud. Mycol. 2004;50:19–22.
Albrecht, L. Grundlagen, Ziele Und Methodik Der Waldökologischen Forschung in Naturwaldreservaten. vol. 1 (Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten, 1990).
Hill MO. Diversity and evenness: A unifying notation and its consequences. Ecology. 1973;54:427–432. doi: 10.2307/1934352. DOI
Gherardi LA, Sala OE. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity. Ecol. Lett. 2015;18:1293–1300. doi: 10.1111/ele.12523. PubMed DOI
Morris EK, et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014;4:3514–3524. doi: 10.1002/ece3.1155. PubMed DOI PMC
Thorn S, et al. Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology. 2020;101:e02949. doi: 10.1002/ecy.2949. PubMed DOI
Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity ( H ill numbers) Methods Ecol. Evol. 2016;7:1451–1456. doi: 10.1111/2041-210X.12613. DOI
Gotelli, N. J. & Chao, A. Measuring and Estimating Species Richness, Species Diversity, and Biotic Similarity from Sampling Data. in Encyclopedia of Biodiversity 195–211 (Elsevier, 2013).
Jost L. Partitioning diversity into independent alpha and beta components. Ecology. 2007;88:2427–2439. doi: 10.1890/06-1736.1. PubMed DOI
Chao, A., Ma, K. H., Hsieh, T. C. & Chiu, C.-H. User’s Guide for Online Program SpadeR (Species-richness Prediction And Diversity Estimation in R). (2016).
Wood SN. Generalized Additive Models. Chapman and Hall/CRC; 2017.
Anderson KJ. Temporal patterns in rates of community change during succession. Am. Nat. 2007;169:780–793. doi: 10.1086/516653. PubMed DOI
Wood SN. Inference and computation with generalized additive models and their extensions. TEST. 2020;29:307–339. doi: 10.1007/s11749-020-00711-5. DOI
Sato H, Morimoto S, Hattori T. A thirty-year survey reveals that ecosystem function of fungi predicts phenology of mushroom fruiting. PLoS ONE. 2012;7:e49777. doi: 10.1371/journal.pone.0049777. PubMed DOI PMC
Salerni E, Laganà A, Perini C, Loppi S, Dominicis VD. Effects of temperature and rainfall on fruiting of macrofungi in oak forests of the Mediterranean area. Israel J. Plant Sci. 2002;50:189–198. doi: 10.1560/GV8J-VPKL-UV98-WVU1. DOI
Kauserud H, et al. Mushroom fruiting and climate change. Proc. Natl. Acad. Sci. USA. 2008;105:3811–3814. doi: 10.1073/pnas.0709037105. PubMed DOI PMC
Büntgen U, Kauserud H, Egli S. Linking climate variability to mushroom productivity and phenology. Front. Ecol. Environ. 2012;10:14–19. doi: 10.1890/110064. DOI
Boddy L, et al. Climate variation effects on fungal fruiting. Fung. Ecol. 2014;10:20–33. doi: 10.1016/j.funeco.2013.10.006. DOI
Yang X, et al. Climate change effects fruiting of the prize matsutake mushroom in China. Fung. Div. 2012;56:189–198. doi: 10.1007/s13225-012-0163-z. DOI
Frøslev TG, et al. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biol. Conserv. 2019;233:201–212. doi: 10.1016/j.biocon.2019.02.038. DOI
Rieker D, et al. Disentangling the importance of space and host tree for the beta-diversity of beetles, fungi, and bacteria: Lessons from a large dead-wood experiment. Biol. Conserv. 2022;268:109521. doi: 10.1016/j.biocon.2022.109521. DOI
Kües U, Liu Y. Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol. 2000;54:141–152. doi: 10.1007/s002530000396. PubMed DOI
Hiscox J, et al. Location, location, location: Priority effects in wood decay communities may vary between sites. Environ. Microbiol. 2015 doi: 10.1111/1462-2920.13141. PubMed DOI
Rashit E, Bazin M. Environmental fluctuations, productivity, and species diversity: An experimental study. Microb. Ecol. 1987;14:101–112. doi: 10.1007/BF02013016. PubMed DOI
Bernhardt JR, O’Connor MI, Sunday JM, Gonzalez A. Life in fluctuating environments. Philosoph. Trans. R. Soc. B. 2020 doi: 10.1098/rstb.2019.0454. PubMed DOI PMC
Stevens GC. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 1989;133:240–256. doi: 10.1086/284913. DOI
Bässler C, et al. European mushroom assemblages are phylogenetically structured by temperature. Ecography. 2022;2022:e06206. doi: 10.1111/ecog.06206. DOI
Gonzalez A, Descamps-Julien B. Population and community variability in randomly fluctuating environments. Oikos. 2004;106:105–116. doi: 10.1111/j.0030-1299.2004.12925.x. DOI
Nguyen J, Lara-Gutiérrez J, Stocker R. Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol. Rev. 2021;45:fuaa068. doi: 10.1093/femsre/fuaa068. PubMed DOI PMC
Toljander YK, Lindahl BD, Holmer L, Högberg NOS. Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia. 2006;148:625–631. doi: 10.1007/s00442-006-0406-3. PubMed DOI
Griffiths HM, et al. Carbon flux and forest dynamics: Increased deadwood decomposition in tropical rainforest tree-fall canopy gaps. Global Change Biol. 2021;27:1601–1613. doi: 10.1111/gcb.15488. PubMed DOI
Jacobs JM, Work TT. Linking deadwood-associated beetles and fungi with wood decomposition rates in managed black spruce forests1This article is one of a selection of papers from the International Symposium on Dynamics and Ecological Services of Deadwood in Forest Ecosystems. Can. J. For. Res. 2012;42:1477–1490. doi: 10.1139/x2012-075. DOI
Janisch JE, Harmon ME, Chen H, Fasth B, Sexton J. Decomposition of coarse woody debris originating by clearcutting of an old-growth conifer forest. Ecoscience. 2005;12:151–160. doi: 10.2980/i1195-6860-12-2-151.1. DOI
Shorohova E, Kapitsa E. Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests. For. Ecol. Manag. 2014;315:173–184. doi: 10.1016/j.foreco.2013.12.025. DOI
Pichler V, et al. Variability of moisture in coarse woody debris from several ecologically important tree species of the temperate zone of Europe. Ecohydrology. 2012;5:424–434. doi: 10.1002/eco.235. DOI
Přívětivý T, Šamonil P. Variation in downed deadwood density, biomass, and moisture during decomposition in a natural temperate forest. Forests. 2021;12:1352. doi: 10.3390/f12101352. DOI
Roy F, et al. Nitrogen addition increases mass loss of gymnosperm but not of angiosperm deadwood without changing microbial communities. Sci. Total Environ. 2023;900:165868–42. doi: 10.1016/j.scitotenv.2023.165868. PubMed DOI
Köster K, Metslaid M, Engelhart J, Köster E. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. For. Ecol. Manag. 2015;354:35–42. doi: 10.1016/j.foreco.2015.06.039. DOI
Sandström F, Petersson H, Kruys N, Ståhl G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp in boreal forests of Sweden. For. Ecol. Manag. 2007;243:19–27. doi: 10.1016/j.foreco.2007.01.081. DOI