Responses of stem growth and canopy greenness of temperate conifers to dry spells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
548120
Univerzita Karlova v Praze
3023230
Erasmus+
PID2021-128759OA-I00
Ministerio de Ciencia e Innovación
PubMed
38630139
PubMed Central
PMC11281975
DOI
10.1007/s00484-024-02682-w
PII: 10.1007/s00484-024-02682-w
Knihovny.cz E-zdroje
- Klíčová slova
- Biomass allocation, Dry spells, Growth response, NDVI, Topography, Tree rings,
- MeSH
- biomasa MeSH
- borovice lesní * růst a vývoj MeSH
- listy rostlin růst a vývoj MeSH
- období sucha * MeSH
- smrk * růst a vývoj MeSH
- stonky rostlin * růst a vývoj MeSH
- stromy růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Dry spells strongly influence biomass production in forest ecosystems. Their effects may last several years following a drought event, prolonging growth reduction and therefore restricting carbon sequestration. Yet, our understanding of the impact of dry spells on the vitality of trees' above-ground biomass components (e.g., stems and leaves) at a landscape level remains limited. We analyzed the responses of Pinus sylvestris and Picea abies to the four most severe drought years in topographically complex sites. To represent stem growth and canopy greenness, we used chronologies of tree-ring width and time series of the Normalized Difference Vegetation Index (NDVI). We analyzed the responses of radial tree growth and NDVI to dry spells using superposed epoch analysis and further explored this relationship using mixed-effect models. Our results show a stronger and more persistent response of radial growth to dry spells and faster recovery of canopy greenness. Canopy greenness started to recover the year after the dry spell, whereas radial tree growth remained reduced for the two subsequent years and did not recover the pre-drought level until the fourth year after the event. Stem growth and canopy greenness were influenced by climatic conditions during and after drought events, while the effect of topography was marginal. The opposite responses of stem growth and canopy greenness following drought events suggest a different impact of dry spells on trees´ sink and source compartments. These results underscore the crucial importance of understanding the complexities of tree growth as a major sink of atmospheric carbon.
Zobrazit více v PubMed
Albrecht J (ed) (2003) Českobudějovicko, Šumava. In: Chráněná území ČR. Agentura ochrany přírody a krajiny ČR. Praha
Allen CD, Macalady AK, Chenchouni H, et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests To cite this version: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.10.1016/j.foreco.2009.09.001ï
Anderegg WRL, Plavcová L, Anderegg LDL et al (2013) Drought’s legacy: Multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Chang Biol 19:1188–1196. 10.1111/gcb.12100 10.1111/gcb.12100 PubMed DOI
Anderegg WRL, Trugman AT, Badgley G et al (2020) Divergent forest sensitivity to repeated extreme droughts. Nat Clim Chang 10:1091–1095. 10.1038/s41558-020-00919-110.1038/s41558-020-00919-1 DOI
Anderegg WRL, Schwalm C, Biondi F, et al (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science (80- ) 349:528–528. 10.1126/science.aab4097 PubMed
Anderson-Teixeira KJ, Kannenberg SA (2022) What drives forest carbon storage? The ramifications of source–sink decoupling. New Phytol 236:5–8 10.1111/nph.18415 PubMed DOI
Babst F, Poulter B, Bodesheim P et al (2017) Improved tree-ring archives will support earth-system science. Nat Ecol Evol 1:1–2. 10.1038/s41559-016-0008 10.1038/s41559-016-0008 PubMed DOI
Bartoń K (2022) MuMIn: Multi-Model Inference. R package version 1.47.1, <https://CRAN.R-project.org/package=MuMIn>
Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67. 10.18637/jss.v067.i01
Beguería S, Vicente-Serrano SM (2017) SPEI: Calculation of the Standardised Precipitation-Evapotranspiration Index. R package version 1.7. https://CRAN.R-project.org/package=SPEI
Bernoulli M, Körner C (1999) Dry Matter Allocation in Treeline Trees. Ann Rei Bot 39:7–12
Bonan BG (2008) Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 320(80):1444–1449. 10.1126/science.1155121 10.1126/science.1155121 PubMed DOI
Brun P, Psomas A, Ginzler C et al (2020) Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Glob Chang Biol 26:7021–7035. 10.1111/gcb.15360 10.1111/gcb.15360 PubMed DOI PMC
Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. 10.1016/j.dendro.2008.01.00210.1016/j.dendro.2008.01.002 DOI
Cabon A, Peters RL, Fonti P et al (2020) Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. New Phytol 226:1325–1340. 10.1111/nph.16456 10.1111/nph.16456 PubMed DOI
Cabon A, Kannenberg SA, Arain A et al (2022) Cross-biome synthesis of source versus sink limits to tree growth. Science 376(6594):758–761. 10.1126/science.abm4875 10.1126/science.abm4875 PubMed DOI
Castellaneta M, Rita A, Camarero JJ, et al (2022) Declines in canopy greenness and tree growth are caused by combined climate extremes during drought-induced dieback. Sci Total Environ 813. 10.1016/j.scitotenv.2021.152666 PubMed
Chen Z, Li S, Wan X, Liu S (2022) Strategies of tree species to adapt to drought from leaf stomatal regulation and stem embolism resistance to root properties. Front Plant Sci 13:1–18. 10.3389/fpls.2022.92653510.3389/fpls.2022.926535 PubMed DOI PMC
Chitra-Tarak R, Xu C, Aguilar S et al (2021) Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytol 231:1798–1813. 10.1111/nph.17464 10.1111/nph.17464 PubMed DOI PMC
Chree C (1913) Some Phenomena of Sunspots and of Terrestrial Magnetism at Kew Observatory
Cook ER, Peters K (1981) The Smoothing Spline: A New Approach to Standardizing Forest Interior Tree-Ring Width Series for Dendroclimatic Studies. Tree-Ring Bull 41:45–55
Daly C, Conklin DR, Unsworth MH (2010) Short Communication Local atmospheric decoupling in complex topography alters climate change impacts. Int J Climatol 30:1857–1864. 10.1002/joc.200710.1002/joc.2007 DOI
DeLucia EH, Maherali H, Carey EV (2000) Climate-driven changes in biomass allocation in pines. Glob Chang Biol 6:587–593. 10.1046/j.1365-2486.2000.00338.x10.1046/j.1365-2486.2000.00338.x DOI
Dong B, Yu Y, Pereira P (2022) Non-growing season drought legacy effects on vegetation growth in southwestern China. Sci Total Environ 846. 10.1016/j.scitotenv.2022.157334 PubMed
Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40:3031–3035. 10.1002/grl.5056310.1002/grl.50563 DOI
Dorado-Liñán I, Piovesan G, Martínez-Sancho E et al (2019) Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob Chang Biol 25:1296–1314. 10.1111/gcb.14544 10.1111/gcb.14544 PubMed DOI
Dorado-Liñán I, Ayarzagüena B, Babst F, et al (2022) Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nat Commun 13. 10.1038/s41467-022-29615-8 PubMed PMC
Dow C, Kim AY, D’Orangeville L et al (2022) Warm springs alter timing but not total growth of temperate deciduous trees. Nature 608:552–557. 10.1038/s41586-022-05092-3 10.1038/s41586-022-05092-3 PubMed DOI
Durrant T, de Rigo D, Caudullo G (2016) Pinus sylvestris in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European Atlas of Forest Tree Species, pp 202
Eklundh L, Harrie L, Kuusk A (2001) Investigating relationships between landsat ETM+ sensor data and leaf area index in a boreal conifer forest. Remote Sens Environ 78:239–251. 10.1016/S0034-4257(01)00222-X10.1016/S0034-4257(01)00222-X DOI
Etzold S, Sterck F, Bose AK et al (2022) Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol Lett 25:427–439. 10.1111/ele.13933 10.1111/ele.13933 PubMed DOI PMC
Fajstavr M, Bednářová E, Nezval O, et al (2019) How needle phenology indicates the changes of xylem cell formation during drought stress in Pinus sylvestris L. Dendrochronologia 56. 10.1016/j.dendro.2019.05.004
Fatichi S, Leuzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–1095 10.1111/nph.12614 PubMed DOI
Fox J, Weisberg S (2019) An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Friend AD, Eckes-Shephard AH, Fonti P, et al (2019) On the need to consider wood formation processes in global vegetation models and a suggested approach. Ann For Sci 76:. 10.1007/s13595-019-0819-x
Gao S, Liu R, Zhou T et al (2018) Dynamic responses of tree-ring growth to multiple dimensions of drought. Glob Chang Biol 24:5380–5390. 10.1111/gcb.14367 10.1111/gcb.14367 PubMed DOI
Gazol A, Camarero JJ, Sánchez-Salguero R et al (2020) Drought legacies are short, prevail in dry conifer forests and depend on growth variability. J Ecol 108:2473–2484. 10.1111/1365-2745.1343510.1111/1365-2745.13435 DOI
Gazol A, Rozas V, CuendeArribas S et al (2022) Stand characteristics modulate secondary growth responses to drought and gross primary production in Pinus halepensis afforestation. Eur J for Res. 10.1007/s10342-022-01526-910.1007/s10342-022-01526-9 DOI
Gazol A, Camarero JJ, Sangüesa-Barreda G, Vicente-Serrano SM (2018) Post-drought resilience after forest die-off: Shifts in regeneration, composition, growth and productivity. Front Plant Sci 871. 10.3389/fpls.2018.01546 PubMed PMC
GEE (Google Earth Engine) (2023) Landsat algorithms, google for developers. https://developers.google.com/earth-engine/guides/landsat#landsat-collection-structure. 27 June 2023
Geiger R, Aron RH, Todhunter P (2009) The climate near the ground. Rowman & Littlefield Publishing Group
Gessler A, Bottero A, Marshall J, Arend M (2020) The way back: recovery of trees from drought and its implication for acclimation. New Phytol 228:1704–1709 10.1111/nph.16703 PubMed DOI
Girardin MP, Bouriaud O, Hogg EH et al (2016) No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci U S A 113:E8406–E8414. 10.1073/pnas.1610156113 10.1073/pnas.1610156113 PubMed DOI PMC
Gorelick N, Hancher M, Dixon M et al (2017) Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27. 10.1016/j.rse.2017.06.03110.1016/j.rse.2017.06.031 DOI
Hájková L (ed) (2012) Atlas fenologických poměrů Česka. Praha: Český hydrometeorologický ústav. Olomouc
Harvey JE, Smiljanić M, Scharnweber T et al (2020) Tree growth influenced by warming winter climate and summer moisture availability in northern temperate forests. Glob Chang Biol 26:2505–2518. 10.1111/gcb.14966 10.1111/gcb.14966 PubMed DOI
Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. 10.1002/qj.380310.1002/qj.3803 DOI
Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut J-N (2023): ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 [27.6.2023]
Huang M, Wang X, Keenan TF, Piao S (2018) Drought timing influences the legacy of tree growth recovery. Glob Chang Biol 24:3546–3559. 10.1111/gcb.14294 10.1111/gcb.14294 PubMed DOI
Instruments R (2011) WinDendro Image Analysis System. Regent Instruments Inc., Quebec
Janecka K, Metslaid S, Metslaid M, et al (2022) Short-Term Effects of Droughts and Cold Winters on the Growth of Scots Pine at Coastal Sand Dunes around the South Baltic Sea. Forests 13: 10.3390/f13030477
Kannenberg SA, Novick KA, Alexander MR et al (2019a) Linking drought legacy effects across scales: From leaves to tree rings to ecosystems. Glob Chang Biol 25:2978–2992. 10.1111/gcb.14710 10.1111/gcb.14710 PubMed DOI
Kannenberg SA, Maxwell JT, Pederson N et al (2019b) Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecol Lett 22:119–127 10.1111/ele.13173 PubMed DOI
Kannenberg SA, Schwalm CR, Anderegg WRL (2020) Ghosts of the past: how drought legacy effects shape forest functioning and carbon cycling. Ecol Lett 23:891–901 10.1111/ele.13485 PubMed DOI
Klesse S, Babst F, Evans MEK et al (2022) Legacy effects in radial tree growth are rarely significant after accounting for biological memory. J Ecol. 10.1111/1365-2745.1404510.1111/1365-2745.14045 DOI
Knibbe B (2004) Personal Analysis System for Tree-ring Research 4 - Instruction Manual. SCIEM, Vienna
Kraus C, Zang C, Menzel A (2016) Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur J for Res 135:1011–1023. 10.1007/s10342-016-0990-710.1007/s10342-016-0990-7 DOI
Kröber W, Zhang S, Ehmig M, Bruelheide H (2014) Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum - A cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9:1–24. 10.1371/journal.pone.010921110.1371/journal.pone.0109211 PubMed DOI PMC
Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw 82:1–26. 10.18637/JSS.V082.I13
Lapenis AG, Lawrence GB, Heim A et al (2013) Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests. Global Biogeochem Cycles 27:101–107. 10.1029/2011GB00426810.1029/2011GB004268 DOI
Leifsson C, Buras A, Rammig A, Zang C (2023) Changing climate sensitivity of secondary growth following extreme drought events in forest ecosystems: a global analysis. Environ. Res. Lett. 18. 10.1088/1748-9326/aca9e5
Ložek V, Kubíková J, Špryňar P (eds) (2005) Střední Čechy, Kokořínsko. In: Chráněná území ČR. Agentura ochrany přírody a krajiny ČR, Praha, pp 699
Mackay DS, Savoy PR, Grossiord C et al (2020) Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics. New Phytol 225:679–692. 10.1111/nph.16043 10.1111/nph.16043 PubMed DOI
Marchand W, Girardin MP, Hartmann H, et al (2021) Contrasting life-history traits of black spruce and jack pine influence their physiological response to drought and growth recovery in northeastern boreal Canada. Sci Total Environ 794:. 10.1016/j.scitotenv.2021.148514 PubMed
Martínez-Sancho E, Treydte K, Lehmann MM et al (2022) Drought impacts on tree carbon sequestration and water use – evidence from intra-annual tree-ring characteristics. New Phytol 236:58–70. 10.1111/nph.18224 10.1111/nph.18224 PubMed DOI PMC
Martínez-Vilalta J, Poyatos R, Aguadé D et al (2014) A new look at water transport regulation in plants. New Phytol 204:105–115. 10.1111/nph.12912 10.1111/nph.12912 PubMed DOI
Mašek J, Tumajer J, Lange J et al (2023) Variability in Tree-ring Width and NDVI Responses to Climate at a Landscape Level. Ecosystems. 10.1007/s10021-023-00822-810.1007/s10021-023-00822-8 DOI
Meng R, Dennison PE, Huang C et al (2015) Effects of fire severity and post-fire climate on short-term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California. Remote Sens Environ 171:311–325. 10.1016/j.rse.2015.10.02410.1016/j.rse.2015.10.024 DOI
MohammadiAlagoz S, Zahra N, HajiaghaeiKamrani M et al (2022) Role of Root Hydraulics in Plant Drought Tolerance. J Plant Growth Regul. 10.1007/s00344-022-10807-x10.1007/s00344-022-10807-x DOI
Moravec V, Markonis Y, Rakovec O, et al (2021) Europe under multi-year droughts: How severe was the 2014–2018 drought period? Environ Res Lett 16. 10.1088/1748-9326/abe828
Moreno-Fernández D, Julio Camarero J, García M et al (2022) The Interplay of the Tree and Stand-Level Processes Mediate Drought-Induced Forest Dieback: Evidence from Complementary Remote Sensing and Tree-Ring Approaches. Ecosystems 25:1738–1753. 10.1007/s10021-022-007910.1007/s10021-022-0079 DOI
NASA (National Aeronautics and Space Administration) (2022) Measuring vegetation NDVI and EVI. Normalized Difference Vegetation Index (NDVI) https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php [27.6.2023]
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Rabbel I, Neuwirth B, Bogena H, Diekkrüger B (2018) Exploring the growth response of Norway spruce (Picea abies) along a small-scale gradient of soil water supply. Dendrochronologia 52:123–130. 10.1016/j.dendro.2018.10.00710.1016/j.dendro.2018.10.007 DOI
Rita A, Camarero JJ, Nolè A et al (2020) The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Glob Chang Biol 26:851–863. 10.1111/gcb.14825 10.1111/gcb.14825 PubMed DOI
Roy DP, Kovalskyy V, Zhang HK et al (2016) Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens Environ 185:57–70. 10.1016/j.rse.2015.12.02410.1016/j.rse.2015.12.024 PubMed DOI PMC
Schmied G, Hilmers T, Mellert KH, Uhl E, Buness V, Ambs D, Steckel M, Biber P, Šeho M, Hoffmann YD, Pretzsch H (2023) Nutrient regime modulates drought response patterns of three temperate tree species. Sci Total Environ 868. 10.1016/j.scitotenv.2023.161601 PubMed
Seftigen K, Frank DC, Björklund J et al (2018) The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob Ecol Biogeogr 27:1352–1365. 10.1111/geb.1280210.1111/geb.12802 DOI
Sevanto S, Dickman LT (2015) Where does the carbon go?-Plant carbon allocation under climate change. Tree Physiol 35:581–584 10.1093/treephys/tpv059 PubMed DOI
Song C (2012) Optical remote sensing of forest leaf area index and biomass. Prog Phys Geogr 37:98–113. 10.1177/030913331247136710.1177/0309133312471367 DOI
Song Y, Sterck F, Sass-Klaassen U et al (2022) Growth resilience of conifer species decreases with early, long-lasting and intense droughts but cannot be explained by hydraulic traits. J Ecol 110:2088–2104. 10.1111/1365-2745.1393110.1111/1365-2745.13931 DOI
Spiecker H (2000) Growth of Norway Spruce (Picea abies [L.] Karst.) under Changing Environmental Conditions in Europe. In: Klimo E, Hager H, Kulhavý J (eds) Spruce Monocultures in Central Europe – Problems and Prospects. European Forest Institute, EFI Proceedings No 33
Spinoni J, Naumann G, Vogt JV, Barbosa P (2015) The biggest drought events in Europe from 1950 to 2012. J Hydrol Reg Stud 3:509–524. 10.1016/j.ejrh.2015.01.00110.1016/j.ejrh.2015.01.001 PubMed DOI PMC
Sprenger M, Stumpp C, Weiler M et al (2019) The Demographics of Water: A Review of Water Ages in the Critical Zone. Rev Geophys 57:800–834. 10.1029/2018RG00063310.1029/2018RG000633 DOI
Stokes MA, Smiley LT (1968) An introduction to tree-ring dating. University of Arizona Press, Tucson, AZ
Sturm J, Santos MJ, Schmid B, Damm A (2022) Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought. Glob Chang Biol 28:2956–2978. 10.1111/gcb.16136 10.1111/gcb.16136 PubMed DOI PMC
Szejner P, Belmecheri S, Ehleringer JR, Monson RK (2020) Recent increases in drought frequency cause observed multi-year drought legacies in the tree rings of semi-arid forests. Oecologia 192:241–259. 10.1007/s00442-019-04550-6 10.1007/s00442-019-04550-6 PubMed DOI
Teets A, Moore DJP, Alexander MR, et al (2022) Coupling of Tree Growth and Photosynthetic Carbon Uptake Across Six North American Forests. J Geophys Res Biogeosciences 127: 10.1029/2021JG006690
Thornthwaite CW (1948) An Approach toward a Rational Classification of Climate. Geogr Rev 38:55. 10.2307/21073910.2307/210739 DOI
Treml V, Banaš M (2008) The Effect of Exposure on Alpine Treeline Position: a Case Study from the High Sudetes, Czech Republic. Arctic, Antarct Alp Res 40:751–760. 10.1657/1523-0430(07-060)10.1657/1523-0430(07-060) DOI
Trugman AT, Detto M, Bartlett MK et al (2018) Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol Lett 21:1552–1560 10.1111/ele.13136 PubMed DOI
Tumajer J, Scharnweber T, Smiljanic M, Wilmking M (2022) Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves. New Phytol 233:2429–2441. 10.1111/nph.17952 10.1111/nph.17952 PubMed DOI
Vicente-Serrano SM, Lasanta T, Romo A (2004) Analysis of spatial and temporal evolution of vegetation cover in the Spanish central pyrenees: Role of human management. Environ Manage 34:802–818. 10.1007/s00267-003-0022-5 10.1007/s00267-003-0022-5 PubMed DOI
Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J Clim 23:1696–1718. 10.1175/2009JCLI2909.110.1175/2009JCLI2909.1 DOI
Vicente-Serrano SM, Camarero JJ, Olano JM et al (2016) Diverse relationships between forest growth and the Normalized Difference Vegetation Index at a global scale. Remote Sens Environ 187:14–29. 10.1016/j.rse.2016.10.00110.1016/j.rse.2016.10.001 DOI
Vicente-Serrano SM, Martín-Hernández N, Camarero JJ, et al (2020) Linking tree-ring growth and satellite-derived gross primary growth in multiple forest biomes. Temporal-scale matters. Ecol Indic 108. 10.1016/j.ecolind.2019.105753
Wong CYS, Young DJN, Latimer AM, et al (2021) Importance of the legacy effect for assessing spatiotemporal correspondence between interannual tree-ring width and remote sensing products in the Sierra Nevada. Remote Sens Environ 265:. 10.1016/j.rse.2021.112635
Wu X, Liu H, Li X et al (2017) Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob Chang Biol 24:504–516. 10.1111/gcb.13920 10.1111/gcb.13920 PubMed DOI
Wu X, Liu H, Hartmann H, et al (2022) Timing and Order of Extreme Drought and Wetness Determine Bioclimatic Sensitivity of Tree Growth. Earth’s Futur 10: 10.1029/2021EF002530
Zarco-Tejada PJ, Hornero A, Beck PSA et al (2019) Chlorophyll content estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline. Remote Sens Environ 223:320–335. 10.1016/j.rse.2019.01.031 10.1016/j.rse.2019.01.031 PubMed DOI PMC
Zhang H, Wang K, Xu X, et al (2015) Biogeographical patterns of biomass allocation in leaves, stems, and roots in Chinas forests. Sci Rep 5: 10.1038/srep15997 PubMed PMC
Zhu Z, Wang S, Woodcock CE (2015) Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens Environ 159:269–277. 10.1016/j.rse.2014.12.01410.1016/j.rse.2014.12.014 DOI
Zlobin IE (2022) Linking the growth patterns of coniferous species with their performance under climate aridization. Sci Total Environ 831:(15497) PubMed
Zuidema PA, Poulter B, Frank DC (2018) A Wood Biology Agenda to Support Global Vegetation Modelling. Trends Plant Sci 23:1006–1015 10.1016/j.tplants.2018.08.003 PubMed DOI