Factors Controlling Dead Wood Decomposition in an Old-Growth Temperate Forest in Central Europe

. 2022 Jun 27 ; 8 (7) : . [epub] 20220627

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35887430

Grantová podpora
project LTC20073 the Ministry of Education, Youth and Sports of the Czech Republic

Dead wood represents an important pool of carbon and nitrogen in forest ecosystems. This source of soil organic matter has diverse ecosystem functions that include, among others, carbon and nitrogen cycling. However, information is limited on how deadwood properties such as chemical composition, decomposer abundance, community composition, and age correlate and affect decomposition rate. Here, we targeted coarse dead wood of beech, spruce, and fir, namely snags and tree trunks (logs) in an old-growth temperate forest in central Europe; measured their decomposition rate as CO2 production in situ; and analyzed their relationships with other measured variables. Respiration rate of dead wood showed strong positive correlation with acid phosphatase activity and negative correlation with lignin content. Fungal biomass (ergosterol content) and moisture content were additional predictors. Our results indicate that dead wood traits, including tree species, age, and position (downed/standing), affected dead wood chemical properties, microbial biomass, moisture condition, and enzyme activity through changes in fungal communities and ultimately influenced the decomposition rate of dead wood.

Zobrazit více v PubMed

Seibold S., Rammer W., Hothorn T., Seidl R., Ulyshen M.D., Lorz J., Cadotte M.W., Lindenmayer D.B., Adhikari Y.P., Aragón R., et al. The Contribution of Insects to Global Forest Deadwood Decomposition. Nature. 2021;597:77–81. doi: 10.1038/s41586-021-03740-8. PubMed DOI

Stokland J.N., Siitonen J., Jonsson B.G. Biodiversity in Dead Wood. Cambridge University Press; Cambridge, UK: 2012.

Shi Z., Allison S.D., He Y., Levine P.A., Hoyt A.M., Beem-Miller J., Zhu Q., Wieder W.R., Trumbore S., Randerson J.T. The Age Distribution of Global Soil Carbon Inferred from Radiocarbon Measurements. Nat. Geosci. 2020;13:555–559. doi: 10.1038/s41561-020-0596-z. DOI

Hicks W.T. Ph.D. Thesis. Oregon State University; Corvallis, OR, USA: 2000. Modeling Nitrogen Fixation in Dead Wood; p. 9983428.

Lajtha K. Nutrient Retention and Loss during Ecosystem Succession: Revisiting a Classic Model. Ecology. 2020;101:e02896. doi: 10.1002/ecy.2896. PubMed DOI

Tláskal V., Brabcová V., Větrovský T., Jomura M., López-Mondéjar R., Monteiro M.O.L., Saraiva P.J., Human Z.R., Cajthaml T., Nunes da Rocha U., et al. Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition. mSystems. 2021;6:e01078-20. doi: 10.1128/mSystems.01078-20. PubMed DOI PMC

Kahl T., Arnstadt T., Baber K., Bässler C., Bauhus J., Borken W., Buscot F., Floren A., Heibl C., Hessenmöller D., et al. Wood Decay Rates of 13 Temperate Tree Species in Relation to Wood Properties, Enzyme Activities and Organismic Diversities. For. Ecol. Manag. 2017;391:86–95. doi: 10.1016/j.foreco.2017.02.012. DOI

Weedon J.T., Cornwell W.K., Cornelissen J.H.C., Zanne A.E., Wirth C., Coomes D.A. Global Meta-Analysis of Wood Decomposition Rates: A Role for Trait Variation among Tree Species? Ecol. Lett. 2009;12:45–56. doi: 10.1111/j.1461-0248.2008.01259.x. PubMed DOI

Yatskov M., Harmon M.E., Krankina O.N. A Chronosequence of Wood Decomposition in the Boreal Forests of Russia. Can. J. For. Res. 2003;33:1211–1226. doi: 10.1139/x03-033. DOI

Boulanger Y., Sirois L. Postfire Dynamics of Black Spruce Coarse Woody Debris in Northern Boreal Forest of Quebec. Can. J. For. Res. 2006;36:1770–1780. doi: 10.1139/x06-070. DOI

Bond-Lamberty B., Wang C., Gower S.T. Annual Carbon Flux from Woody Debris for a Boreal Black Spruce Fire Chronosequence. J. Geophys. Res. 2002;107:WFX 1-1–WFX 1-10. doi: 10.1029/2001JD000839. DOI

Bond-Lamberty B., Gower S.T. Decomposition and Fragmentation of Coarse Woody Debris: Re-Visiting a Boreal Black Spruce Chronosequence. Ecosystems. 2008;11:831–840. doi: 10.1007/s10021-008-9163-y. DOI

Herrmann S., Bauhus J. Effects of Moisture, Temperature and Decomposition Stage on Respirational Carbon Loss from Coarse Woody Debris (CWD) of Important European Tree Species. Scand. J. For. Res. 2012;28:346–357. doi: 10.1080/02827581.2012.747622. DOI

Berg B., McClaugherty C. Plant Litter, Decomposition, Humus Formation, Carbon Sequestration. Springer; Berlin/Heidelberg, Germany: 2013.

Bradford M.A., Warren R.J., Baldrian P., Crowther T.W., Maynard D.S., Oldfield E.E., Wieder W.R., Wood S.A., King J.R. Climate Fails to Predict Wood Decomposition at Regional Scales. Nat. Clim. Chang. 2014;4:625–630. doi: 10.1038/nclimate2251. DOI

Fukami T., Dickie I.A., Paula Wilkie J., Paulus B.C., Park D., Roberts A., Buchanan P.K., Allen R.B. Assembly History Dictates Ecosystem Functioning: Evidence from Wood Decomposer Communities. Ecol. Lett. 2010;13:675–684. doi: 10.1111/j.1461-0248.2010.01465.x. PubMed DOI

Chave J., Muller-Landau H.C., Baker T.R., Easdale T.A., Steege H., Webb C.O. Regional and Phylogenetic Variation of Wood Density across 2456 Neotropical Tree Species. Ecol. Appl. 2006;16:2356–2367. doi: 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2. PubMed DOI

Noll L., Leonhardt S., Arnstadt T., Hoppe B., Poll C., Matzner E., Hofrichter M., Kellner H. Fungal Biomass and Extracellular Enzyme Activities in Coarse Woody Debris of 13 Tree Species in the Early Phase of Decomposition. For. Ecol. Manag. 2016;378:181–192. doi: 10.1016/j.foreco.2016.07.035. DOI

Leonhardt S., Hoppe B., Stengel E., Noll L., Moll J., Bässler C., Dahl A., Buscot F., Hofrichter M., Kellner H. Molecular Fungal Community and Its Decomposition Activity in Sapwood and Heartwood of 13 Temperate European Tree Species. PLoS ONE. 2019;14:e0212120. doi: 10.1371/journal.pone.0212120. PubMed DOI PMC

Song Z., Kennedy P.G., Liew F.J., Schilling J.S. Fungal Endophytes as Priority Colonizers Initiating Wood Decomposition. Funct. Ecol. 2017;31:407–418. doi: 10.1111/1365-2435.12735. DOI

Wang L., Ren L., Li C., Gao C., Liu X., Wang M., Luo Y. Effects of Endophytic Fungi Diversity in Different Coniferous Species on the Colonization of Sirex Noctilio (Hymenoptera: Siricidae) Sci. Rep. 2019;9:5077. doi: 10.1038/s41598-019-41419-3. PubMed DOI PMC

Bradford M.A., Maynard D.S., Crowther T.W., Frankson P.T., Mohan J.E., Steinrueck C., Veen G.F., King J.R., Warren R.J., II Belowground Community Turnover Accelerates the Decomposition of Standing Dead Wood. Ecology. 2021;102:e03484. doi: 10.1002/ecy.3484. PubMed DOI

Meier C.L., Rapp J., Bowers R.M., Silman M., Fierer N. Fungal Growth on a Common Wood Substrate across a Tropical Elevation Gradient: Temperature Sensitivity, Community Composition, and Potential for above-Ground Decomposition. Soil Biol. Biochem. 2010;42:1083–1090. doi: 10.1016/j.soilbio.2010.03.005. DOI

Rajala T., Peltoniemi M., Hantula J., Mäkipää R., Pennanen T. RNA Reveals a Succession of Active Fungi during the Decay of Norway Spruce Logs. Fungal Ecol. 2011;4:437–448. doi: 10.1016/j.funeco.2011.05.005. DOI

Folman L.B., Klein Gunnewiek P.J.A., Boddy L., De Boer W. Impact of White-Rot Fungi on Numbers and Community Composition of Bacteria Colonizing Beech Wood from Forest Soil. FEMS Microbiol. Ecol. 2008;63:181–191. doi: 10.1111/j.1574-6941.2007.00425.x. PubMed DOI

Hiscox J., Savoury M., Vaughan I.P., Müller C.T., Boddy L. Antagonistic Fungal Interactions Influence Carbon Dioxide Evolution from Decomposing Wood. Fungal Ecol. 2015;14:24–32. doi: 10.1016/j.funeco.2014.11.001. DOI

Odriozola I., Abrego N., Tláskal V., Zrůstová P., Morais D., Větrovský T., Ovaskainen O., Baldrian P. Fungal Communities Are Important Determinants of Bacterial Community Composition in Deadwood. mSystems. 2021;6:e01017-20. doi: 10.1128/mSystems.01017-20. PubMed DOI PMC

Gómez-Brandón M., Probst M., Siles J.A., Peintner U., Bardelli T., Egli M., Insam H., Ascher-Jenull J. Fungal Communities and Their Association with Nitrogen-Fixing Bacteria Affect Early Decomposition of Norway Spruce Deadwood. Sci. Rep. 2020;10:8025. doi: 10.1038/s41598-020-64808-5. PubMed DOI PMC

Sinsabaugh R.L., Antibus R.K., Linkins A.E. An Enzymic Approach to the Analysis of Microbial Activity during Plant Litter Decomposition. Agric. Ecosyst. Environ. 1991;34:43–54. doi: 10.1016/0167-8809(91)90092-C. DOI

Sinsabaugh R.L., Antibus R.K., Linkins A.E., McClaugherty C.A., Rayburn L., Repert D., Weiland T. Wood Decomposition over a First-Order Watershed: Mass Loss as a Function of Lignocellulase Activity. Soil Biol. Biochem. 1992;24:743–749. doi: 10.1016/0038-0717(92)90248-V. DOI

Sinsabaugh R.S. Enzymic Analysis of Microbial Pattern and Process. Biol. Fertil. Soils. 1994;17:69–74. doi: 10.1007/BF00418675. DOI

A’Bear A.D., Jones T.H., Kandeler E., Boddy L. Interactive Effects of Temperature and Soil Moisture on Fungal-Mediated Wood Decomposition and Extracellular Enzyme Activity. Soil Biol. Biochem. 2014;70:151–158. doi: 10.1016/j.soilbio.2013.12.017. DOI

Wang G., Post W.M., Mayes M.A., Frerichs J.T., Sindhu J. Parameter Estimation for Models of Ligninolytic and Cellulolytic Enzyme Kinetics. Soil Biol. Biochem. 2012;48:28–38. doi: 10.1016/j.soilbio.2012.01.011. DOI

Tuor U., Winterhalter K., Fiechter A. Enzymes of White-Rot Fungi Involved in Lignin Degradation and Ecological Determinants for Wood Decay. J. Biotechnol. 1995;41:1–17. doi: 10.1016/0168-1656(95)00042-O. DOI

Baldrian P., Šnajdr J., Merhautová V., Dobiášová P., Cajthaml T., Valášková V. Responses of the Extracellular Enzyme Activities in Hardwood Forest to Soil Temperature and Seasonality and the Potential Effects of Climate Change. Soil Biol. Biochem. 2013;56:60–68. doi: 10.1016/j.soilbio.2012.01.020. DOI

Criquet S., Farnet A.M., Tagger S., Le Petit J. Annual Variations of Phenoloxidase Activities in an Evergreen Oak Litter: Influence of Certain Biotic and Abiotic Factors. Soil Biol. Biochem. 2000;32:1505–1513. doi: 10.1016/S0038-0717(00)00027-4. DOI

Sardans J., Peñuelas J. Drought Decreases Soil Enzyme Activity in a Mediterranean Quercus ilex L. Forest. Soil Biol. Biochem. 2005;37:455–461. doi: 10.1016/j.soilbio.2004.08.004. DOI

Baldrian P., Merhautová V., Cajthaml T., Petránková M., Šnajdr J. Small-Scale Distribution of Extracellular Enzymes, Fungal, and Bacterial Biomass in Quercus Petraea Forest Topsoil. Biol. Fertil. Soils. 2010;46:717–726. doi: 10.1007/s00374-010-0478-4. DOI

Crowther T.W., Jones T.H., Boddy L., Baldrian P. Invertebrate Grazing Determines Enzyme Production by Basidiomycete Fungi. Soil Biol. Biochem. 2011;43:2060–2068. doi: 10.1016/j.soilbio.2011.06.003. DOI

Hiscox J., Baldrian P., Rogers H.J., Boddy L. Changes in Oxidative Enzyme Activity during Interspecific Mycelial Interactions Involving the White-Rot Fungus Trametes Versicolor. Fungal Genet. Biol. 2010;47:562–571. doi: 10.1016/j.fgb.2010.03.007. PubMed DOI

Šnajdr J., Dobiášová P., Větrovský T., Valášková V., Alawi A., Boddy L., Baldrian P. Saprotrophic Basidiomycete Mycelia and Their Interspecific Interactions Affect the Spatial Distribution of Extracellular Enzymes in Soil. FEMS Microbiol. Ecol. 2011;78:80–90. doi: 10.1111/j.1574-6941.2011.01123.x. PubMed DOI

Lustenhouwer N., Maynard D.S., Bradford M.A., Lindner D.L., Oberle B., Zanne A.E., Crowther T.W. A Trait-Based Understanding of Wood Decomposition by Fungi. Proc. Natl. Acad. Sci. USA. 2020;117:11551–11558. doi: 10.1073/pnas.1909166117. PubMed DOI PMC

Anderson-Teixeira K.J., Davies S.J., Bennett A.C., Gonzalez-Akre E.B., Muller-Landau H.C., Joseph Wright S., Abu Salim K., Almeyda Zambrano M., Alonso A., Baltzer J.L., et al. CTFS-ForestGEO: A Worldwide Network Monitoring Forests in an Era of Global Change. Glob. Chang. Biol. 2015;21:528–549. doi: 10.1111/gcb.12712. PubMed DOI

Davies S.J., Abiem I., Abu Salim K., Aguilar S., Allen D., Alonso A., Anderson-Teixeira K., Andrade A., Arellano G., Ashton P.S., et al. ForestGEO: Understanding Forest Diversity and Dynamics through a Global Observatory Network. Biol. Conserv. 2021;253:108907. doi: 10.1016/j.biocon.2020.108907. DOI

Baldrian P., Zrůstová P., Tláskal V., Davidová A., Merhautová V., Vrška T. Fungi Associated with Decomposing Deadwood in a Natural Beech-Dominated Forest. Fungal Ecol. 2016;23:109–122. doi: 10.1016/j.funeco.2016.07.001. DOI

King H.G.C., Heath G.W. The Chemical Analysis of Small Samples Leaf Material and the Relationship between the Disappearance and Composition of Leaves. Pedobiologia. 1967;7:192–197.

DuBois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956;28:350–356. doi: 10.1021/ac60111a017. DOI

Ihrmark K., Bödeker I.T.M., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., Strid Y., Stenlid J., Brandström-Durling M., Clemmensen K.E., et al. New Primers to Amplify the Fungal ITS2 Region-Evaluation by 454-Sequencing of Artificial and Natural Communities. FEMS Microbiol. Ecol. 2012;82:666–677. doi: 10.1111/j.1574-6941.2012.01437.x. PubMed DOI

Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N., Knight R. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA. 2011;108((Suppl. 1)):4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC

Žifčáková L., Větrovský T., Howe A., Baldrian P. Microbial Activity in Forest Soil Reflects the Changes in Ecosystem Properties between Summer and Winter. Environ. Microbiol. 2016;18:288–301. doi: 10.1111/1462-2920.13026. PubMed DOI

Chemidlin Prévost-Bouré N., Christen R., Dequiedt S., Mougel C., Lelièvre M., Jolivet C., Shahbazkia H.R., Guillou L., Arrouays D., Ranjard L. Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR. PLoS ONE. 2011;6:e24166. doi: 10.1371/journal.pone.0024166. PubMed DOI PMC

Amann R.I., Ludwig W., Schleifer K.H. Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiol. Rev. 1995;59:143–169. doi: 10.1128/mr.59.1.143-169.1995. PubMed DOI PMC

Wilmotte A., Van der Auwera G., De Wachter R. Structure of the 16 S Ribosomal RNA of the Thermophilic Cyanobacterium Chlorogloeopsis HTF (‘mastigocladus laminosus HTF’) Strain PCC7518, and Phylogenetic Analysis. FEBS Lett. 1993;317:96–100. doi: 10.1016/0014-5793(93)81499-P. PubMed DOI

Větrovský T., Baldrian P., Morais D. SEED 2: A User-Friendly Platform for Amplicon High-Throughput Sequencing Data Analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Aronesty E. Comparison of Sequencing Utility Programs. Open Bioinforma. J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI

Nilsson R.H., Veldre V., Hartmann M., Unterseher M., Amend A., Bergsten J., Kristiansson E., Ryberg M., Jumpponen A., Abarenkov K. An Open Source Software Package for Automated Extraction of ITS1 and ITS2 from Fungal ITS Sequences for Use in High-Throughput Community Assays and Molecular Ecology. Fungal Ecol. 2010;3:284–287. doi: 10.1016/j.funeco.2010.05.002. DOI

Edgar R.C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI

Edgar R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI

Kõljalg U., Nilsson R.H., Abarenkov K., Tedersoo L., Taylor A.F.S., Bahram M., Bates S.T., Bruns T.D., Bengtsson-Palme J., Callaghan T.M., et al. Towards a Unified Paradigm for Sequence-Based Identification of Fungi. Mol. Ecol. 2013;22:5271–5277. doi: 10.1111/mec.12481. PubMed DOI

Põlme S., Abarenkov K., Nilsson R.H., Lindahl B.D., Clemmensen K.E., Kauserud H., Nguyen N., Kjøller R., Bates S.T., Baldrian P., et al. FungalTraits: A User-Friendly Traits Database of Fungi and Fungus-like Stramenopiles. Fungal Divers. 2020;105:1–16. doi: 10.1007/s13225-020-00466-2. DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.

Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Package “Vegan” Version 2.5-7. [(accessed on 20 January 2020)]. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf.

Rosseel Y. Lavaan: An R Package for Structural Equation Modeling. Stat. Softw. 2012;48:1–36. doi: 10.18637/jss.v048.i02. DOI

Baldrian P., Merhautová V., Petránková M., Cajthaml T., Šnajdr J. Distribution of Microbial Biomass and Activity of Extracellular Enzymes in a Hardwood Forest Soil Reflect Soil Moisture Content. Appl. Soil Ecol. 2010;46:177–182. doi: 10.1016/j.apsoil.2010.08.013. DOI

Criquet S., Tagger S., Vogt G., Le Petit J. Endoglucanase and β-Glycosidase Activities in an Evergreen Oak Litter: Annual Variation and Regulating Factors. Soil Biol. Biochem. 2002;34:1111–1120. doi: 10.1016/S0038-0717(02)00045-7. DOI

Criquet S., Ferre E., Farnet A.M., Le Petit J. Annual Dynamics of Phosphatase Activities in an Evergreen Oak Litter: Influence of Biotic and Abiotic Factors. Soil Biol. Biochem. 2004;36:1111–1118. doi: 10.1016/j.soilbio.2004.02.021. DOI

Jomura M., Kominami Y., Dannoura M., Kanazawa Y. Spatial Variation in Respiration from Coarse Woody Debris in a Temperate Secondary Broad-Leaved Forest in Japan. For. Ecol. Manage. 2008;255:149–155. doi: 10.1016/j.foreco.2007.09.002. DOI

Vermaas J.V., Petridis L., Qi X., Schulz R., Lindner B., Smith J.C. Mechanism of Lignin Inhibition of Enzymatic Biomass Deconstruction. Biotechnol. Biofuels. 2015;8:217. doi: 10.1186/s13068-015-0379-8. PubMed DOI PMC

Fukasawa Y., Osono T., Takeda H. Dynamics of Physicochemical Properties and Occurrence of Fungal Fruit Bodies during Decomposition of Coarse Woody Debris of Fagus Crenata. J. For. Res. 2009;14:20–29. doi: 10.1007/s10310-008-0098-0. DOI

Rajala T., Peltoniemi M., Pennanen T., Mäkipää R. Relationship between Wood-Inhabiting Fungi Determined by Molecular Analysis (Denaturing Gradient Gel Electrophoresis) and Quality of Decaying Logs. Can. J. For. Res. 2010;40:2384–2397. doi: 10.1139/X10-176. DOI

Swift M.J., Heal O.W., Anderson J.M. Decomposition in Terrestrial Ecosystems. University of California Press; Berkeley, CA, USA: 1979.

Lepinay C., Jiráska L., Tláskal V., Brabcová V., Vrška T., Baldrian P. Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest. J. Fungi. 2021;7:412. doi: 10.3390/jof7060412. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effects of experimental canopy openness on wood-inhabiting fungal fruiting diversity across succession

. 2024 Jul 12 ; 14 (1) : 16135. [epub] 20240712

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace