Successional Development of Fungal Communities Associated with Decomposing Deadwood in a Natural Mixed Temperate Forest
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-17749S
Czech Science Foundation
LTC20073
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34070657
PubMed Central
PMC8228407
DOI
10.3390/jof7060412
PII: jof7060412
Knihovny.cz E-zdroje
- Klíčová slova
- deadwood, decomposition, extracellular enzymes, fungal community, fungal ecology, mixed natural forest, succession,
- Publikační typ
- časopisecké články MeSH
Deadwood represents an important carbon stock and contributes to climate change mitigation. Wood decomposition is mainly driven by fungal communities. Their composition is known to change during decomposition, but it is unclear how environmental factors such as wood chemistry affect these successional patterns through their effects on dominant fungal taxa. We analysed the deadwood of Fagus sylvatica and Abies alba across a deadwood succession series of >40 years in a natural fir-beech forest in the Czech Republic to describe the successional changes in fungal communities, fungal abundance and enzymatic activities and to link these changes to environmental variables. The fungal communities showed high levels of spatial variability and beta diversity. In young deadwood, fungal communities showed higher similarity among tree species, and fungi were generally less abundant, less diverse and less active than in older deadwood. pH and the carbon to nitrogen ratio (C/N) were the best predictors of the fungal community composition, and they affected the abundance of half of the dominant fungal taxa. The relative abundance of most of the dominant taxa tended to increase with increasing pH or C/N, possibly indicating that acidification and atmospheric N deposition may shift the community composition towards species that are currently less dominant.
Zobrazit více v PubMed
Baldrian P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017;41:109–130. doi: 10.1093/femsre/fuw040. PubMed DOI
Tláskal V., Brabcová V., Větrovský T., Jomura M., López-Mondéjar R., Monteiro L.M.O., Saraiva J.P., Human Z.R., Cajthaml T., da Rocha U.N., et al. Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition. mSystems. 2021;6:e01078-20. doi: 10.1128/mSystems.01078-20. PubMed DOI PMC
Puletti N., Canullo R., Mattioli W., Gawryś R., Corona P., Czerepko J. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 2019;76:68. doi: 10.1007/s13595-019-0832-0. DOI
Błońska E., Lasota J., Piaszczyk W. Carbon and nitrogen stock in deadwood biomass in natural temperate forest along a soil moisture gradient. Plant Biosyst. 2019;154:213–221. doi: 10.1080/11263504.2019.1587538. DOI
Harmon M.E., Fasth B.G., Yatskov M., Kastendick D., Rock J., Woodall C.W. Release of coarse woody detritus-related carbon: A synthesis across forest biomes. Carbon Balance Manag. 2020;15:1. doi: 10.1186/s13021-019-0136-6. PubMed DOI PMC
Harris N.L., Gibbs D.A., Baccini A., Birdsey R.A., De Bruin S., Farina M., Fatoyinbo L., Hansen M.C., Herold M., Houghton R.A., et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 2021;11:234–240. doi: 10.1038/s41558-020-00976-6. DOI
Sterkenburg E., Bahr A., Brandström Durling M., Clemmensen K.E., Lindahl B.D. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 2015;207:1145–1158. doi: 10.1111/nph.13426. PubMed DOI
Vítková L., Bače R., Kjučukov P., Svoboda M. Deadwood management in Central European forests: Key considerations for practical implementation. For. Ecol. Manag. 2018;429:394–405. doi: 10.1016/j.foreco.2018.07.034. DOI
Nordén J., Abrego N., Boddy L., Bässler C., Dahlberg A., Halme P., Hällfors M., Maurice S., Menkis A., Miettinen O., et al. Ten principles for conservation translocations of threatened wood-inhabiting fungi. Fungal Ecol. 2020;44:100919. doi: 10.1016/j.funeco.2020.100919. DOI
Baldrian P., Větrovský T., Lepinay C., Kohout P. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Divers. 2021:1–9. doi: 10.1007/s13225-021-00472-y. DOI
Krah F.S., Seibold S., Brandl R., Baldrian P., Müller J., Bässler C. Independent effects of host and environment on the diversity of wood—inhabiting fungi. J. Ecol. 2018;106:1428–1442. doi: 10.1111/1365-2745.12939. DOI
Müller J., Ulyshen M., Seibold S., Cadotte M., Chao A., Bässler C., Vogel S., Hagge J., Weiß I., Baldrian P., et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos. 2020;129:1579–1588. doi: 10.1111/oik.07335. DOI
Kahl T., Arnstadt T., Baber K., Bässler C., Bauhus J., Borken W., Buscot F., Floren A., Heibl C., Hessenmöller D., et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 2017;391:86–95. doi: 10.1016/j.foreco.2017.02.012. DOI
Atrena A., Banelytė G.G., Læssøe T., Riis-Hansen R., Bruun H.H., Rahbek C., Heilmann-Clausen J. Quality of substrate and forest structure determine macrofungal richness along a gradient of management intensity in beech forests. For. Ecol. Manag. 2020;478:118512. doi: 10.1016/j.foreco.2020.118512. DOI
Rajala T., Peltoniemi M., Pennanen T., Mäkipää R. Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol. Ecol. 2012;81:494–505. doi: 10.1111/j.1574-6941.2012.01376.x. PubMed DOI
Purahong W., Wubet T., Lentendu G., Hoppe B., Jariyavidyanont K., Arnstadt T., Baber K., Otto P., Kellner H., Hofrichter M., et al. Determinants of deadwood-inhabiting fungal communities in temperate forests: Molecular evidence from a large scale deadwood decomposition experiment. Front. Microbiol. 2018;9:2120. doi: 10.3389/fmicb.2018.02120. PubMed DOI PMC
Leonhardt S., Hoppe B., Stengel E., Noll L., Moll J., Bässler C., Dahl A., Buscot F., Hofrichter M., Kellner H. Molecular fungal community and its decomposition activity in sapwood and heartwood of 13 temperate European tree species. PLoS ONE. 2019;14:e0212120. doi: 10.1371/journal.pone.0212120. PubMed DOI PMC
Baldrian P., Zrůstová P., Tláskal V., Davidová A., Merhautová V., Vrška T. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 2016;23:109–122. doi: 10.1016/j.funeco.2016.07.001. DOI
Rayner A.D.M., Boddy L. Fungal Decomposition of Wood: Its Biology and Ecology. John Wiley & Sons Ltd.; Chichester, UK: 1988. p. 587.
Fukasawa Y. Fungal succession and decomposition of Pinus densiflora snags. Ecol. Res. 2018;33:435–444. doi: 10.1007/s11284-017-1557-x. DOI
Goodell B., Qian Y., Jellison J. Fungal decay of wood: Soft rot-brown rot-white rot. In: Schultz T.P., Militz H., Freeman M.H., Goodell B., Nicholas D.D., editors. Development of Commercial Wood Preservatives. Volume 982. American Chemical Society; Washington, DC, USA: 2008. pp. 9–31. DOI
Bani A., Pioli S., Ventura M., Panzacchi P., Borruso L., Tognetti R., Tonon G., Brusetti L. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil Ecol. 2018;126:75–84. doi: 10.1016/j.apsoil.2018.02.017. DOI
Rajala T., Peltoniemi M., Hantula J., Mäkipää R., Pennanen T. RNA reveals a succession of active fungi during the decay of Norway spruce logs. Fungal Ecol. 2011;4:437–448. doi: 10.1016/j.funeco.2011.05.005. DOI
Ovaskainen O., Schigel D., Ali-Kovero H., Auvinen P., Paulin L., Nordén B., Nordén J. Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J. 2013;7:1696–1709. doi: 10.1038/ismej.2013.61. PubMed DOI PMC
Lindahl B.D., Finlay R.D. Activities of chitinolytic enzymes during primary and secondary colonization of wood by basidiomycetous fungi. N. Phytol. 2006;169:389–397. doi: 10.1111/j.1469-8137.2005.01581.x. PubMed DOI
Fukasawa Y., Osono T., Takeda H. Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of Fagus Crenata. J. For. Res. 2009;14:20–29. doi: 10.1007/s10310-008-0098-0. DOI
Bässler C., Müller J., Dziock F., Brandl R. Effects of resource availability and climate on the diversity of wood-decaying fungi. J. Ecol. 2010;98:822–832. doi: 10.1111/j.1365-2745.2010.01669.x. DOI
Kubartová A., Ottosson E., Dahlberg A., Stenlid J. Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol. Ecol. 2012;21:4514–4532. doi: 10.1111/j.1365-294X.2012.05723.x. PubMed DOI
Tomao A., Bonet J.A., Castaño C., de-Miguel S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 2020;457:117678. doi: 10.1016/j.foreco.2019.117678. DOI
Kauserud H., Stige L.C., Vik J.O., Okland R.H., Hoiland K., Stenseth N.C. Mushroom fruiting and climate change. Proc. Natl. Acad. Sci. USA. 2008;105:3811–3814. doi: 10.1073/pnas.0709037105. PubMed DOI PMC
Přívětivý T., Baldrian P., Šamonil P., Vrška T. Deadwood density and moisture variation in a natural temperate Spruce-Fir-Beech forest. Preprints. 2017:2017050215. doi: 10.20944/preprints201705.0215.v1. DOI
Tolasz R., Míková T., Valeriánová A., Voženílek V. Climate atlas of Czechia. 1st ed. Czech Hydrometeorological Institute; Prague, Czech: 2007. p. 254.
Přívětivý T., Janík D., Unar P., Adam D., Král K., Vrška T. How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)? For. Ecol. Manag. 2016;381:177–187. doi: 10.1016/j.foreco.2016.09.033. DOI
Šamonil P., Vrška T. Trends and cyclical changes in natural fir-beech forests at the north-western edge of the Carpathians. Folia Geobot. 2007;42:337–361. doi: 10.1007/BF02861699. DOI
Táborská M., Privetity T., Vrska T., Odór P. Bryophytes associated with two tree species and different stages of decay in a natural fir-beech mixed forest in the Czech Republic. Preslia. 2015;87:387–401.
Král K., McMahon S.M., Janík D., Adam D., Vrška T. Patch mosaic of developmental stages in central European natural forests along vegetation gradient. For. Ecol. Manag. 2014;330:17–28. doi: 10.1016/j.foreco.2014.06.034. DOI
Vrška T., Adam D., Hort L., Kolář T., Janík D. European beech (Fagus sylvatica L.) and silver fir (Abies alba Mill.) rotation in the Carpathians—A developmental cycle or a linear trend induced by man? For. Ecol. Manag. 2009;258:347–356. doi: 10.1016/j.foreco.2009.03.007. DOI
Král K., Valtera M., Janik D., Šamonil P., Vrška T. Spatial variability of general stand characteristics in central European beech-dominated natural stands–effects of scale. For. Ecol. Manag. 2014;328:353–364. doi: 10.1016/j.foreco.2014.05.046. DOI
Větrovský T., Baldrian P. An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biol. Fertil. Soils. 2015;51:827–837. doi: 10.1007/s00374-015-1029-9. DOI
Kirk T.K., Obst J.R. Lignin determination. Methods Enzymol. 1988;161:87–101. doi: 10.1016/0076-6879(88)61014-7. DOI
Šnajdr J., Valášková V., Merhautová V., Herinková J., Cajthaml T., Baldrian P. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 2008;40:2068–2075. doi: 10.1016/j.soilbio.2008.01.015. DOI
Baldrian P. Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil Environ. 2009;55:370–378. doi: 10.17221/134/2009-PSE. DOI
Ihrmark K., Bödeker I.T.M., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., Strid Y., Stendil J., Brandström-Durling M., Clemmensen K.E., et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012;82:666–677. doi: 10.1111/j.1574-6941.2012.01437.x. PubMed DOI
Větrovský T., Baldrian P., Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
Větrovský T., Morais D., Kohout P., Lepinay C., Algora C., Awokunle Hollá S., Bahnmann B.D., Bílohnědá K., Brabcová V., D’Alò F., et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data. 2020;7:228. doi: 10.1038/s41597-020-0567-7. PubMed DOI PMC
Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., De Wit P., Sánchez-García M., Ebersberger I., de Souza F., et al. Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919. doi: 10.1111/2041-210X.12073. DOI
Edgar R.C., Haas B.J., Clemente J.C., Quince C., Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC
Edgar R.C. Uparse: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Nilsson R.H., Larsson K.H., Taylor A.F.S., Bengtsson-Palme J., Jeppesen T.S., Schigel D., Kennedy P., Picard K., Glöckner F.O., Tedersoo L., et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D264. doi: 10.1093/nar/gky1022. PubMed DOI PMC
Põlme S., Abarenkov K., Nilsson R.H., Lindahl B.D., Clemmensen K.E., Kauserud H., Nguyen N., Kjøller R., Bates S.T., Baldrian P., et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 2020;105:1–16. doi: 10.1007/s13225-020-00466-2. DOI
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. R Package Version 2.4-3. Vienna: R Foundation for Statistical Computing. [(accessed on 5 August 2019)];2016 Available online: https://CRAN.R-project.org/package=vegan.
Franklin R.B., Mills A.L. Importance of spatially structured environmental heterogeneity in controlling microbial community composition at small spatial scales in an agricultural field. Soil Biol. Biochem. 2009;41:1833–1840. doi: 10.1016/j.soilbio.2009.06.003. DOI
Arnstadt T., Hoppe B., Kahl T., Kellner H., Krüger D., Bauhus J., Hofrichter M. Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. For. Ecol. Manag. 2016;382:129–142. doi: 10.1016/j.foreco.2016.10.004. DOI
Hastrup A.C.S., Green F., III, Lebow P.K., Jensen B. Enzymatic oxalic acid regulation correlated with wood degradation in four brown-rot fungi. Int. Biodeter. Biodegr. 2012;75:109–114. doi: 10.1016/j.ibiod.2012.05.030. DOI
Mäkelä M., Galkin S., Hatakka A., Lundell T. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzym. Microb. Tech. 2002;30:542–549. doi: 10.1016/S0141-0229(02)00012-1. DOI
Takao S. Organic acid production by Basidiomycetes: I. screening of acid-producing strains. Appl. Microbiol. 1965;13:732–737. doi: 10.1128/AM.13.5.732-737.1965. PubMed DOI PMC
Baldrian P., Valášková V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 2008;32:501–521. doi: 10.1111/j.1574-6976.2008.00106.x. PubMed DOI
Rinne-Garmston K.T., Peltoniemi K., Chen J., Peltoniemi M., Fritze H., Mäkipää R. Carbon flux from decomposing wood and its dependency on temperature, wood N2 fixation rate, moisture and fungal composition in a Norway spruce forest. Glob. Chang. Biol. 2019;25:1852–1867. doi: 10.1111/gcb.14594. PubMed DOI PMC
De Meo I., Lagomarsino A., Agnelli A.E., Paletto A. Direct and indirect assessment of carbon stock in deadwood: Comparison in Calabrian Pine (Pinus brutia Ten. subsp. brutia) forests in Italy. For. Sci. 2019;65:460–468. doi: 10.1093/forsci/fxy051. DOI
Lombardi F., Cherubini P., Tognetti R., Cocozza C., Lasserre B., Marchetti M. Investigating biochemical processes to assess deadwood decay of beech and silver fir in Mediterranean mountain forests. Ann. For. Sci. 2013;70:101–111. doi: 10.1007/s13595-012-0230-3. DOI
Rinne K.T., Rajala T., Peltoniemi K., Chen J., Smolander A., Mäkipää R. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Funct. Ecol. 2017;31:530–541. doi: 10.1111/1365-2435.12734. DOI
Philpott T.J., Prescott C.E., Chapman W.K., Grayston S.J. Nitrogen translocation and accumulation by a cord-forming fungus (Hypholoma fasciculare) into simulated woody debris. For. Ecol. Manag. 2014;315:121–128. doi: 10.1016/j.foreco.2013.12.034. DOI
Baldrian P. Microbial activity and the dynamics of ecosystem processes in forest soils. Curr. Opin. Microbiol. 2017;37:128–134. doi: 10.1016/j.mib.2017.06.008. PubMed DOI
Di Lonardo D.P., van der Wal A., Harkes P., de Boer W. Effect of nitrogen on fungal growth efficiency. Plant. Biosyst. 2020;154:433–437. doi: 10.1080/11263504.2020.1779849. DOI
Song Z., Kennedy P.G., Liew F.J., Schilling J.S. Fungal endophytes as priority colonizers initiating wood decomposition. Funct. Ecol. 2017;31:407–418. doi: 10.1111/1365-2435.12735. DOI
Giordano L., Gonthier P., Varese G.C., Miserere L., Nicolotti G. Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Divers. 2009;38:69–83.
Tláskal V., Zrůstová P., Vrška T., Baldrian P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 2017;93:fix157. doi: 10.1093/femsec/fix157. PubMed DOI
Kohout P., Sudová R., Brabcová V., Vosolsobě S., Baldrian P., Albrechtová J. Forest microhabitat affects succession of fungal communities on decomposing fine tree roots. Front. Microbiol. 2021;12:541583. doi: 10.3389/fmicb.2021.541583. PubMed DOI PMC
Martin A.R., Domke G.M., Doraisami M., Thomas S.C. Carbon fractions in the world’s dead wood. Nat. Commun. 2021;12:889. doi: 10.1038/s41467-021-21149-9. PubMed DOI PMC
Noll L., Leonhardt S., Arnstadt T., Hoppe B., Poll C., Matzner E., Hofrichter M., Kellner H. Fungal biomass and extracellular enzyme activities in coarse woody debris of 13 tree species in the early phase of decomposition. For. Ecol. Manag. 2016;378:181–192. doi: 10.1016/j.foreco.2016.07.035. DOI
Král K., Janík D., Vrška T., Adam D., Hort L., Unar P., Šamonil P. Local variability of stand structural features in beech dominated natural forests of Central Europe: Implications for sampling. For. Ecol. Manag. 2010;260:2196–2203. doi: 10.1016/j.foreco.2010.09.020. DOI
Král K., Shue J., Vrška T., Gonzalez-Akre E.B., Parker G.G., McShea W.J., McMahon S.M. Fine-scale patch mosaic of developmental stages in Northeast American secondary temperate forests: The European perspective. Eur. J. For. Res. 2016;135:981–996. doi: 10.1007/s10342-016-0988-1. DOI
Hiscox J., Savoury M., Müller C.T., Lindahl B.D., Rogers H.J., Boddy L. Priority effects during fungal community establishment in beech wood. ISME J. 2015;9:2246–2260. doi: 10.1038/ismej.2015.38. PubMed DOI PMC
Moor H., Nordén J., Penttilä R., Siitonen J., Snäll T. Long-term effects of colonization–extinction dynamics of generalist versus specialist wood-decaying fungi. J. Ecol. 2021;109:491–503. doi: 10.1111/1365-2745.13526. DOI
Dickie I.A., Wakelin A., Richardson S.J. Rare species of wood-inhabiting fungi are not local. Ecol. Appl. 2020;30:e02156. doi: 10.1002/eap.2156. PubMed DOI
Kubartová A., Ottosson E., Stenlid J. Linking fungal communities to wood density loss after 12 years of log decay. FEMS Microbiol. Ecol. 2015;91:fiv032. doi: 10.1093/femsec/fiv032. PubMed DOI
Purahong W., Wubet T., Krüger D., Buscot F. Application of next-generation sequencing technologies to conservation of wood-inhabiting fungi. Conserv. Biol. 2018;33:716–724. doi: 10.1111/cobi.13240. PubMed DOI
Thorn S., Chao A., Bernhardt-Römermann M., Chen Y.-H., Georgiev K.B., Heibl C., Müller J., Schäfer H., Bässler C. Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology. 2020;101:e02949. doi: 10.1002/ecy.2949. PubMed DOI
Davison J., Moora M., Semchenko M., Adenan S.B., Ahmed T., Akhmetzhanova A.A., Alatalo J.M., Al-Quraishy S., Andriyanova E., Anslan S., et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 2021 doi: 10.1111/nph.17240. PubMed DOI
Maaroufi N.I., De Long J.R. Global change impacts on forest soils: Linkage between soil biota and carbon-nitrogen-phosphorus stoichiometry. Front. For. Glob. Chang. 2020;3:16. doi: 10.3389/ffgc.2020.00016. DOI
Wang R., Goll D., Balkanski Y., Hauglustaine D., Boucher O., Ciais P., Janssens I., Penuelas J., Guenet B., Sardans J., et al. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob. Chang. Biol. 2017;23:4854–4872. doi: 10.1111/gcb.13766. PubMed DOI
Borůvka L., Mládková L., Penížek V., Drábek O., Vašát R. Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma. 2007;140:374–382. doi: 10.1016/j.geoderma.2007.04.018. DOI
Huang J., Mo J.M., Zhang W., Lu X.K. Research on acidification in forest soil driven by atmospheric nitrogen deposition. Acta Ecol. Sin. 2014;34:302–310. doi: 10.1016/j.chnaes.2014.10.002. DOI
Větrovský T., Kohout P., Kopecký M., Machac A., Man M., Bahnmann B.D., Brabcová V., Choi J., Meszárošová L., Human Z.R., et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019;10:5142. doi: 10.1038/s41467-019-13164-8. PubMed DOI PMC
Přívětivý T., Adam D., Vrška T. Decay dynamics of Abies alba and Picea abies deadwood in relation to environmental conditions. For. Ecol. Manag. 2018;427:250–259. doi: 10.1016/j.foreco.2018.06.008. DOI
Vašíčková I., Šamonil P., Fuentes Ubilla A.E., Král K., Daněk P., Adam D. The true response of Fagus sylvatica L. to disturbances: A basis for the empirical inference of release criteria for temperate forests. For. Ecol. Manag. 2016;374:174–185. doi: 10.1016/j.foreco.2016.04.055. DOI
Vašíčková I., Šamonil P., Král K., Fuentes Ubilla A.E., Daněk P., Adam D. Driving factors of the growth response of Fagus sylvatica L. to disturbances: A comprehensive study from Central-European old-growth forests. For. Ecol. Manag. 2019;444:96–106. doi: 10.1016/j.foreco.2019.04.018. DOI
Šamonil P., Daněk P., Baldrian P., Tláskal V., Tejnecký V., Drábek O. Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. Geoderma. 2020;376:114499. doi: 10.1016/j.geoderma.2020.114499. DOI
Factors Controlling Dead Wood Decomposition in an Old-Growth Temperate Forest in Central Europe
Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate