Fragile foundations: succession patterns of bacterial communities in fine woody debris and soil under long-term microclimate influence
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
20-14961S
Czech Science Foundation
20-14961S
Czech Science Foundation
20-14961S
Czech Science Foundation
MŠMT CZ.02.01.01/00/22_008/0004635
Ministry of Education, Youth and Sports of the Czech Republic
MŠMT CZ.02.01.01/00/22_008/0004635
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
40770386
PubMed Central
PMC12330196
DOI
10.1186/s40793-025-00756-9
PII: 10.1186/s40793-025-00756-9
Knihovny.cz E-resources
- Keywords
- Bacterial community, Canopy cover, Deadwood, Decomposition, Ecology, Fine woody debris, Microclimate, Succession, Temperate forest,
- Publication type
- Journal Article MeSH
BACKGROUND: Fine woody debris (FWD; deadwood < 10 cm diameter) is a crucial but often overlooked component of forest ecosystems. It provides habitat for microbial communities and enhances soil fertility through nutrient cycling. This role is especially important in managed forests, which typically have limited deadwood stocks. Climate change is increasing forest disturbances and expanding early successional forests with low canopy cover, yet the effects on microbial communities and related processes remain poorly understood. RESULTS: In a ten-year canopy manipulation experiment, we examined the decomposition of FWD of Fagus sylvatica and Abies alba. Increased canopy openness significantly decreased bacterial diversity in decomposing FWD and altered the community composition in surrounding soil. Decomposition time was the main factor shaping bacterial community structure in FWD, with tree species and canopy cover also contributing. We identified bacterial groups involved in carbohydrate degradation, fungal biomass breakdown, and nitrogen fixation. Importantly, bacterial communities in fully decomposed FWD remained distinct from soil communities. CONCLUSIONS: Deadwood decomposition and nutrient cycling are driven by complex ecological interactions. Microbial community dynamics are influenced by the interplay of FWD decomposition stage, tree species, and microclimatic conditions. Bacterial communities, although less frequently studied in this context, appear more stable over time than previously studied fungi. This stability may help sustain decomposition processes and nutrient turnover under the environmental variability associated with global change.
Animal Ecology Faculty of Biology Philipps Universität Marburg 35043 Marburg Germany
Bavarian Forest National Park Freyunger Straße 2 94481 Grafenau Germany
See more in PubMed
Harris NL, Gibbs DA, Baccini A, Birdsey RA, de Bruin S, Farina M, et al. Global maps of twenty-first century forest carbon fluxes. Nat Clim Chang. 2021;11:234–40.
Baldrian P, López-Mondéjar R, Kohout P. Forest microbiome and global change. Nat Rev Microbiol. 2023;21:487–501. PubMed
Ricker MC, Lockaby BG, Blosser GD, Conner WH. Rapid wood decay and nutrient mineralization in an old-growth bottomland hardwood forest. Biogeochemistry. 2016;127:323–38.
Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev. 2017;41:109–30. PubMed
Brabcová V, Tláskal V, Lepinay C, Zrůstová P, Eichlerová I, Štursová M, et al. Fungal community development in decomposing fine deadwood is largely affected by microclimate. Front Microbiol. 2022;13:1104. PubMed PMC
FOREST EUROPE. State of Europe’s Forests. 2015.
Müller-Using S, Bartsch N. Decay dynamic of coarse and fine woody debris of a beech (
Peršoh D, Borken W. Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biol Biochem. 2017;115:516–25.
Šamonil P, Daněk P, Baldrian P, Tláskal V, Tejnecký V, Drábek O. Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. Geoderma. 2020;376: 114499.
Pastorelli R, De Meo I, Lagomarsino A. The Necrobiome of deadwood: the life after death. Ecologies. 2023;4:20–38.
Blonska E, Piaszczyk W, Lasota J. Patterns and driving factors of ecological stoichiometry in system of deadwood and soil in mountains forest ecosystem. Sci Rep. 2023;13. PubMed PMC
Stokland N, Siitonen J, Jonsson BG. Biodiveristy in Dead Wood. Cambridge: Cambridge University Press; 2012.
Seibold S, Bässler C, Brandl R, Gossner MM, Thorn S, Ulyshen MD, et al. Experimental studies of dead-wood biodiversity - a review identifying global gaps in knowledge. Biol Conserv. 2015;191:139–49.
Nordén B, Ryberg M, Götmark F, Olausson B. Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol Conserv. 2004;117:1–10.
Juutilainen K, Mönkkönen M, Kotiranta H, Halme P. The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. For Ecol Manage. 2014;313:283–91.
Johnston SR, Boddy L, Weightman AJ. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol Ecol. 2016. 10.1093/femsec/fiw179. PubMed
Tláskal V, Zrůstová P, Vrška T, Baldrian P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol Ecol. 2017;93: fix157. PubMed
Piche-Choquette S, Tlaskal V, Vrska T, Jiraska L, Vetrovsky T, Baldrian P, et al. Continuous microhabitats as crossroads of fungal communities in a primeval temperate forest. Soil Biol Biochem. 2023;187.
Heilmann-Clausen J, Christensen M. Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For Ecol Manage. 2004;201:105–17.
Tláskal V, Brabcová V, Větrovský T, López-Mondéjar R, Monteiro LMO, Saraiva JP, et al. Metagenomes, metatranscriptomes and microbiomes of naturally decomposing deadwood. Sci Data. 2021;8:198. PubMed PMC
Lopez-Mondejar R, Tlaskal V, da Rocha UN, Baldrian P, López-Mondéjar R, Tláskal V, et al. Global distribution of carbohydrate utilization potential in the prokaryotic tree of life. mSystems. 2022;7. PubMed PMC
Richy E, Thiago Dobbler P, Tlaskal V, Lopez-Mondejar R, Baldrian P, Kyselkova M. Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes. Environ Microbiome. 2024;19. PubMed PMC
Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P, Zifčáková L, et al. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol. 2012;80:735–46. PubMed
López-Mondéjar R, Brabcová V, Štursová M, Davidová A, Jansa J, Cajthaml T, et al. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 2018;12:1768–78. PubMed PMC
Tláskal V, Baldrian P. Deadwood-inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. Front Microbiol. 2021. 10.3389/fmicb.2021.685303. PubMed PMC
Starke R, Morais D, Větrovský T, López Mondéjar R, Baldrian P, Brabcová V, et al. Feeding on fungi: genomic and proteomic analysis of the enzymatic machinery of bacteria decomposing fungal biomass. Environ Microbiol. 2020;22:4604–19. PubMed
López-Mondéjar R, Tláskal V, Větrovský T, Štursová M, Toscan R, Nunes da Rocha U, et al. Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biol Biochem. 2020;148:107875.
Valášková V, de Boer W, Klein Gunnewiek PJA, Pospíšek M, Baldrian P. Phylogenetic composition and properties of bacteria coexisting with the fungus PubMed
Tláskal V, BrabcovÁ V, Větrovský T, Jomura M, López-Mondéjar R, Oliveira Monteiro LM, et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems. 2021;6: e01078–20. PubMed PMC
Martinović T, Mašínová T, López-Mondéjar R, Jansa J, Štursová M, Starke R, et al. Microbial utilization of simple and complex carbon compounds in a temperate forest soil. Soil Biol Biochem. 2022;173: 108786.
Rinne KT, Rajala T, Peltoniemi K, Chen J, Smolander A, Mäkipää R. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Funct Ecol. 2017;31:530–41.
Rinne-Garmston KT, Peltoniemi K, Chen J, Peltoniemi M, Fritze H, Mäkipää R. Carbon flux from decomposing wood and its dependency on temperature, wood N 2 fixation rate, moisture and fungal composition in a Norway spruce forest. Glob Chang Biol. 2019;25:1852–67. PubMed PMC
Mieszkin S, Richet P, Bach C, Lambrot C, Augusto L, Buée M, et al. Oak decaying wood harbors taxonomically and functionally different bacterial communities in sapwood and heartwood. Soil Biol Biochem. 2021;155: 108160.
Blonska E, Ważny R, Górski A, Lasota J. Decomposing benefits: examining the impact of beech deadwood on soil properties and microbial diversity. Sci Total Environ. 2024;930. PubMed
Bässler C, Müller J, Dziock F, Brandl R. Effects of resource availability and climate on the diversity of wood-decaying fungi. J Ecol. 2010;98:822–32.
Schreiber J, Baldrian P, Brabcová V, Brandl R, Kellner H, Müller J, et al. Effects of experimental canopy openness on wood-inhabiting fungal fruiting diversity across succession. Sci Rep. 2024. 10.1038/s41598-024-67216-1. PubMed PMC
Frey SJK, Hadley AS, Johnson SL, Schulze M, Jones JA, Betts MG. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci Adv. 2016;2: e1501392. PubMed PMC
De Frenne P, Zellweger F, Rodríguez-Sánchez F, Scheffers BR, Hylander K, Luoto M, et al. Global buffering of temperatures under forest canopies. Nat Ecol Evol. 2019;3:744–9. PubMed
Forrester JA, Mladenoff DJ, Gower ST, Stoffel JL. Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. For Ecol Manage. 2012;265:124–32.
Scharenbroch BC, Bockheim JG. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil. 2007;294:219–33.
Hossen S, Gross C, Stapf D, Borken W, Noll M. Tree species-specific wood traits control diazotrophic community composition in deadwood. Int Biodeterior Biodegrad. 2024. 10.1016/j.ibiod.2023.105723.
Moll J, Bassler C, Buscot F, Hoppe B, Jehmlich N, Kellner H, et al. Extrinsic rather than intrinsic factors determine microbial colonization of deadwood. Soil Biol Biochem. 2024;199.
Englmeier J, Rieker D, Mitesser O, Benjamin C, Fricke U, Ganuza C, et al. Diversity and specialization responses to climate and land use differ between deadwood fungi and bacteria. Ecography. 2023;2023:1–12.
Bolte A, Czajkowski T, Kompa T. The north-eastern distribution range of European beech - a review. Forestry. 2007;80:413–29.
Sommerfeld A, Senf C, Buma B, D’Amato AW, Després T, Díaz-Hormazábal I, et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat Commun. 2018;9:4355. PubMed PMC
Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun. 2019;10:5142. PubMed PMC
Hagge J, Müller J, Bässler C, Brandl R, Schuldt A, Thorn S, et al. Change in saproxylic beetle, fungi and bacteria assemblages along horizontal and vertical gradients of sun-exposure in forest. Biol Conserv. 2024. 10.1016/j.biocon.2024.110493.
Ul Haq I, Hillmann B, Moran M, Willard S, Knights D, Fixen KR, et al. Bacterial communities associated with wood rot fungi that use distinct decomposition mechanisms. ISME Commun. 2022;2. PubMed PMC
Odriozola I, Abrego N, Tláskal V, Zrůstová P, Morais D, Větrovský T, et al. Fungal communities are important determinants of bacterial community composition in deadwood. mSystems. 2021. 10.1128/mSystems.01017-20. PubMed PMC
Christofides SR, Bettridge A, Farewell D, Weightman AJ, Boddy L. The influence of migratory
Hiscox J, Savoury M, Müller CT, Lindahl BD, Rogers HJ, Boddy L. Priority effects during fungal community establishment in beech wood. ISME J. 2015;9:2246–60. PubMed PMC
Allison SD. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett. 2005;8:626–35.
Benoist A, Houle D, Bradley RL, Bellenger J-P. Deciphering factors controlling decay and nitrogen accumulation in coarse wood debris of five tree species using 15N labeled wood disks. Soil Biol Biochem. 2024;190.
Martinović T, Kohout P, López-MondCrossed D Sign©jar RCDS, Algora Gallardo C, Starke R, Tomšovský M, et al. Bacterial community in soil and tree roots of Picea abies shows little response to clearcutting. FEMS Microbiol Ecol. 2022;98:1–9. PubMed
Krah FS, Seibold S, Brandl R, Baldrian P, Müller J, Bässler C. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J Ecol. 2018;106:1428–42.
Müller J, Brustel H, Brin A, Bussler H, Bouget C, Obermaier E, et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography. 2015;38:499–509.
Seibold S, Bässler C, Baldrian P, Reinhard L, Thorn S, Ulyshen MD, et al. Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol Conserv. 2016;204:181–8.
Seibold S, Bässler C, Brandl R, Büche B, Szallies A, Thorn S, et al. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J Appl Ecol. 2016;53:934–43.
Müller J, Ulyshen M, Seibold S, Cadotte M, Chao A, Bässler C, et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos. 2020;129:1579–88.
Větrovský T, Baldrian P. An in-depth analysis of actinobacterial communities shows their high diversity in grassland soils along a gradient of mixed heavy metal contamination. Biol Fertil Soils. 2015;51:827–37.
Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P, et al. Spatial variability of enzyme activities and microbial biomass in the upper layers of
Baldrian P, Zrůstová P, Tláskal V, Davidová A, Merhautová V, Vrška T. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 2016;23:109–22.
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108:4516–22. PubMed PMC
Větrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Berger B, editor. Bioinformatics. 2018;34:2292–4. PubMed PMC
Aronesty E. Comparison of sequencing utility programs. Open Bioinform J. 2013;7:1–8.
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. PubMed
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8. PubMed
Štursová M, Šnajdr J, Koukol O, Tláskal V, Cajthaml T, Baldrian P. Long-term decomposition of litter in the montane forest and the definition of fungal traits in the successional space. Fungal Ecol. 2020;46: 100913.
R Core Team. R: A language and environment for statistical computing. R Found Stat Comput Vienna, Austria. 2020;https://www.R-project.org/.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R Packag. version 2.5–7. 2020.
Lepinay C, Jiraska L, Tlaskal V, Brabcova V, Vrska T, Baldrian P. Successional development of fungal communities associated with decomposing deadwood in a natural mixed temperate forest. J Fungi. 2021;7. PubMed PMC
Přívětivý T, Janík D, Unar P, Adam D, Král K, Vrška T. How do environmental conditions affect the deadwood decomposition of European beech (
Přívětivý T, Šamonil P. Variation in downed deadwood density, biomass, and moisture during decomposition in a natural temperate forest. Forests. 2021. 10.3390/f12101352.
Rajala T, Peltoniemi M, Pennanen T, Mäkipää R. Fungal community dynamics in relation to substrate quality of decaying Norway spruce ( PubMed
Moll J, Kellner H, Leonhardt S, Stengel E, Dahl A, Bässler C, et al. Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environ Microbiol. 2018;20:3744–56. PubMed
Tong R, Ji B, Wang GG, Lou C, Ma C, Zhu N, et al. Canopy gap impacts on soil organic carbon and nutrient dynamic: ameta-analysis. Ann For Sci. 2024;81.
Hou M, Zhang G, Li Y, Xie J, Zang L, Liu Q, et al. The effects of canopy gaps on soil nutrient properties: a meta-analysis. Eur J For Res. 2024;143:861–73.
Kohout P, Charvátová M, Štursová M, Mašínová T, Tomšovský M, Baldrian P. Clearcutting alters decomposition processes and initiates complex restructuring of fungal communities in soil and tree roots. ISME J. 2018;12:692–703. PubMed PMC
Darenova E, Adamič PC, Čater M. Effect of temperature, water availability, and soil properties on soil CO2 efflux in beech-fir forests along the Carpathian Mts. CATENA. 2024. 10.1016/j.catena.2024.107974.
Amarasinghe A, Chen C, Van Zwieten L, Rashti MR. The role of edaphic variables and management practices in regulatingsoil microbial resilience to drought - a meta-analysis. Sci Total Environ. 2024. 10.1016/j.scitotenv.2023.169544. PubMed
Jaeger ACH, Hartmann M, Six J, Solly EF. Contrasting sensitivity of soil bacterial and fungal communitycomposition to one year of water limitation in Scots pine mesocosms. FEMS Microbiol Ecol. 2023. 10.1093/femsec/fiad051. PubMed PMC
Brandl MT, Lindow SE. Heterogeneous transcription of an indoleacetic acid biosynthetic gene in PubMed PMC
Johnston SR, Hiscox J, Savoury M, Boddy L, Weightman AJ. Highly competitive fungi manipulate bacterial communities in decomposing beech wood ( PubMed PMC
Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, SØrensen SJ, Tamminen M V., et al. Natural decay process affects the abundance and community structure of Bacteria and Archaea in PubMed
Kielak AM, Scheublin TR, Mendes LW, van Veen JA, Kuramae EE. Bacterial community succession in pine-wood decomposition. Front Microbiol. 2016;7. PubMed PMC
Christofides SR, Hiscox J, Savoury M, Boddy L, Weightman AJ. Fungal control of early-stage bacterial community development in decomposing wood. Fungal Ecol. 2019. 10.1016/j.funeco.2019.100868.
Mäkipää R, Rajala T, Schigel D, Rinne KT, Pennanen T, Abrego N, et al. Interactions between soil- and dead wood-inhabiting fungal communities during the decay of Norway spruce logs. ISME J. 2017;11:1964–74. PubMed PMC
Prescott CE. The influence of the forest canopy on nutrient cycling. Tree Physiol. 2002;22:1193–200. PubMed
Cruz-Paredes C, Bang-Andreasen T, Christensen S, Ekelund F, Frøslev TG, Jacobsen CS, et al. Bacteria respond stronger than fungi across a steep wood ash-driven pH gradient. Front For Glob Chang. 2021;4.
Lladó S, Větrovský T, Baldrian P. Tracking of the activity of individual bacteria in temperate forest soils shows guild-specific responses to seasonality. Soil Biol Biochem. 2019;135:275–82.
Fabryová A, Kostovčík M, Díez-Méndez A, Jiménez-Gómez A, Celador-Lera L, Saati-Santamaría Z, et al. On the bright side of a forest pest-the metabolic potential of bark beetles’ bacterial associates. Sci Total Environ. 2018;619–620:9–17. PubMed
López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep. 2016;6:25279. PubMed PMC
Lasa AV, Mašínová T, Baldrian P, Fernández-López M. Bacteria from the endosphere and rhizosphere of PubMed PMC
Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, et al. Evidence for methane production by saprotrophic fungi. Nat Commun. 2012. 10.1038/ncomms2049. PubMed
Berestovskaya JJ, Kotsyurbenko OR, Tourova TP, Kolganova TV, Doronina NV, Golyshin PN, et al. PubMed
Vorob’ev A V., de Boer W, Folman LB, Bodelier PLE, Doronina N V., Suzina NE, et al. Methylovirgula ligni gen. nov., sp. nov., a nobligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int J Syst Evol Microbiol. 2009;59:2538–45. PubMed
Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 2009. p. 293–306. PubMed
Dedysh SN, Beletsky AV, Ivanova AA, Danilova OV, Begmatov S, Kulichevskaya IS, et al. Peat-inhabiting PubMed PMC
Tláskal V, Pylro VS, Žifčáková L, Baldrian P. Ecological divergence within the enterobacterial genus PubMed PMC
Lladó S, Žifčáková L, Větrovský T, Eichlerová I, Baldrian P. Functional screening of abundant bacteria from acidic forest soil indicates the metabolic potential of Acidobacteria subdivision 1 for polysaccharide decomposition. Biol Fertil Soils. 2016;52:251–60.
Kopecky J, Kamenik Z, Omelka M, Novotna J, Stefani T, Sagova-Mareckova M. Phylogenetically related soil actinomycetes distinguish isolation sites by their metabolic activities. FEMS Microbiol Ecol. 2023. 10.1093/femsec/fiad139. PubMed