Ecological Divergence Within the Enterobacterial Genus Sodalis: From Insect Symbionts to Inhabitants of Decomposing Deadwood
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34177846
PubMed Central
PMC8226273
DOI
10.3389/fmicb.2021.668644
Knihovny.cz E-zdroje
- Klíčová slova
- Sodalis, deadwood, free-living, insect symbionts, nitrogen fixation, non-symbiotic,
- Publikační typ
- časopisecké články MeSH
The bacterial genus Sodalis is represented by insect endosymbionts as well as free-living species. While the former have been studied frequently, the distribution of the latter is not yet clear. Here, we present a description of a free-living strain, Sodalis ligni sp. nov., originating from decomposing deadwood. The favored occurrence of S. ligni in deadwood is confirmed by both 16S rRNA gene distribution and metagenome data. Pangenome analysis of available Sodalis genomes shows at least three groups within the Sodalis genus: deadwood-associated strains, tsetse fly endosymbionts and endosymbionts of other insects. This differentiation is consistent in terms of the gene frequency level, genome similarity and carbohydrate-active enzyme composition of the genomes. Deadwood-associated strains contain genes for active decomposition of biopolymers of plant and fungal origin and can utilize more diverse carbon sources than their symbiotic relatives. Deadwood-associated strains, but not other Sodalis strains, have the genetic potential to fix N2, and the corresponding genes are expressed in deadwood. Nitrogenase genes are located within the genomes of Sodalis, including S. ligni, at multiple loci represented by more gene variants. We show decomposing wood to be a previously undescribed habitat of the genus Sodalis that appears to show striking ecological divergence.
Zobrazit více v PubMed
Akman L., Yamashita A., Watanabe H., Oshima K., Shiba T., Hattori M., et al. (2002). Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat. Genet. 32 402–407. 10.1038/ng986 PubMed DOI
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Amann R. I., Ludwig W., Schleifer K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59 143–169. 10.1128/mr.59.1.143-169.1995 PubMed DOI PMC
Anderson-Teixeira K. J., Davies S. J., Bennett A. C., Muller-landau H. C., Wright S. J. (2015). CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21 528–549. 10.1111/gcb.12712 PubMed DOI
Baldrian P., Zrůstová P., Tláskal V., Davidová A., Merhautová V., Vrška T. (2016). Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 23 109–122. 10.1016/j.funeco.2016.07.001 DOI
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC
Barco R. A., Garrity G. M., Scott J. J., Amend J. P., Nealson K. H., Emerson D. (2020). A genus definition for Bacteria and Archaea based on a standard genome relatedness index. mBio 11:e002475-19. 10.1128/mBio.02475-19 PubMed DOI PMC
Behar A., Yuval B., Jurkevitch E. (2005). Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol. Ecol. 14 2637–2643. 10.1111/j.1365-294X.2005.02615.x PubMed DOI
Bobay L.-M., Ochman H. (2018). Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol. Biol. 18:153. 10.1186/s12862-018-1272-4 PubMed DOI PMC
Boyd B. M., Allen J. M., Koga R., Fukatsu T., Sweet A. D., Johnson K. P., et al. (2016). Two bacterial genera, Sodalis and Rickettsia, associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl. Environ. Microbiol. 82 3185–3197. 10.1128/AEM.00282-16 PubMed DOI PMC
Chari A., Oakeson K. F., Enomoto S., Grant Jackson D., Fisher M. A., Dale C. (2015). Phenotypic characterization of Sodalis praecaptivus sp. nov., a close non-insect-associated member of the Sodalis-allied lineage of insect endosymbionts. Int. J. Syst. Evol. Microbiol. 65 1400–1405. 10.1099/ijs.0.000091 PubMed DOI PMC
Chen X., Li S., Aksoy S. (1999). Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J. Mol. Evol. 48 49–58. 10.1007/PL00006444 PubMed DOI
Chrudimský T., Husník F., Nováková E., Hypša V. (2012). Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius. PLoS One 7:e40354. 10.1371/journal.pone.0040354 PubMed DOI PMC
Clayton A. L., Oakeson K. F., Gutin M., Pontes A., Dunn D. M., von Niederhausern A. C., et al. (2012). A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PLoS Genet. 8:e1002990. 10.1371/journal.pgen.1002990 PubMed DOI PMC
de Mendiburu F. (2017). Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.2-4.
Eddy S. R. (2011). Accelerated profile HMM searches. PLoS Comput. Biol. 7:e1002195. 10.1371/journal.pcbi.1002195 PubMed DOI PMC
Elo S., Maunuksela L., Salkinoja-Salonen M., Smolander A., Haahtela K. (2000). Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiol. Ecol. 31 143–152. 10.1111/j.1574-6941.2000.tb00679.x PubMed DOI
Enomoto S., Chari A., Clayton A. L., Dale C. (2017). Quorum sensing attenuates virulence in Sodalis praecaptivus. Cell Host Microb. 21 629–636. 10.1016/j.chom.2017.04.003 PubMed DOI PMC
Eren A. M., Esen ÖC., Quince C., Vineis J. H., Morrison H. G., Sogin M. L., et al. (2015). Anvi’o: an advanced analysis and visualization platform for ‘Omics data. PeerJ 3:e1319. 10.7717/peerj.1319 PubMed DOI PMC
Fukatsu T., Koga R., Smith W. A., Tanaka K., Nikoh N., Sasaki-Fukatsu K., et al. (2007). Bacterial endosymbiont of the slender pigeon louse, Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. Appl. Environ. Microbiol. 73 6660–6668. 10.1128/AEM.01131-07 PubMed DOI PMC
Giovannoni S. J., Cameron Thrash J., Temperton B. (2014). Implications of streamlining theory for microbial ecology. ISME J. 8 1553–1565. 10.1038/ismej.2014.60 PubMed DOI PMC
Goodhead I., Blow F., Brownridge P., Hughes M., Kenny J., Krishna R., et al. (2020). Large-scale and significant expression from pseudogenes in Sodalis glossinidius - A facultative bacterial endosymbiont. Microb. Genom. 6:e000285. 10.1099/mgen.0.000285 PubMed DOI PMC
Hall R. J., Flanagan L. A., Wood A. J., Thomas H., Springthorpe V., Thorpe S., et al. (2019). A tale of three species: adaptation of Sodalis glossinidius to tsetse biology, Wigglesworthia metabolism, and host diet. mBio 10:e002106-18. 10.1128/mBio.02106-18 PubMed DOI PMC
Hall R. J., Thorpe S., Thomas G. H., Wood A. J. (2020). Simulating the evolutionary trajectories of metabolic pathways for insect symbionts in the genus Sodalis. Microb. Genomics 6:mgen000378. 10.1099/mgen.0.000378 PubMed DOI PMC
Heddi A., Grenier A. M., Khatchadourian C., Charles H., Nardon P. (1999). Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proc. Natl. Acad. Sci. U.S.A. 96 6814–6819. 10.1073/pnas.96.12.6814 PubMed DOI PMC
Hoang D. T., Chernomor O., Haeseler A., Von Minh B. Q., Vinh L. S. (2017). UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35 518–522. 10.1093/molbev/msx281 PubMed DOI PMC
Hoppe B., Krüger D., Kahl T., Arnstadt T., Buscot F., Bauhus J., et al. (2015). A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci. Rep. 5:9456. 10.1038/srep09456 PubMed DOI PMC
Kaiwa N., Hosokawa T., Kikuchi Y., Nikoh N., Meng X. Y., Kimura N., et al. (2010). Primary gut symbiont and secondary, Sodalis-allied symbiont of the scutellerid stinkbug Cantao ocellatus. Appl. Environ. Microbiol. 76 3486–3494. 10.1128/AEM.00421-10 PubMed DOI PMC
Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., Von A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14 587–589. 10.1038/nmeth.4285 PubMed DOI PMC
Katoh K., Rozewicki J., Yamada K. D. (2018). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20 1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC
Kolde R. (2019). pheatmap: Pretty Heatmaps. R Package Version 1.0.12.
Konstantinidis K. T., Ramette A., Tiedje J. M. (2006). The bacterial species definition in the genomic era. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361 1929–1940. 10.1098/rstb.2006.1920 PubMed DOI PMC
Král K., Janík D., Vrška T., Adam D., Hort L., Unar P., et al. (2010). Local variability of stand structural features in beech dominated natural forests of Central Europe: implications for sampling. For. Ecol. Manag. 260 2196–2203. 10.1016/j.foreco.2010.09.020 DOI
Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35 3100–3108. 10.1093/nar/gkm160 PubMed DOI PMC
Lane D. J. (1991). “16S/23S rRNA sequencing,” in Nucleic Acid Techniques in Bacterial Systematics, eds Stackebrandt E., Goodfellow M. (New York, NY: Wiley; ).
Langmead B., Trapnell C., Pop M., Salzberg S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25. 10.1186/gb-2009-10-3-r25 PubMed DOI PMC
Lasa A. V., Mašínová T., Baldrian P., Fernández-López M. (2019). Bacteria from the endosphere and rhizosphere of Quercus spp. use mainly cell wall-associated enzymes to decompose organic matter. PLoS One 14:e0214422. 10.1371/journal.pone.0214422 PubMed DOI PMC
Letunic I., Bork P. (2011). Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39 W475–W478. 10.1093/nar/gkr201 PubMed DOI PMC
Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [Preprint]. Available online at: http://arxiv.org/abs/1303.3997
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence Alignment/Map format and SAMtools. Bioinformatics 25 2078–2079. 10.1093/bioinformatics/btp352(accessed May 11, 2019). PubMed DOI PMC
Lladó S. F., Větrovský T., Baldrian P. (2019). Tracking of the activity of individual bacteria in temperate forest soils shows guild-specific responses to seasonality. Soil Biol. Biochem. 135 275–282. 10.1016/j.soilbio.2019.05.010 DOI
Luo C., Walk S. T., Gordon D. M., Feldgarden M., Tiedje J. M., Konstantinidis K. T. (2011). Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc. Natl. Acad. Sci. U.S.A. 108 7200–7205. 10.1073/pnas.1015622108 PubMed DOI PMC
Maire J., Parisot N., Ferrarini M. G., Vallier A., Gillet B., Hughes S., et al. (2020). Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil. Proc. Natl. Acad. Sci. U.S.A. 117 19347–19358. 10.1073/pnas.2007151117 PubMed DOI PMC
Moll J., Kellner H., Leonhardt S., Stengel E., Dahl A., Buscot F., et al. (2018). Bacteria inhabiting deadwood of 13 tree species reveal great heterogeneous distribution between sapwood and heartwood. Environ. Microbiol. 20 3744–3756. 10.1111/1462-2920.14376 PubMed DOI
Moynihan M. A. (2020). nifHdada2 GitHub Repository. Zenodo. Available online at: https://zenodo.org/record/3958405/export/xm#.YKU5vbczbIU (accessed January 20, 2021).
Munoz M. M., Spencer N., Enomoto S., Dale C., Rio R. V. M. (2020). Quorum sensing sets the stage for the establishment and vertical transmission of Sodalis praecaptivus in tsetse flies. PLoS Genet. 16:e1008992. 10.1371/journal.pgen.1008992 PubMed DOI PMC
Nadarasah G., Stavrinides J. (2011). Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol. Rev. 35 555–575. 10.1111/j.1574-6976.2011.00264.x PubMed DOI
Nayfach S., Roux S., Seshadri R., Udwary D., Varghese N., Schulz F., et al. (2020). A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39 499–509. 10.1038/s41587-020-0718-6 PubMed DOI PMC
Nguyen L., Schmidt H. A., Haeseler A., Von Minh B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
Nováková E., Hypša V. (2007). A new Sodalis lineage from bloodsucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of the tsetse flies symbiont Sodalis glossinidius. FEMS Microbiol. Lett. 269 131–135. 10.1111/j.1574-6968.2006.00620.x PubMed DOI
Oakeson K. F., Gil R., Clayton A. L., Dunn D. M., Von Niederhausern A. C., Hamil C., et al. (2014). Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol. Evol. 6 76–93. 10.1093/gbe/evt210 PubMed DOI PMC
Odriozola I., Abrego N., Tláskal V., Zrůstová P., Morais D., Větrovský T., et al. (2021). Fungal communities are important determinants of bacterial community composition in deadwood. mSystems 6:e01017-20. 10.1128/mSystems.01017-20 PubMed DOI PMC
Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 1043–1055. 10.1101/gr.186072.114 PubMed DOI PMC
Perlmutter J. I., Bordenstein S. R. (2020). Microorganisms in the reproductive tissues of arthropods. Nat. Rev. Microbiol. 18 97–111. 10.1038/s41579-019-0309-z PubMed DOI PMC
Pinto-Tomás A. A., Anderson M. A., Suen G., Stevenson D. M., Chu F. S. T., Wallace Cleland W., et al. (2009). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326 1120–1123. 10.1126/science.1173036 PubMed DOI
Pritchard L., Glover R. H., Humphris S., Elphinstone J. G., Toth I. K. (2015). Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal. Methods 8 12–24. 10.1039/C5AY02550H DOI
Přívětivý T., Janík D., Unar P., Adam D., Král K., Vrška T. (2016). How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)? For. Ecol. Manag. 381 177–187. 10.1016/j.foreco.2016.09.033 DOI
Probst M., Gómez-Brandón M., Bardelli T., Egli M., Insam H., Ascher-Jenull J. (2018). Bacterial communities of decaying Norway spruce follow distinct slope exposure and time-dependent trajectories. Environ. Microbiol. 20 3657–3670. 10.1111/1462-2920.14359 PubMed DOI
Quinlan A. R., Hall I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC
R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Core Team.
Reveillaud J., Bordenstein S. R., Cruaud C., Shaiber A., Esen ÖC., Weill M., et al. (2019). The Wolbachia mobilome in Culex pipiens includes a putative plasmid. Nat. Commun. 10:1051. 10.1038/s41467-019-08973-w PubMed DOI PMC
Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. U.S.A. 106 19126–19131. 10.1073/pnas.0906412106 PubMed DOI PMC
Rodriguez-R L. M., Gunturu S., Harvey W. T., Rosselló-Mora R., Tiedje J. M., Cole J. R., et al. (2018). The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46 W282–W288. 10.1093/nar/gky467 PubMed DOI PMC
Rosas-Pérez T., Vera-Ponce de León A., Rosenblueth M., Ramírez-Puebla S. T., Rincón-Rosales R., Martínez-Romero J., et al. (2017). “The symbiome of Llaveia cochineals (Hemiptera: Coccoidea: Monophlebidae) includes a gammaproteobacterial cosymbiont Sodalis TME1 and the known Candidatus Walczuchella monophlebidarum,” in Insect Physiology and Ecology, ed. Shields V. D. C. (London: IntechOpen; ), 115–134. 10.5772/66442 DOI
Rosenblueth M., Martínez L., Silva J., Martínez-Romero E. (2004). Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst. Appl. Microbiol. 27 27–35. 10.1078/0723-2020-00261 PubMed DOI
Rubin B. E. R., Sanders J. G., Turner K. M., Pierce N. E., Kocher S. D. (2018). Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R. Soc. Open Sci. 5:180369. 10.1098/rsos.180369 PubMed DOI PMC
Sabree Z. L., Kambhampati S., Moran N. A. (2009). Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl. Acad. Sci. U.S.A. 106 19521–19526. 10.1073/pnas.0907504106 PubMed DOI PMC
Šamonil P., Daněk P., Baldrian P., Tláskal V., Tejnecký V., Drábek O. (2020). Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. Geoderma 376:114499. 10.1016/j.geoderma.2020.114499 DOI
Šamonil P., Schaetzl R. J., Valtera M., Goliáš V., Baldrian P., Vašíčková I., et al. (2013). Crossdating of disturbances by tree uprooting: can treethrow microtopography persist for 6000 years? For. Ecol. Manag. 307 123–135. 10.1016/j.foreco.2013.06.045 DOI
Santos-Garcia D., Silva F. J., Morin S., Dettner K., Kuechler S. M. (2017). The all-rounder Sodalis: a new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9 2893–2910. 10.1093/gbe/evx202 PubMed DOI PMC
Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30 2068–2069. 10.1093/bioinformatics/btu153 PubMed DOI
Stoddard S. F., Smith B. J., Hein R., Roller B. R. K., Schmidt T. M. (2015). rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43 D593–D598. 10.1093/nar/gku1201 PubMed DOI PMC
Tenaillon O., Skurnik D., Picard B., Denamur E. (2010). The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8 207–217. 10.1038/nrmicro2298 PubMed DOI
Tláskal V., Baldrian P. (2021). Deadwood-inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. Front. Microbiol. 12 1353. 10.3389/fmicb.2021.685303 PubMed DOI PMC
Tláskal V., Brabcová V., Větrovský T., Jomura M., López-Mondéjar R., Monteiro M. O. L., et al. (2021). Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 6:e001078-20. 10.1128/mSystems.01078-20 PubMed DOI PMC
Tláskal V., Zrůstová P., Vrška T., Baldrian P. (2017). Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 93:fix157. 10.1093/femsec/fix157 PubMed DOI
Toh H., Weiss B. L., Perkin S. A. H., Yamashita A., Oshima K., Hattori M., et al. (2006). Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 16 149–156. 10.1101/gr.4106106 PubMed DOI PMC
Větrovský T., Baldrian P. (2013). The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:e57923. 10.1371/journal.pone.0057923 PubMed DOI PMC
Walker B. J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly omprovement. PLoS One 9:e112963. 10.1371/journal.pone.0112963 PubMed DOI PMC
Waters N. R., Abram F., Brennan F., Holmes A., Pritchard L. (2018). riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions. Nucleic Acids Res. 46:e68. 10.1093/nar/gky212 PubMed DOI PMC
Weiss B. L., Mouchotte R., Rio R. V. M., Wu Y. N., Wu Z., Heddi A., et al. (2006). Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness. Appl. Environ. Microbiol. 72 7013–7021. 10.1128/AEM.01507-06 PubMed DOI PMC
Wick R. R., Judd L. M., Gorrie C. L., Holt K. E. (2017). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13:e1005595. 10.1371/journal.pcbi.1005595 PubMed DOI PMC
Wickham H., Averick M., Bryan J., Chang W., Mcgowan L. D. A., François R., et al. (2019). Welcome to the Tidyverse. J. Open Source Softw. 4:1686. 10.21105/joss.01686 DOI
Wilmotte A., Van der Auwera G., De Wachter R. (1993). Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett. 317 96–100. 10.1016/0014-5793(93)81499-P PubMed DOI
Yong E. (2016). I Contain Multitudes: The Microbes Within us and a Grander View of Life. London: HarperCollins.
Zhang H., Yohe T., Huang L., Entwistle S., Wu P., Yang Z., et al. (2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46 W95–W101. 10.1093/nar/gky418 PubMed DOI PMC
figshare
10.6084/m9.figshare.13227464