Ecological Divergence Within the Enterobacterial Genus Sodalis: From Insect Symbionts to Inhabitants of Decomposing Deadwood

. 2021 ; 12 () : 668644. [epub] 20210611

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34177846

The bacterial genus Sodalis is represented by insect endosymbionts as well as free-living species. While the former have been studied frequently, the distribution of the latter is not yet clear. Here, we present a description of a free-living strain, Sodalis ligni sp. nov., originating from decomposing deadwood. The favored occurrence of S. ligni in deadwood is confirmed by both 16S rRNA gene distribution and metagenome data. Pangenome analysis of available Sodalis genomes shows at least three groups within the Sodalis genus: deadwood-associated strains, tsetse fly endosymbionts and endosymbionts of other insects. This differentiation is consistent in terms of the gene frequency level, genome similarity and carbohydrate-active enzyme composition of the genomes. Deadwood-associated strains contain genes for active decomposition of biopolymers of plant and fungal origin and can utilize more diverse carbon sources than their symbiotic relatives. Deadwood-associated strains, but not other Sodalis strains, have the genetic potential to fix N2, and the corresponding genes are expressed in deadwood. Nitrogenase genes are located within the genomes of Sodalis, including S. ligni, at multiple loci represented by more gene variants. We show decomposing wood to be a previously undescribed habitat of the genus Sodalis that appears to show striking ecological divergence.

Zobrazit více v PubMed

Akman L., Yamashita A., Watanabe H., Oshima K., Shiba T., Hattori M., et al. (2002). Genome sequence of the endocellular obligate symbiont of tsetse flies, PubMed DOI

Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. PubMed DOI PMC

Amann R. I., Ludwig W., Schleifer K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. PubMed DOI PMC

Anderson-Teixeira K. J., Davies S. J., Bennett A. C., Muller-landau H. C., Wright S. J. (2015). CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. PubMed DOI

Baldrian P., Zrůstová P., Tláskal V., Davidová A., Merhautová V., Vrška T. (2016). Fungi associated with decomposing deadwood in a natural beech-dominated forest. DOI

Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. PubMed DOI PMC

Barco R. A., Garrity G. M., Scott J. J., Amend J. P., Nealson K. H., Emerson D. (2020). A genus definition for PubMed DOI PMC

Behar A., Yuval B., Jurkevitch E. (2005). Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly PubMed DOI

Bobay L.-M., Ochman H. (2018). Factors driving effective population size and pan-genome evolution in bacteria. PubMed DOI PMC

Boyd B. M., Allen J. M., Koga R., Fukatsu T., Sweet A. D., Johnson K. P., et al. (2016). Two bacterial genera, PubMed DOI PMC

Chari A., Oakeson K. F., Enomoto S., Grant Jackson D., Fisher M. A., Dale C. (2015). Phenotypic characterization of PubMed DOI PMC

Chen X., Li S., Aksoy S. (1999). Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus PubMed DOI

Chrudimský T., Husník F., Nováková E., Hypša V. (2012). PubMed DOI PMC

Clayton A. L., Oakeson K. F., Gutin M., Pontes A., Dunn D. M., von Niederhausern A. C., et al. (2012). A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PubMed DOI PMC

de Mendiburu F. (2017).

Eddy S. R. (2011). Accelerated profile HMM searches. PubMed DOI PMC

Elo S., Maunuksela L., Salkinoja-Salonen M., Smolander A., Haahtela K. (2000). Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity. PubMed DOI

Enomoto S., Chari A., Clayton A. L., Dale C. (2017). Quorum sensing attenuates virulence in PubMed DOI PMC

Eren A. M., Esen ÖC., Quince C., Vineis J. H., Morrison H. G., Sogin M. L., et al. (2015). Anvi’o: an advanced analysis and visualization platform for ‘Omics data. PubMed DOI PMC

Fukatsu T., Koga R., Smith W. A., Tanaka K., Nikoh N., Sasaki-Fukatsu K., et al. (2007). Bacterial endosymbiont of the slender pigeon louse, PubMed DOI PMC

Giovannoni S. J., Cameron Thrash J., Temperton B. (2014). Implications of streamlining theory for microbial ecology. PubMed DOI PMC

Goodhead I., Blow F., Brownridge P., Hughes M., Kenny J., Krishna R., et al. (2020). Large-scale and significant expression from pseudogenes in PubMed DOI PMC

Hall R. J., Flanagan L. A., Wood A. J., Thomas H., Springthorpe V., Thorpe S., et al. (2019). A tale of three species: adaptation of PubMed DOI PMC

Hall R. J., Thorpe S., Thomas G. H., Wood A. J. (2020). Simulating the evolutionary trajectories of metabolic pathways for insect symbionts in the genus PubMed DOI PMC

Heddi A., Grenier A. M., Khatchadourian C., Charles H., Nardon P. (1999). Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and PubMed DOI PMC

Hoang D. T., Chernomor O., Haeseler A., Von Minh B. Q., Vinh L. S. (2017). UFBoot2: improving the ultrafast bootstrap approximation. PubMed DOI PMC

Hoppe B., Krüger D., Kahl T., Arnstadt T., Buscot F., Bauhus J., et al. (2015). A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of PubMed DOI PMC

Kaiwa N., Hosokawa T., Kikuchi Y., Nikoh N., Meng X. Y., Kimura N., et al. (2010). Primary gut symbiont and secondary, PubMed DOI PMC

Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., Von A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. PubMed DOI PMC

Katoh K., Rozewicki J., Yamada K. D. (2018). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. PubMed DOI PMC

Kolde R. (2019).

Konstantinidis K. T., Ramette A., Tiedje J. M. (2006). The bacterial species definition in the genomic era. PubMed DOI PMC

Král K., Janík D., Vrška T., Adam D., Hort L., Unar P., et al. (2010). Local variability of stand structural features in beech dominated natural forests of Central Europe: implications for sampling. DOI

Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. PubMed DOI PMC

Lane D. J. (1991). “16S/23S rRNA sequencing,” in

Langmead B., Trapnell C., Pop M., Salzberg S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. PubMed DOI PMC

Lasa A. V., Mašínová T., Baldrian P., Fernández-López M. (2019). Bacteria from the endosphere and rhizosphere of PubMed DOI PMC

Letunic I., Bork P. (2011). Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy. PubMed DOI PMC

Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence Alignment/Map format and SAMtools. PubMed DOI PMC

Lladó S. F., Větrovský T., Baldrian P. (2019). Tracking of the activity of individual bacteria in temperate forest soils shows guild-specific responses to seasonality. DOI

Luo C., Walk S. T., Gordon D. M., Feldgarden M., Tiedje J. M., Konstantinidis K. T. (2011). Genome sequencing of environmental PubMed DOI PMC

Maire J., Parisot N., Ferrarini M. G., Vallier A., Gillet B., Hughes S., et al. (2020). Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil. PubMed DOI PMC

Moll J., Kellner H., Leonhardt S., Stengel E., Dahl A., Buscot F., et al. (2018). Bacteria inhabiting deadwood of 13 tree species reveal great heterogeneous distribution between sapwood and heartwood. PubMed DOI

Moynihan M. A. (2020).

Munoz M. M., Spencer N., Enomoto S., Dale C., Rio R. V. M. (2020). Quorum sensing sets the stage for the establishment and vertical transmission of PubMed DOI PMC

Nadarasah G., Stavrinides J. (2011). Insects as alternative hosts for phytopathogenic bacteria. PubMed DOI

Nayfach S., Roux S., Seshadri R., Udwary D., Varghese N., Schulz F., et al. (2020). A genomic catalog of Earth’s microbiomes. PubMed DOI PMC

Nguyen L., Schmidt H. A., Haeseler A., Von Minh B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. PubMed DOI PMC

Nováková E., Hypša V. (2007). A new PubMed DOI

Oakeson K. F., Gil R., Clayton A. L., Dunn D. M., Von Niederhausern A. C., Hamil C., et al. (2014). Genome degeneration and adaptation in a nascent stage of symbiosis. PubMed DOI PMC

Odriozola I., Abrego N., Tláskal V., Zrůstová P., Morais D., Větrovský T., et al. (2021). Fungal communities are important determinants of bacterial community composition in deadwood. PubMed DOI PMC

Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. PubMed DOI PMC

Perlmutter J. I., Bordenstein S. R. (2020). Microorganisms in the reproductive tissues of arthropods. PubMed DOI PMC

Pinto-Tomás A. A., Anderson M. A., Suen G., Stevenson D. M., Chu F. S. T., Wallace Cleland W., et al. (2009). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. PubMed DOI

Pritchard L., Glover R. H., Humphris S., Elphinstone J. G., Toth I. K. (2015). Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. DOI

Přívětivý T., Janík D., Unar P., Adam D., Král K., Vrška T. (2016). How do environmental conditions affect the deadwood decomposition of European beech ( DOI

Probst M., Gómez-Brandón M., Bardelli T., Egli M., Insam H., Ascher-Jenull J. (2018). Bacterial communities of decaying Norway spruce follow distinct slope exposure and time-dependent trajectories. PubMed DOI

Quinlan A. R., Hall I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. PubMed DOI PMC

R Core Team (2020).

Reveillaud J., Bordenstein S. R., Cruaud C., Shaiber A., Esen ÖC., Weill M., et al. (2019). The PubMed DOI PMC

Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. PubMed DOI PMC

Rodriguez-R L. M., Gunturu S., Harvey W. T., Rosselló-Mora R., Tiedje J. M., Cole J. R., et al. (2018). The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of PubMed DOI PMC

Rosas-Pérez T., Vera-Ponce de León A., Rosenblueth M., Ramírez-Puebla S. T., Rincón-Rosales R., Martínez-Romero J., et al. (2017). “The symbiome of DOI

Rosenblueth M., Martínez L., Silva J., Martínez-Romero E. (2004). PubMed DOI

Rubin B. E. R., Sanders J. G., Turner K. M., Pierce N. E., Kocher S. D. (2018). Social behaviour in bees influences the abundance of PubMed DOI PMC

Sabree Z. L., Kambhampati S., Moran N. A. (2009). Nitrogen recycling and nutritional provisioning by PubMed DOI PMC

Šamonil P., Daněk P., Baldrian P., Tláskal V., Tejnecký V., Drábek O. (2020). Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. DOI

Šamonil P., Schaetzl R. J., Valtera M., Goliáš V., Baldrian P., Vašíčková I., et al. (2013). Crossdating of disturbances by tree uprooting: can treethrow microtopography persist for 6000 years? DOI

Santos-Garcia D., Silva F. J., Morin S., Dettner K., Kuechler S. M. (2017). The all-rounder PubMed DOI PMC

Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. PubMed DOI

Stoddard S. F., Smith B. J., Hein R., Roller B. R. K., Schmidt T. M. (2015). PubMed DOI PMC

Tenaillon O., Skurnik D., Picard B., Denamur E. (2010). The population genetics of commensal PubMed DOI

Tláskal V., Baldrian P. (2021). Deadwood-inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. PubMed DOI PMC

Tláskal V., Brabcová V., Větrovský T., Jomura M., López-Mondéjar R., Monteiro M. O. L., et al. (2021). Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. PubMed DOI PMC

Tláskal V., Zrůstová P., Vrška T., Baldrian P. (2017). Bacteria associated with decomposing dead wood in a natural temperate forest. PubMed DOI

Toh H., Weiss B. L., Perkin S. A. H., Yamashita A., Oshima K., Hattori M., et al. (2006). Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of PubMed DOI PMC

Větrovský T., Baldrian P. (2013). The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PubMed DOI PMC

Walker B. J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly omprovement. PubMed DOI PMC

Waters N. R., Abram F., Brennan F., Holmes A., Pritchard L. (2018). riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions. PubMed DOI PMC

Weiss B. L., Mouchotte R., Rio R. V. M., Wu Y. N., Wu Z., Heddi A., et al. (2006). Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness. PubMed DOI PMC

Wick R. R., Judd L. M., Gorrie C. L., Holt K. E. (2017). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PubMed DOI PMC

Wickham H., Averick M., Bryan J., Chang W., Mcgowan L. D. A., François R., et al. (2019). Welcome to the Tidyverse. DOI

Wilmotte A., Van der Auwera G., De Wachter R. (1993). Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium PubMed DOI

Yong E. (2016).

Zhang H., Yohe T., Huang L., Entwistle S., Wu P., Yang Z., et al. (2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.13227464

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...