Ecological Divergence Within the Enterobacterial Genus Sodalis: From Insect Symbionts to Inhabitants of Decomposing Deadwood
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34177846
PubMed Central
PMC8226273
DOI
10.3389/fmicb.2021.668644
Knihovny.cz E-zdroje
- Klíčová slova
- Sodalis, deadwood, free-living, insect symbionts, nitrogen fixation, non-symbiotic,
- Publikační typ
- časopisecké články MeSH
The bacterial genus Sodalis is represented by insect endosymbionts as well as free-living species. While the former have been studied frequently, the distribution of the latter is not yet clear. Here, we present a description of a free-living strain, Sodalis ligni sp. nov., originating from decomposing deadwood. The favored occurrence of S. ligni in deadwood is confirmed by both 16S rRNA gene distribution and metagenome data. Pangenome analysis of available Sodalis genomes shows at least three groups within the Sodalis genus: deadwood-associated strains, tsetse fly endosymbionts and endosymbionts of other insects. This differentiation is consistent in terms of the gene frequency level, genome similarity and carbohydrate-active enzyme composition of the genomes. Deadwood-associated strains contain genes for active decomposition of biopolymers of plant and fungal origin and can utilize more diverse carbon sources than their symbiotic relatives. Deadwood-associated strains, but not other Sodalis strains, have the genetic potential to fix N2, and the corresponding genes are expressed in deadwood. Nitrogenase genes are located within the genomes of Sodalis, including S. ligni, at multiple loci represented by more gene variants. We show decomposing wood to be a previously undescribed habitat of the genus Sodalis that appears to show striking ecological divergence.
Zobrazit více v PubMed
Akman L., Yamashita A., Watanabe H., Oshima K., Shiba T., Hattori M., et al. (2002). Genome sequence of the endocellular obligate symbiont of tsetse flies, PubMed DOI
Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. PubMed DOI PMC
Amann R. I., Ludwig W., Schleifer K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. PubMed DOI PMC
Anderson-Teixeira K. J., Davies S. J., Bennett A. C., Muller-landau H. C., Wright S. J. (2015). CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. PubMed DOI
Baldrian P., Zrůstová P., Tláskal V., Davidová A., Merhautová V., Vrška T. (2016). Fungi associated with decomposing deadwood in a natural beech-dominated forest. DOI
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. PubMed DOI PMC
Barco R. A., Garrity G. M., Scott J. J., Amend J. P., Nealson K. H., Emerson D. (2020). A genus definition for PubMed DOI PMC
Behar A., Yuval B., Jurkevitch E. (2005). Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly PubMed DOI
Bobay L.-M., Ochman H. (2018). Factors driving effective population size and pan-genome evolution in bacteria. PubMed DOI PMC
Boyd B. M., Allen J. M., Koga R., Fukatsu T., Sweet A. D., Johnson K. P., et al. (2016). Two bacterial genera, PubMed DOI PMC
Chari A., Oakeson K. F., Enomoto S., Grant Jackson D., Fisher M. A., Dale C. (2015). Phenotypic characterization of PubMed DOI PMC
Chen X., Li S., Aksoy S. (1999). Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus PubMed DOI
Chrudimský T., Husník F., Nováková E., Hypša V. (2012). PubMed DOI PMC
Clayton A. L., Oakeson K. F., Gutin M., Pontes A., Dunn D. M., von Niederhausern A. C., et al. (2012). A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PubMed DOI PMC
de Mendiburu F. (2017).
Eddy S. R. (2011). Accelerated profile HMM searches. PubMed DOI PMC
Elo S., Maunuksela L., Salkinoja-Salonen M., Smolander A., Haahtela K. (2000). Humus bacteria of Norway spruce stands: plant growth promoting properties and birch, red fescue and alder colonizing capacity. PubMed DOI
Enomoto S., Chari A., Clayton A. L., Dale C. (2017). Quorum sensing attenuates virulence in PubMed DOI PMC
Eren A. M., Esen ÖC., Quince C., Vineis J. H., Morrison H. G., Sogin M. L., et al. (2015). Anvi’o: an advanced analysis and visualization platform for ‘Omics data. PubMed DOI PMC
Fukatsu T., Koga R., Smith W. A., Tanaka K., Nikoh N., Sasaki-Fukatsu K., et al. (2007). Bacterial endosymbiont of the slender pigeon louse, PubMed DOI PMC
Giovannoni S. J., Cameron Thrash J., Temperton B. (2014). Implications of streamlining theory for microbial ecology. PubMed DOI PMC
Goodhead I., Blow F., Brownridge P., Hughes M., Kenny J., Krishna R., et al. (2020). Large-scale and significant expression from pseudogenes in PubMed DOI PMC
Hall R. J., Flanagan L. A., Wood A. J., Thomas H., Springthorpe V., Thorpe S., et al. (2019). A tale of three species: adaptation of PubMed DOI PMC
Hall R. J., Thorpe S., Thomas G. H., Wood A. J. (2020). Simulating the evolutionary trajectories of metabolic pathways for insect symbionts in the genus PubMed DOI PMC
Heddi A., Grenier A. M., Khatchadourian C., Charles H., Nardon P. (1999). Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and PubMed DOI PMC
Hoang D. T., Chernomor O., Haeseler A., Von Minh B. Q., Vinh L. S. (2017). UFBoot2: improving the ultrafast bootstrap approximation. PubMed DOI PMC
Hoppe B., Krüger D., Kahl T., Arnstadt T., Buscot F., Bauhus J., et al. (2015). A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of PubMed DOI PMC
Kaiwa N., Hosokawa T., Kikuchi Y., Nikoh N., Meng X. Y., Kimura N., et al. (2010). Primary gut symbiont and secondary, PubMed DOI PMC
Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., Von A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. PubMed DOI PMC
Katoh K., Rozewicki J., Yamada K. D. (2018). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. PubMed DOI PMC
Kolde R. (2019).
Konstantinidis K. T., Ramette A., Tiedje J. M. (2006). The bacterial species definition in the genomic era. PubMed DOI PMC
Král K., Janík D., Vrška T., Adam D., Hort L., Unar P., et al. (2010). Local variability of stand structural features in beech dominated natural forests of Central Europe: implications for sampling. DOI
Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. PubMed DOI PMC
Lane D. J. (1991). “16S/23S rRNA sequencing,” in
Langmead B., Trapnell C., Pop M., Salzberg S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. PubMed DOI PMC
Lasa A. V., Mašínová T., Baldrian P., Fernández-López M. (2019). Bacteria from the endosphere and rhizosphere of PubMed DOI PMC
Letunic I., Bork P. (2011). Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy. PubMed DOI PMC
Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence Alignment/Map format and SAMtools. PubMed DOI PMC
Lladó S. F., Větrovský T., Baldrian P. (2019). Tracking of the activity of individual bacteria in temperate forest soils shows guild-specific responses to seasonality. DOI
Luo C., Walk S. T., Gordon D. M., Feldgarden M., Tiedje J. M., Konstantinidis K. T. (2011). Genome sequencing of environmental PubMed DOI PMC
Maire J., Parisot N., Ferrarini M. G., Vallier A., Gillet B., Hughes S., et al. (2020). Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil. PubMed DOI PMC
Moll J., Kellner H., Leonhardt S., Stengel E., Dahl A., Buscot F., et al. (2018). Bacteria inhabiting deadwood of 13 tree species reveal great heterogeneous distribution between sapwood and heartwood. PubMed DOI
Moynihan M. A. (2020).
Munoz M. M., Spencer N., Enomoto S., Dale C., Rio R. V. M. (2020). Quorum sensing sets the stage for the establishment and vertical transmission of PubMed DOI PMC
Nadarasah G., Stavrinides J. (2011). Insects as alternative hosts for phytopathogenic bacteria. PubMed DOI
Nayfach S., Roux S., Seshadri R., Udwary D., Varghese N., Schulz F., et al. (2020). A genomic catalog of Earth’s microbiomes. PubMed DOI PMC
Nguyen L., Schmidt H. A., Haeseler A., Von Minh B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. PubMed DOI PMC
Nováková E., Hypša V. (2007). A new PubMed DOI
Oakeson K. F., Gil R., Clayton A. L., Dunn D. M., Von Niederhausern A. C., Hamil C., et al. (2014). Genome degeneration and adaptation in a nascent stage of symbiosis. PubMed DOI PMC
Odriozola I., Abrego N., Tláskal V., Zrůstová P., Morais D., Větrovský T., et al. (2021). Fungal communities are important determinants of bacterial community composition in deadwood. PubMed DOI PMC
Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. PubMed DOI PMC
Perlmutter J. I., Bordenstein S. R. (2020). Microorganisms in the reproductive tissues of arthropods. PubMed DOI PMC
Pinto-Tomás A. A., Anderson M. A., Suen G., Stevenson D. M., Chu F. S. T., Wallace Cleland W., et al. (2009). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. PubMed DOI
Pritchard L., Glover R. H., Humphris S., Elphinstone J. G., Toth I. K. (2015). Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. DOI
Přívětivý T., Janík D., Unar P., Adam D., Král K., Vrška T. (2016). How do environmental conditions affect the deadwood decomposition of European beech ( DOI
Probst M., Gómez-Brandón M., Bardelli T., Egli M., Insam H., Ascher-Jenull J. (2018). Bacterial communities of decaying Norway spruce follow distinct slope exposure and time-dependent trajectories. PubMed DOI
Quinlan A. R., Hall I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. PubMed DOI PMC
R Core Team (2020).
Reveillaud J., Bordenstein S. R., Cruaud C., Shaiber A., Esen ÖC., Weill M., et al. (2019). The PubMed DOI PMC
Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. PubMed DOI PMC
Rodriguez-R L. M., Gunturu S., Harvey W. T., Rosselló-Mora R., Tiedje J. M., Cole J. R., et al. (2018). The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of PubMed DOI PMC
Rosas-Pérez T., Vera-Ponce de León A., Rosenblueth M., Ramírez-Puebla S. T., Rincón-Rosales R., Martínez-Romero J., et al. (2017). “The symbiome of DOI
Rosenblueth M., Martínez L., Silva J., Martínez-Romero E. (2004). PubMed DOI
Rubin B. E. R., Sanders J. G., Turner K. M., Pierce N. E., Kocher S. D. (2018). Social behaviour in bees influences the abundance of PubMed DOI PMC
Sabree Z. L., Kambhampati S., Moran N. A. (2009). Nitrogen recycling and nutritional provisioning by PubMed DOI PMC
Šamonil P., Daněk P., Baldrian P., Tláskal V., Tejnecký V., Drábek O. (2020). Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. DOI
Šamonil P., Schaetzl R. J., Valtera M., Goliáš V., Baldrian P., Vašíčková I., et al. (2013). Crossdating of disturbances by tree uprooting: can treethrow microtopography persist for 6000 years? DOI
Santos-Garcia D., Silva F. J., Morin S., Dettner K., Kuechler S. M. (2017). The all-rounder PubMed DOI PMC
Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. PubMed DOI
Stoddard S. F., Smith B. J., Hein R., Roller B. R. K., Schmidt T. M. (2015). PubMed DOI PMC
Tenaillon O., Skurnik D., Picard B., Denamur E. (2010). The population genetics of commensal PubMed DOI
Tláskal V., Baldrian P. (2021). Deadwood-inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. PubMed DOI PMC
Tláskal V., Brabcová V., Větrovský T., Jomura M., López-Mondéjar R., Monteiro M. O. L., et al. (2021). Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. PubMed DOI PMC
Tláskal V., Zrůstová P., Vrška T., Baldrian P. (2017). Bacteria associated with decomposing dead wood in a natural temperate forest. PubMed DOI
Toh H., Weiss B. L., Perkin S. A. H., Yamashita A., Oshima K., Hattori M., et al. (2006). Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of PubMed DOI PMC
Větrovský T., Baldrian P. (2013). The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PubMed DOI PMC
Walker B. J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly omprovement. PubMed DOI PMC
Waters N. R., Abram F., Brennan F., Holmes A., Pritchard L. (2018). riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions. PubMed DOI PMC
Weiss B. L., Mouchotte R., Rio R. V. M., Wu Y. N., Wu Z., Heddi A., et al. (2006). Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness. PubMed DOI PMC
Wick R. R., Judd L. M., Gorrie C. L., Holt K. E. (2017). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PubMed DOI PMC
Wickham H., Averick M., Bryan J., Chang W., Mcgowan L. D. A., François R., et al. (2019). Welcome to the Tidyverse. DOI
Wilmotte A., Van der Auwera G., De Wachter R. (1993). Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium PubMed DOI
Yong E. (2016).
Zhang H., Yohe T., Huang L., Entwistle S., Wu P., Yang Z., et al. (2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. PubMed DOI PMC
figshare
10.6084/m9.figshare.13227464