Direct Interaction between N-Acetylcysteine and Cytotoxic Electrophile-An Overlooked In Vitro Mechanism of Protection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
IGA_LF_2022_034
Palacký University, Olomouc
PubMed
36009205
PubMed Central
PMC9405167
DOI
10.3390/antiox11081485
PII: antiox11081485
Knihovny.cz E-zdroje
- Klíčová slova
- N-acetylcysteine, N-acetylcysteine-electrophile adduct, electrophile, mechanism of protection, nucleophile,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In laboratory experiments, many electrophilic cytotoxic agents induce cell death accompanied by reactive oxygen species (ROS) production and/or by glutathione (GSH) depletion. Not surprisingly, millimolar concentrations of N-acetylcysteine (NAC), which is used as a universal ROS scavenger and precursor of GSH biosynthesis, inhibit ROS production, restore GSH levels, and prevent cell death. The protective effect of NAC is generally used as corroborative evidence that cell death induced by a studied cytotoxic agent is mediated by an oxidative stress-related mechanism. However, any simple interpretation of the results of the protective effects of NAC may be misleading because it is unable to interact with superoxide (O2•-), the most important biologically relevant ROS, and is a very weak scavenger of H2O2. In addition, NAC is used in concentrations that are unnecessarily high to stimulate GSH synthesis. Unfortunately, the possibility that NAC as a nucleophile can directly interact with cytotoxic electrophiles to form non-cytotoxic NAC-electrophile adduct is rarely considered, although it is a well-known protective mechanism that is much more common than expected. Overall, apropos the possible mechanism of the cytoprotective effect of NAC in vitro, it is appropriate to investigate whether there is a direct interaction between NAC and the cytotoxic electrophile to form a non-cytotoxic NAC-electrophilic adduct(s).
Zobrazit více v PubMed
Flanagan R.J., Meredith T. Use of N-acetylcysteine in clinical toxicology. Am. J. Med. 1991;91:131S–139S. doi: 10.1016/0002-9343(91)90296-A. PubMed DOI
Kelly G.S. Clinical applications of N-acetylcysteine. Altern. Med. Rev. J. Clin. Ther. 1998;3:114–127. PubMed
Millea P.J. N-acetylcysteine: Multiple clinical applications. Am. Fam. Physician. 2009;80:265–269. PubMed
Samuni Y., Goldstein S., Dean O.M., Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta. 2013;1830:4117–4129. doi: 10.1016/j.bbagen.2013.04.016. PubMed DOI
Rushworth G.F., Megson I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 2014;141:150–159. doi: 10.1016/j.pharmthera.2013.09.006. PubMed DOI
Tardiolo G., Bramanti P., Mazzon E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules. 2018;23:3305. doi: 10.3390/molecules23123305. PubMed DOI PMC
Šalamon Š., Kramar B., Marolt T.P., Poljšak B., Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants. 2019;8:111. doi: 10.3390/antiox8050111. PubMed DOI PMC
Schwalfenberg G.K. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks) J. Nutr. Metab. 2021;2021:9949453. doi: 10.1155/2021/9949453. PubMed DOI PMC
De Flora S., Cesarone C.F., Balansky R.M., Albini A., D’Agostini F., Bennicelli C., Bagnasco M., Camoirano A., Scatolini L., Rovida A., et al. Chemopreventive properties and mechanisms of N-Acetylcysteine. The experimental background. J. Cell Biochem. Suppl. 1995;22:33–41. doi: 10.1002/jcb.240590806. PubMed DOI
Zhitkovich A. N-Acetylcysteine: Antioxidant, Aldehyde Scavenger, and More. Chem. Res. Toxicol. 2019;32:1318–1319. doi: 10.1021/acs.chemrestox.9b00152. PubMed DOI PMC
Ezeriņa D., Takano Y., Hanaoka K., Urano Y., Dick T.P. N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production. Cell Chem. Biol. 2018;25:447–459.e4. doi: 10.1016/j.chembiol.2018.01.011. PubMed DOI PMC
Zafarullah M., Li W.Q., Sylvester J., Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 2003;60:6–20. doi: 10.1007/s000180300001. PubMed DOI PMC
Luczak M.W., Zhitkovich A. Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II) Free Radic. Biol. Med. 2013;65:262–269. doi: 10.1016/j.freeradbiomed.2013.06.028. PubMed DOI PMC
Phaniendra A., Jestadi D.B., Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015;30:11–26. doi: 10.1007/s12291-014-0446-0. PubMed DOI PMC
Thannickal V.J., Fanburg B.L. Reactive oxygen species in cell signaling. Am. J. Physiol. Cell. Mol. Physiol. 2000;279:L1005–L1028. doi: 10.1152/ajplung.2000.279.6.L1005. PubMed DOI
Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI
Sundaresan M., Yu Z.-X., Ferrans V.J., Sulciner D.J., Gutkind J.S., Irani K., Goldschmidt-Clermont P.J., Finkel T. Regulation of reactive-oxygen-species generation in fibroblasts by Rac 1. Pt 2Biochem. J. 1996;318:379–382. doi: 10.1042/bj3180379. PubMed DOI PMC
Palmer H.J., Paulson K.E. Reactive Oxygen Species and Antioxidants in Signal Transduction and Gene Expression. Nutr. Rev. 1997;55:353–361. doi: 10.1111/j.1753-4887.1997.tb01561.x. PubMed DOI
Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13:9–22. doi: 10.1096/fasebj.13.1.9. PubMed DOI
Keisari Y., Braun L., Flescher E. The oxidative burst and related phenomena in mouse macrophages elicited by different sterile inflammatory stimuli. Immunobiology. 1983;165:78–89. doi: 10.1016/S0171-2985(83)80048-5. PubMed DOI
Ryter S.W., Kim H.P., Hoetzel A., Park J.W., Nakahira K., Wang X., Choi A.M. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal. 2007;9:49–89. doi: 10.1089/ars.2007.9.49. PubMed DOI
Azad M., Chen Y., Gibson S.B. Regulation of Autophagy by Reactive Oxygen Species (ROS): Implications for Cancer Progression and Treatment. Antioxidants Redox Signal. 2009;11:777–790. doi: 10.1089/ars.2008.2270. PubMed DOI
Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 2003;17:1195–1214. doi: 10.1096/fj.02-0752rev. PubMed DOI
Nissanka N., Moraes C.T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018;592:728–742. doi: 10.1002/1873-3468.12956. PubMed DOI PMC
Stadtman E.R. Protein Oxidation in Aging and Age-Related Diseases. Ann. N. Y. Acad. Sci. 2001;928:22–38. doi: 10.1111/j.1749-6632.2001.tb05632.x. PubMed DOI
McCall M.R., Frei B. Can antioxidant vitamins materially reduce oxidative damage in humans? Free Radic. Biol. Med. 1999;26:1034–1053. doi: 10.1016/S0891-5849(98)00302-5. PubMed DOI
Kirsch M., De Groot H. NAD(P)H, a directly operating antioxidant? FASEB J. 2001;15:1569–1574. doi: 10.1096/fj.00-0823hyp. PubMed DOI
Lu J., Holmgren A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 2014;66:75–87. doi: 10.1016/j.freeradbiomed.2013.07.036. PubMed DOI
Landis G.N., Tower J. Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 2005;126:365–379. doi: 10.1016/j.mad.2004.08.012. PubMed DOI
Matés J.M., Pérez-Gómez C., De Castro I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999;32:595–603. doi: 10.1016/S0009-9120(99)00075-2. PubMed DOI
Yadav A., Mishra P.C. Modeling the activity of glutathione as a hydroxyl radical scavenger considering its neutral non-zwitterionic form. J. Mol. Model. 2013;19:767–777. doi: 10.1007/s00894-012-1601-2. PubMed DOI
Winterbourn C.C., Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 1999;27:322–328. doi: 10.1016/S0891-5849(99)00051-9. PubMed DOI
Forman H.J., Zhang H., Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009;30:1–12. doi: 10.1016/j.mam.2008.08.006. PubMed DOI PMC
Kelner M.J., Bagnell R., Welch K.J. Thioureas react with superoxide radicals to yield a sulfhydryl compound. Explanation for protective effect against paraquat. J. Biol. Chem. 1990;265:1306–1311. doi: 10.1016/S0021-9258(19)40014-8. PubMed DOI
Azad G., Tomar R.S. Ebselen, a promising antioxidant drug: Mechanisms of action and targets of biological pathways. Mol. Biol. Rep. 2014;41:4865–4879. doi: 10.1007/s11033-014-3417-x. PubMed DOI
Zhang L., Zhou L., Du J., Li M., Qian C., Cheng Y., Peng Y., Xie J., Wang N. Induction of Apoptosis in Human Multiple Myeloma Cell Lines by Ebselen via Enhancing the Endogenous Reactive Oxygen Species Production. BioMed Res. Int. 2014;2014:696107. doi: 10.1155/2014/696107. PubMed DOI PMC
Halliwell B. Drug antioxidant effects. A basis for drug selection? Drugs. 1991;42:569–605. doi: 10.2165/00003495-199142040-00003. PubMed DOI PMC
Sunitha K., Hemshekhar M., Thushara R.M., Santhosh S., Yariswamy M., Kemparaju K., Girish K.S. N-Acetylcysteine amide: A derivative to fulfill the promises of N-Acetylcysteine. Free Radic. Res. 2013;47:357–367. doi: 10.3109/10715762.2013.781595. PubMed DOI
Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI
White K., Bruckner J.V., Guess W.L. Toxicological Studies of 2-Mercaptoethanol. J. Pharm. Sci. 1973;62:237–241. doi: 10.1002/jps.2600620211. PubMed DOI
Held K.D., Melder D.C. Toxicity of the Sulfhydryl-Containing Radioprotector Dithiothreitol. Radiat. Res. 1987;112:544–554. doi: 10.2307/3577106. PubMed DOI
Bisby R., Ahmed S., Cundall R. Repair of amino acid radicals by a vitamin E analogue. Biochem. Biophys. Res. Commun. 1984;119:245–251. doi: 10.1016/0006-291X(84)91644-9. PubMed DOI
Davies M.J., Forni L.G., Willson R.L. Vitamin E analogue Trolox C. E.s.r. and pulse-radiolysis studies of free-radical reactions. Biochem. J. 1988;255:513–522. PubMed PMC
Gülçin I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012;86:345–391. doi: 10.1007/s00204-011-0774-2. PubMed DOI
Aruoma O.I., Halliwell B., Hoey B.M., Butler J. The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 1989;6:593–597. doi: 10.1016/0891-5849(89)90066-X. PubMed DOI
Gibson K.R., Neilson I.L., Barrett F., Winterburn T.J., Sharma S., MacRury S.M., Megson I.L. Evaluation of the Antioxidant Properties of N-acetylcysteine in Human Platelets: Prerequisite for Bioconversion to Glutathione for Antioxidant and Antiplatelet Activity. J. Cardiovasc. Pharmacol. 2009;54:319–326. doi: 10.1097/FJC.0b013e3181b6e77b. PubMed DOI
Aldini G., Altomare A.A., Baron G., Vistoli G., Carini M., Borsani L., Sergio F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why. Free Radic. Res. 2018;52:751–762. doi: 10.1080/10715762.2018.1468564. PubMed DOI
Zheng J., Lou J.R., Zhang X.-X., Benbrook D.M., Hanigan M.H., Lind S.E., Ding W.-Q. N-Acetylcysteine interacts with copper to generate hydrogen peroxide and selectively induce cancer cell death. Cancer Lett. 2010;298:186–194. doi: 10.1016/j.canlet.2010.07.003. PubMed DOI PMC
Mlejnek P., Dolezel P., Maier V., Kikalova K., Skoupa N. N-acetylcysteine dual and antagonistic effect on cadmium cytotoxicity in human leukemia cells. Environ. Toxicol. Pharmacol. 2019;71:103213. doi: 10.1016/j.etap.2019.103213. PubMed DOI
Mlejnek P., Dolezel P., Kriegova E., Pastvova N. N-acetylcysteine Can Induce Massive Oxidative Stress, Resulting in Cell Death with Apoptotic Features in Human Leukemia Cells. Int. J. Mol. Sci. 2021;22:12635. doi: 10.3390/ijms222312635. PubMed DOI PMC
Meister A., Anderson M.E. Glutathione. Annu. Rev. Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. PubMed DOI
Richman P.G., Meister A. Regulation of Gamma-Glutamyl-Cysteine Synthetase by Nonallosteric Feedback Inhibition by Glutathione. J. Biol. Chem. 1975;250:1422–1426. doi: 10.1016/S0021-9258(19)41830-9. PubMed DOI
Pompella A., Visvikis A., Paolicchi A., De Tata V., Casini A.F. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 2003;66:1499–1503. doi: 10.1016/S0006-2952(03)00504-5. PubMed DOI
Phelps D.T., Deneke S.M., Daley D.L., Fanburg B.L. Elevation of Glutathione Levels in Bovine Pulmonary Artery Endothelial Cells by N-Acetylcysteine. Am. J. Respir. Cell Mol. Biol. 1992;7:293–299. doi: 10.1165/ajrcmb/7.3.293. PubMed DOI
Mlejnek P., Dolezel P. N-acetylcysteine prevents the geldanamycin cytotoxicity by forming geldanamycin–N-acetylcysteine adduct. Chem. Interactions. 2014;220:248–254. doi: 10.1016/j.cbi.2014.06.025. PubMed DOI
Ketterer B., Coles B., Meyer D.J. The role of glutathione in detoxication. Environ. Health Perspect. 1983;49:59–69. doi: 10.1289/ehp.834959. PubMed DOI PMC
LoPachin R.M., Gavin T. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective. Chem. Res. Toxicol. 2014;27:1081–1091. doi: 10.1021/tx5001046. PubMed DOI PMC
LoPachin R.M., Gavin T. Reactions of electrophiles with nucleophilic thiolate sites: Relevance to pathophysiological mechanisms and remediation. Free Radic. Res. 2016;50:195–205. doi: 10.3109/10715762.2015.1094184. PubMed DOI PMC
Jackson P.A., Widen J.C., Harki D.A., Brummond K.M. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. J. Med. Chem. 2017;60:839–885. doi: 10.1021/acs.jmedchem.6b00788. PubMed DOI PMC
Pal S., Singh N., Ansari K.M. Toxicological effects of patulin mycotoxin on the mammalian system: An overview. Toxicol. Res. 2017;6:764–771. doi: 10.1039/c7tx00138j. PubMed DOI PMC
Speijers G., Franken M., van Leeuwen F. Subacute toxicity study of patulin in the rat: Effects on the kidney and the gastro-intestinal tract. Food Chem. Toxicol. 1988;26:23–30. doi: 10.1016/0278-6915(88)90037-3. PubMed DOI
Barhoumi R. Kinetic Analysis of the Chronology of Patulin- and Gossypol-Induced Cytotoxicityin Vitro. Fundam. Appl. Toxicol. 1996;30:290–297. doi: 10.1006/faat.1996.0067. PubMed DOI
Pfeiffer E., Gross K., Metzler M. Aneuploidogenic and clastogenic potential of the mycotoxins citrinin and patulin. Carcinogenesis. 1998;19:1313–1318. doi: 10.1093/carcin/19.7.1313. PubMed DOI
Fliege R., Metzler M. Electrophilic Properties of Patulin. N-Acetylcysteine and Glutathione Adducts. Chem. Res. Toxicol. 2000;13:373–381. doi: 10.1021/tx9901480. PubMed DOI
Zhang B., Peng X., Li G., Xu Y., Xia X., Wang Q. Oxidative stress is involved in Patulin induced apoptosis in HEK293 cells. Toxicon. 2015;94:1–7. doi: 10.1016/j.toxicon.2014.12.002. PubMed DOI
Boussabbeh M., Ben Salem I., Prola A., Guilbert A., Bacha H., Abid-Essefi S., Lemaire C. Patulin Induces Apoptosis through ROS-Mediated Endoplasmic Reticulum Stress Pathway. Toxicol. Sci. 2015;144:328–337. doi: 10.1093/toxsci/kfu319. PubMed DOI
Yang G., Bai Y., Wu X., Sun X., Sun M., Liu X., Yao X., Zhang C., Chu Q., Jiang L., et al. Patulin induced ROS-dependent autophagic cell death in Human Hepatoma G2 cells. Chem. Interact. 2018;288:24–31. doi: 10.1016/j.cbi.2018.03.018. PubMed DOI
Zhou S.-M., Jiang L.-P., Geng C.-Y., Cao J., Zhong L.-F. Patulin-induced genotoxicity and modulation of glutathione in HepG2 cells. Toxicon. 2009;53:584–586. doi: 10.1016/j.toxicon.2009.01.030. PubMed DOI
Song D., Gao Y., Wang R., Liu D., Zhao L., Jing Y. Down-regulation of c-FLIP, XIAP and Mcl-1 protein as well as depletion of reduced glutathione contribute to the apoptosis induction of glycyrrhenitic acid derivatives in leukemia cells. Cancer Biol. Ther. 2010;9:96–108. doi: 10.4161/cbt.9.2.10287. PubMed DOI
Mlejnek P., Dolezel P. Loss of mitochondrial transmembrane potential and glutathione depletion are not sufficient to account for induction of apoptosis by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone in human leukemia K562 cells. Chem. Interact. 2015;239:100–110. doi: 10.1016/j.cbi.2015.06.033. PubMed DOI
Skoupa N., Dolezel P., Ruzickova E., Mlejnek P. Apoptosis Induced by the Curcumin Analogue EF-24 Is Neither Mediated by Oxidative Stress-Related Mechanisms nor Affected by Expression of Main Drug Transporters ABCB1 and ABCG2 in Human Leukemia Cells. Int. J. Mol. Sci. 2017;18:2289. doi: 10.3390/ijms18112289. PubMed DOI PMC
DeBoer C., Meulman P.A., Wnuk R.J., Peterson D.H. Geldanamycin a new antibiotic. J. Antibiot. 1970;23:442–447. doi: 10.7164/antibiotics.23.442. PubMed DOI
Uehara Y., Hori M., Takeuchi T., Umezawa H. Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol. Cell. Biol. 1986;6:2198–2206. doi: 10.1128/mcb.6.6.2198. PubMed DOI PMC
Whitesell L., Cook P. Stable and specific binding of heat shock protein 90 by geldanamycin disrupts glucocorticoid receptor function in intact cells. Mol. Endocrinol. 1996;10:705–712. doi: 10.1210/mend.10.6.8776730. PubMed DOI
Ochel H.J., Schulte T.W., Nguyen P., Trepel J., Neckers L. The benzoquinone ansamycin geldanamycin stimulates proteolytic degradation of focal adhesion kinase. Mol. Genet. Metab. 1999;66:24–30. doi: 10.1006/mgme.1998.2774. PubMed DOI
Holt S.E., Aisner D.L., Baur J., Tesmer V.M., Dy M., Ouellette M., Trager J.B., Morin G.B., Toft D.O., Shay J.W., et al. White Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 1999;13:817–826. doi: 10.1101/gad.13.7.817. PubMed DOI PMC
Sakagami M., Morrison P., Welch W.J. Benzoquinoid ansamycins (herbimycin A and geldanamycin) interfere with the maturation of growth factor receptor tyrosine kinases. Cell Stress Chaperones. 1999;4:19–28. doi: 10.1379/1466-1268(1999)004<0019:BAHAAG>2.3.CO;2. PubMed DOI PMC
An W.G., Schulte T.W., Neckers L.M. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210 bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. 2000;11:355–360. PubMed
Benchekroun M.N., Myers C.E., Sinha B.K. Free radical formation by ansamycin benzoquinone in human breast tumor cells: Implications for cytotoxicity and resistance. Free Radic. Biol. Med. 1994;17:191–200. doi: 10.1016/0891-5849(94)90074-4. PubMed DOI
Clark C.B., Rane M.J., El Mehdi D., Miller C.J., Sachleben L.R., Gozal E. Role of oxidative stress in geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex. Free Radic. Biol. Med. 2009;47:1440–1449. doi: 10.1016/j.freeradbiomed.2009.08.012. PubMed DOI PMC
Heytler P., Prichard W. A new class of uncoupling agent—Carbonyl cyanide phenylhydrazones. Biochem. Biophys. Res. Commun. 1962;7:272–275. doi: 10.1016/0006-291X(62)90189-4. PubMed DOI
Han Y.H., Kim S.H., Kim S.Z., Park W.H. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) as an O2− generator induces apoptosis via the depletion of intracellular GSH contents in Calu-6 cells. Lung Cancer. 2009;63:201–209. doi: 10.1016/j.lungcan.2008.05.005. PubMed DOI
Han Y.H., Moon H.J., You B.R., Kim S.Z., Kim S.H., Park W.H. Effects of carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone on the growth inhibition in human pulmonary adenocarcinoma Calu-6 cells. Toxicology. 2009;265:101–107. doi: 10.1016/j.tox.2009.10.001. PubMed DOI
Han Y.H., Park W.H. Intracellular glutathione levels are involved in carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone-induced apoptosis in As4.1 juxtaglomerular cells. Int. J. Mol. Med. 2011;27:575–581. PubMed
Drobnica L., Sturdik E. The reactions of carbonyl cyanide phenylhydrazones with thiols. Biochim. Biophys. Acta. 1979;585:462–476. doi: 10.1016/0304-4165(79)90091-6. PubMed DOI
Adams B.K., Ferstl E.M., Davis M.C., Herold M., Kurtkaya S., Camalier R.F., Hollingshead M.G., Kaur G., Sausville E.A., Rickles F.R., et al. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem. 2004;12:3871–3883. doi: 10.1016/j.bmc.2004.05.006. PubMed DOI
Kasinski A.L., Du Y., Thomas S.L., Zhao J., Sun S.Y., Khuri F.R., Wang C.Y., Shoji M., Sun A., Snyder J.P., et al. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol. Pharmacol. 2008;74:654–661. doi: 10.1124/mol.108.046201. PubMed DOI PMC
Subramaniam D., May R., Sureban S.M., Lee K.B., George R., Kuppusamy P., Ramanujam R.P., Hideg K., Dieckgraefe B.K., Houchen C.W., et al. Diphenyl Difluoroketone: A Curcumin Derivative with Potent In vivo Anticancer Activity. Cancer Res. 2008;68:1962–1969. doi: 10.1158/0008-5472.CAN-07-6011. PubMed DOI
Liu H., Liang Y., Wang L., Tian L., Song R., Han T., Pan S., Liu L. In Vivo and In Vitro Suppression of Hepatocellular Carcinoma by EF24, a Curcumin Analog. PLoS ONE. 2012;7:e48075. doi: 10.1371/journal.pone.0048075. PubMed DOI PMC
Yang C.H., Yue J., Sims M., Pfeffer L.M. The Curcumin Analog EF24 Targets NF-κB and miRNA-21, and Has Potent Anticancer Activity In Vitro and In Vivo. PLoS ONE. 2013;8:e71130. doi: 10.1371/journal.pone.0071130. PubMed DOI PMC
Selvendiran K., Tong L., Vishwanath S., Bratasz A., Trigg N.J., Kutala V.K., Hideg K., Kuppusamy P. EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J. Biol. Chem. 2007;282:28609–28618. doi: 10.1074/jbc.M703796200. PubMed DOI PMC
Thomas S.L., Zhong D., Zhou W., Malik S., Liotta D., Snyder J.P., Hamel E., Giannakakou P. EF24, a novel curcumin analog, disrupts the microtubule cytoskeleton and inhibits HIF-1. Cell Cycle. 2008;7:2409–2417. doi: 10.4161/cc.6410. PubMed DOI PMC
Adams B.K., Cai J., Armstrong J., Herold M., Lu Y.J., Sun A., Snyder J.P., Liotta D.C., Jones D.P., Shoji M. EF-24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs. 2005;16:263–275. doi: 10.1097/00001813-200503000-00005. PubMed DOI
Sun A., Lu Y.J., Hu H., Shoji M., Liotta D.C., Snyder J.P. Curcumin analog cytotoxicity against breast cancer cells: Exploitation of a redox-dependent mechanism. Bioorg. Med. Chem. Lett. 2009;19:6627–6631. doi: 10.1016/j.bmcl.2009.10.023. PubMed DOI PMC
Chen W., Zou P., Zhao Z., Chen X., Fan X., Vinothkumar R., Cui R., Wu F., Zhang Q., Liang G., et al. Synergistic antitumor activity of rapamycin and EF24 via increasing ROS for the treatment of gastric cancer. Redox Biol. 2016;10:78–89. doi: 10.1016/j.redox.2016.09.006. PubMed DOI PMC
Zou P., Xia Y., Chen W., Chen X., Ying S., Feng Z., Chen T., Ye Q., Wang Z., Qiu C., et al. EF24 induces ROS-mediated apoptosis via targeting thioredoxin reductase 1 in gastric cancer cells. Oncotarget. 2016;7:18050–18064. doi: 10.18632/oncotarget.7633. PubMed DOI PMC
He G., Feng C., Vinothkumar R., Chen W., Dai X., Chen X., Ye Q., Qiu C., Zhou H., Wang Y., et al. Curcumin analog EF24 induces apoptosis via ROS-dependent mitochondrial dysfunction in human colorectal cancer cells. Cancer Chemother. Pharmacol. 2016;78:1151–1161. doi: 10.1007/s00280-016-3172-x. PubMed DOI
Zhang Y., Talalay P. Anticarcinogenic activities of organic isothiocyanates: Chemistry and mechanisms. Cancer Res. 1994;54((Suppl. 7)):1976s–1981s. PubMed
Shukla S., Gupta S. Dietary agents in the chemoprevention of prostate cancer. Nutr Cancer. 2005;53:18–32. doi: 10.1207/s15327914nc5301_3. PubMed DOI
Park H.S., Han M.H., Kim G.Y., Moon S.K., Kim W.J., Hwang H.J., Park K.Y., Choi Y.H. Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells. Food Chem. Toxicol. 2014;64:157–165. doi: 10.1016/j.fct.2013.11.034. PubMed DOI
Lin J.F., Tsai T.F., Yang S.C., Lin Y.C., Chen H.E., Chou K.Y., Hwang T.I. Benzyl isothiocyanate induces reactive oxygen species-initiated autophagy and apoptosis in human prostate cancer cells. Oncotarget. 2017;8:20220–20234. doi: 10.18632/oncotarget.15643. PubMed DOI PMC
Shoaib S., Tufail S., Sherwani M.A., Yusuf N., Islam N. Phenethyl Isothiocyanate Induces Apoptosis Through ROS Generation and Caspase-3 Activation in Cervical Cancer Cells. Front Pharmacol. 2021;12:673103. doi: 10.3389/fphar.2021.673103. PubMed DOI PMC
Podhradský D., Drobnica L., Kristian P. Reactions of cysteine, its derivatives, glutathione coenzyme A, and dihydrolipoic acid with isothiocyanates. Experientia. 1979;35:154–155. doi: 10.1007/BF01920581. PubMed DOI
Mi L., Sirajuddin P., Gan N., Wang X. A cautionary note on using N-acetylcysteine as an antagonist to assess isothiocyanate-induced reactive oxygen species-mediated apoptosis. Anal Biochem. 2010;405:269–271. doi: 10.1016/j.ab.2010.06.015. PubMed DOI PMC
Georgiou-Siafis S.K., Samiotaki M.K., Demopoulos V.J., Panayotou G., Tsiftsoglou A.S. Formation of novel N-acetylcysteine-hemin adducts abrogates hemin-induced cytotoxicity and suppresses the NRF2-driven stress response in human pro-erythroid K562 cells. Eur. J. Pharmacol. 2020;880:173077. doi: 10.1016/j.ejphar.2020.173077. PubMed DOI
Laird M.D., Wakade C., Alleyne C.H., Jr., Dhandapani K.M. Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic. Biol. Med. 2008;45:1103–1114. doi: 10.1016/j.freeradbiomed.2008.07.003. PubMed DOI
Kim K.-Y., Rhim T., Choi I., Kim S.-S. N-Acetylcysteine Induces Cell Cycle Arrest in Hepatic Stellate Cells through Its Reducing Activity. J. Biol. Chem. 2001;276:40591–40598. doi: 10.1074/jbc.M100975200. PubMed DOI
Cotgreave I.A. N-acetylcysteine: Pharmacological considerations and experimental and clinical applications. Adv. Pharmacol. 1997;38:205–227. PubMed
LeBel C.P., Ischiropoulos H., Bondy S.C. Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992;5:227–231. doi: 10.1021/tx00026a012. PubMed DOI
Parvez S., Long M.J.C., Poganik J.R., Aye Y. Redox Signaling by Reactive Electrophiles and Oxidants. Chem. Rev. 2018;118:8798–8888. doi: 10.1021/acs.chemrev.7b00698. PubMed DOI PMC
Sauerland M., Mertes R., Morozzi C., Eggler A.L., Gamon L.F., Davies M.J. Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radic. Biol. Med. 2021;169:1–11. doi: 10.1016/j.freeradbiomed.2021.03.040. PubMed DOI
Krenske E.H., Petter R.C., Houk K.N. Kinetics and Thermodynamics of Reversible Thiol Additions to Mono- and Diactivated Michael Acceptors: Implications for the Design of Drugs That Bind Covalently to Cysteines. J. Org. Chem. 2016;81:11726–11733. doi: 10.1021/acs.joc.6b02188. PubMed DOI