N-acetylcysteine Can Induce Massive Oxidative Stress, Resulting in Cell Death with Apoptotic Features in Human Leukemia Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF 2021_006
Palacký University, Olomouc
PubMed
34884437
PubMed Central
PMC8657769
DOI
10.3390/ijms222312635
PII: ijms222312635
Knihovny.cz E-zdroje
- Klíčová slova
- HL-60 cells, MPO, N-acetylcysteine, NOX, SOD, U937 cells, oxidative stress,
- MeSH
- acetylcystein farmakologie MeSH
- HL-60 buňky MeSH
- katalasa genetika MeSH
- leukemie farmakoterapie genetika metabolismus MeSH
- lidé MeSH
- NADPH-oxidasa 2 genetika MeSH
- oxidační stres účinky léků MeSH
- peroxidasa genetika MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- stanovení celkové genové exprese MeSH
- superoxiddismutasa genetika MeSH
- U937 buňky MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcystein MeSH
- CYBB protein, human MeSH Prohlížeč
- katalasa MeSH
- MPO protein, human MeSH Prohlížeč
- NADPH-oxidasa 2 MeSH
- peroxidasa MeSH
- reaktivní formy kyslíku MeSH
- superoxiddismutasa MeSH
N-acetylcysteine (NAC), often used as an antioxidant-scavenging reactive oxygen species (ROS) in vitro, was recently shown to increase the cytotoxicity of other compounds through ROS-dependent and ROS-independent mechanisms. In this study, NAC itself was found to induce extensive ROS production in human leukemia HL-60 and U937 cells. The cytotoxicity depends on ROS-modulating enzyme expression. In HL-60 cells, NAC activated NOX2 to produce superoxide (O2•-). Its subsequent conversion into H2O2 by superoxide dismutase 1 and 3 (SOD1, SOD3) and production of ClO- from H2O2 by myeloperoxidase (MPO) was necessary for cell death induction. While the addition of extracellular SOD potentiated NAC-induced cell death, extracellular catalase (CAT) prevented cell death in HL-60 cells. The MPO inhibitor partially reduced the number of dying HL-60 cells. In U937 cells, the weak cytotoxicity of NAC is probably caused by lower expression of NOX2, SOD1, SOD3, and by the absence of MOP expression. However, even here, the addition of extracellular SOD induced cell death in U937 cells, and this effect could be reversed by extracellular CAT. NAC-induced cell death exhibited predominantly apoptotic features in both cell lines. Conclusions: NAC itself can induce extensive production of O2•- in HL-60 and U937 cell lines. The fate of the cells then depends on the expression of enzymes that control the formation and conversion of ROS: NOX, SOD, and MPO. The mode of cell death in response to NAC treatment bears apoptotic and apoptotic-like features in both cell lines.
Zobrazit více v PubMed
Flanagan R.J., Meredith T. Use of N-acetylcysteine in clinical toxicology. Am. J. Med. 1991;91:S131–S139. doi: 10.1016/0002-9343(91)90296-A. PubMed DOI
Kelly G.S. Clinical applications of N-acetylcysteine. Altern. Med. Rev. J. Clin. Ther. 1998;3:114–127. PubMed
Millea P.J. N-acetylcysteine: Multiple clinical applications. Am. Fam. Physician. 2009;80:265–269. PubMed
Rushworth G.F., Megson I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 2014;141:150–159. doi: 10.1016/j.pharmthera.2013.09.006. PubMed DOI
Samuni Y., Goldstein S., Dean O.M., Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013;1830:4117–4129. doi: 10.1016/j.bbagen.2013.04.016. PubMed DOI
Aruoma O.I., Halliwell B., Hoey B.M., Butler J. The antioxidant action of N-acetylcysteine: Its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 1989;6:593–597. doi: 10.1016/0891-5849(89)90066-X. PubMed DOI
Winterbourn C.C., Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 1999;27:322–328. doi: 10.1016/S0891-5849(99)00051-9. PubMed DOI
de Flora S., Cesarone C.F., Balansky R.M., Albini A., D’Agostini F., Bennicelli C., Bagnasco M., Camoirano A., Scatolini L., Rovida A., et al. Chemopreventive properties and mechanisms of N-acetylcysteine. The experimental background. J. Cell. Biochem. 1995;59:33–41. doi: 10.1002/jcb.240590806. PubMed DOI
Mlejnek P., Dolezel P. N-acetylcysteine prevents the geldanamycin cytotoxicity by forming geldanamycin–N-acetylcysteine adduct. Chem.-Biol. Interact. 2014;220:248–254. doi: 10.1016/j.cbi.2014.06.025. PubMed DOI
Mlejnek P., Dolezel P. Loss of mitochondrial transmembrane potential and glutathione depletion are not sufficient to account for induction of apoptosis by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone in human leukemia K562 cells. Chem.-Biol. Interact. 2015;239:100–110. doi: 10.1016/j.cbi.2015.06.033. PubMed DOI
Skoupa N., Dolezel P., Ruzickova E., Mlejnek P. Apoptosis Induced by the Curcumin Analogue EF-24 Is Neither Mediated by Oxidative Stress-Related Mechanisms nor Affected by Expression of Main Drug Transporters ABCB1 and ABCG2 in Human Leukemia Cells. Int. J. Mol. Sci. 2017;18:2289. doi: 10.3390/ijms18112289. PubMed DOI PMC
Georgiou-Siafis S.K., Samiotaki M., Demopoulos V.J., Panayotou G., Tsiftsoglou A.S. Formation of novel N-acetylcysteine-hemin adducts abrogates hemin-induced cytotoxicity and suppresses the NRF2-driven stress response in human pro-erythroid K562 cells. Eur. J. Pharmacol. 2020;880:173077. doi: 10.1016/j.ejphar.2020.173077. PubMed DOI
Rakshit S., Bagchi J., Mandal L., Paul K., Ganguly D., Bhattacharjee S., Ghosh M., Biswas N., Chaudhuri U., Bandyopadhyay S. N-acetyl cysteine enhances imatinib-induced apoptosis of Bcr-Abl+ cells by endothelial nitric oxide synthase-mediated production of nitric oxide. Apoptosis. 2009;14:298–308. doi: 10.1007/s10495-008-0305-7. PubMed DOI
Wu M.-S., Lien G.-S., Shen S.-C., Yang L.-Y., Chen Y.-C. N-acetyl-L-cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells. Mol. Carcinog. 2014;53:E119–E129. doi: 10.1002/mc.22053. PubMed DOI
Zheng J., Lou J.R., Zhang X.-X., Benbrook D.M., Hanigan M.H., Lind S.E., Ding W.-Q. N-acetylcysteine interacts with copper to generate hydrogen peroxide and selectively induce cancer cell death. Cancer Lett. 2010;298:186–194. doi: 10.1016/j.canlet.2010.07.003. PubMed DOI PMC
Mlejnek P., Dolezel P., Maier V., Kikalova K., Skoupa N. N-acetylcysteine dual and antagonistic effect on cadmium cytotoxicity in human leukemia cells. Environ. Toxicol. Pharmacol. 2019;71:103213. doi: 10.1016/j.etap.2019.103213. PubMed DOI
Kelner M.J., Bagnell R., Welch K.J. Thioureas react with superoxide radicals to yield a sulfhydryl compound. Explanation for protective effect against paraquat. J. Biol. Chem. 1990;265:1306–1311. doi: 10.1016/S0021-9258(19)40014-8. PubMed DOI
Freyhaus H.T., Huntgeburth M., Wingler K., Schnitker J., Bäumer A.T., Vantler M., Bekhite M.M., Wartenberg M., Sauer H., Rosenkranz S. Novel Nox inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc. Res. 2006;71:331–341. doi: 10.1016/j.cardiores.2006.01.022. PubMed DOI
Mlejnek P. Caspase inhibition and N6-benzyladenosine-induced apoptosis in HL-60 cells. J. Cell. Biochem. 2001;83:678–689. doi: 10.1002/jcb.1262. PubMed DOI
Mlejnek P. Caspase-3 Activity and Carbonyl Cyanide m-Chlorophenylhydrazone-induced Apoptosis in HL-60 cells. Altern. Lab. Anim. 2001;29:243–249. doi: 10.1177/026119290102900313. PubMed DOI
Hayyan M., Hashim M.A., AlNashef I.M. Superoxide Ion: Generation and Chemical Implications. Chem. Rev. 2016;116:3029–3085. doi: 10.1021/acs.chemrev.5b00407. PubMed DOI
Bedard K., Krause K.H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007;87:245–313. doi: 10.1152/physrev.00044.2005. PubMed DOI
Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008;275:3249–3277. doi: 10.1111/j.1742-4658.2008.06488.x. PubMed DOI
Azad M., Chen Y., Gibson S.B. Regulation of Autophagy by Reactive Oxygen Species (ROS): Implications for Cancer Progression and Treatment. Antioxid. Redox Signal. 2009;11:777–790. doi: 10.1089/ars.2008.2270. PubMed DOI
Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI
Prasad A., Sedlářová M., Balukova A., Ovsii A., Rác M., Křupka M., Kasai S., Pospíšil P. Reactive Oxygen Species Imaging in U937 Cells. Front. Physiol. 2020;11:552569. doi: 10.3389/fphys.2020.552569. PubMed DOI PMC
Borutaite V., Brown G.C. Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 2001;500:114–118. doi: 10.1016/S0014-5793(01)02593-5. PubMed DOI
Phillips H., Terryberry J. Counting actively metabolizing tissue cultured cells. Exp. Cell Res. 1957;13:341–347. doi: 10.1016/0014-4827(57)90013-7. PubMed DOI
LeBel C.P., Ischiropoulos H., Bondy S.C. Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992;5:227–231. doi: 10.1021/tx00026a012. PubMed DOI
Dyskova T., Fillerova R., Novosad T., Kudelka M., Zurkova M., Gajdos P., Kolek V., Kriegova E. Correlation Network Analysis Reveals Relationships between MicroRNAs, Transcription FactorT-bet, and Deregulated Cytokine/Chemokine-Receptor Network in Pulmonary Sarcoidosis. Mediat. Inflamm. 2015;2015:121378. doi: 10.1155/2015/121378. PubMed DOI PMC
Petrackova A., Horak P., Radvansky M., Fillerova R., Kraiczova V.S., Kudelka M., Mrazek F., Skacelova M., Smrzova A., Kriegova E. Revealed heterogeneity in rheumatoid arthritis based on multivariate innate signature analysis. Clin. Exp. Rheumatol. 2019;38:289–298. PubMed
Kriegova E., Arakelyan A., Fillerova R., Zatloukal J., Mrazek F., Navratilova Z., Kolek V., Du Bois R.M., Petrek M. PSMB2 and RPL32 are suitable denominators to normalize gene expression profiles in bronchoalveolar cells. BMC Mol. Biol. 2008;9:69. doi: 10.1186/1471-2199-9-69. PubMed DOI PMC
Nicoletti I., Migliorati G., Pagliacci M., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods. 1991;139:271–279. doi: 10.1016/0022-1759(91)90198-O. PubMed DOI
Darzynkiewicz Z., Bruno S., del Bino G., Gorczyca W., Hotz M.A., Lassota P., Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992;13:795–808. doi: 10.1002/cyto.990130802. PubMed DOI
Mlejnek P., Kuglík P. Induction of apoptosis in HL-60 cells by N(6)-benzyladenosine. J. Cell. Biochem. 2000;77:6–17. doi: 10.1002/(SICI)1097-4644(20000401)77:1<6::AID-JCB2>3.0.CO;2-3. PubMed DOI
Frydrych I., Mlejnek P. Serine protease inhibitors N-α-Tosyl-L-Lysinyl-Chloromethylketone (TLCK) and N-Tosyl-L-Phenylalaninyl-Chloromethylketone (TPCK) are potent inhibitors of activated caspase proteases. J. Cell. Biochem. 2008;103:1646–1656. doi: 10.1002/jcb.21550. PubMed DOI