• This record comes from PubMed

Correlation Network Analysis Reveals Relationships between MicroRNAs, Transcription Factor T-bet, and Deregulated Cytokine/Chemokine-Receptor Network in Pulmonary Sarcoidosis

. 2015 ; 2015 () : 121378. [epub] 20151130

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Sarcoidosis is an inflammatory granulomatous disease with unknown etiology driven by cytokines and chemokines. There is limited information regarding the regulation of cytokine/chemokine-receptor network in bronchoalveolar lavage (BAL) cells in pulmonary sarcoidosis, suggesting contribution of miRNAs and transcription factors. We therefore investigated gene expression of 25 inflammation-related miRNAs, 27 cytokines/chemokines/receptors, and a Th1-transcription factor T-bet in unseparated BAL cells obtained from 48 sarcoidosis patients and 14 control subjects using quantitative RT-PCR. We then examined both miRNA-mRNA expressions to enrich relevant relationships. This first study on miRNAs in sarcoid BAL cells detected deregulation of miR-146a, miR-150, miR-202, miR-204, and miR-222 expression comparing to controls. Subanalysis revealed higher number of miR-155, let-7c transcripts in progressing (n = 20) comparing to regressing (n = 28) disease as assessed by 2-year follow-up. Correlation network analysis revealed relationships between microRNAs, transcription factor T-bet, and deregulated cytokine/chemokine-receptor network in sarcoid BAL cells. Furthermore, T-bet showed more pronounced regulatory capability to sarcoidosis-associated cytokines/chemokines/receptors than miRNAs, which may function rather as "fine-tuners" of cytokine/chemokine expression. Our correlation network study implies contribution of both microRNAs and Th1-transcription factor T-bet to the regulation of cytokine/chemokine-receptor network in BAL cells in sarcoidosis. Functional studies are needed to confirm biological relevance of the obtained relationships.

See more in PubMed

Baughman R. P., Lower E. E., Du Bois R. M. Sarcoidosis. The Lancet. 2003;361(9363):1111–1118. doi: 10.1016/s0140-6736(03)12888-7. PubMed DOI

Lynch J. P., White E. S. Pulmonary sarcoidosis. European Respiratory Monograph. 2005;32:105–129.

Facco M., Cabrelle A., Teramo A., et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax. 2011;66(2):144–150. doi: 10.1136/thx.2010.140319. PubMed DOI

Agostini C., Adami F., Semenzato G. New pathogenetic insights into the sarcoid granuloma. Current Opinion in Rheumatology. 2000;12(1):71–76. doi: 10.1097/00002281-200001000-00012. PubMed DOI

Nazarov P. V., Reinsbach S. E., Muller A., et al. Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Research. 2013;41(5):2817–2831. doi: 10.1093/nar/gks1471. PubMed DOI PMC

Zhang X. M., Guo L., Chi M. H., Sun H. M., Chen X. W. Identification of active miRNA and transcription factor regulatory pathways in human obesity-related inflammation. BMC Bioinformatics. 2015;16, article 76 doi: 10.1186/s12859-015-0512-5. PubMed DOI PMC

Greene C. M., Gaughan K. P. MicroRNAs in asthma: potential therapeutic targets. Current Opinion in Pulmonary Medicine. 2013;19(1):66–72. doi: 10.1097/mcp.0b013e32835a5bc8. PubMed DOI

Ezzie M. E., Crawford M., Cho J.-H., et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax. 2012;67(2):122–131. doi: 10.1136/thoraxjnl-2011-200089. PubMed DOI

Crouser E. D., Julian M. W., Crawford M., et al. Differential expression of microRNA and predicted targets in pulmonary sarcoidosis. Biochemical and Biophysical Research Communications. 2012;417(2):886–891. doi: 10.1016/j.bbrc.2011.12.068. PubMed DOI PMC

Jazwa A., Kasper L., Bak M., et al. Differential inflammatory microRNA and cytokine expression in pulmonary sarcoidosis. Archivum Immunologiae et Therapiae Experimentalis. 2015;63(2):139–146. doi: 10.1007/s00005-014-0315-9. PubMed DOI PMC

Maertzdorf J., Weiner J., III, Mollenkopf H.-J., et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(20):7853–7858. doi: 10.1073/pnas.1121072109. PubMed DOI PMC

Kriegova E., Fillerova R., Tomankova T., et al. T-helper cell type-1 transcription factor T-bet is upregulated in pulmonary sarcoidosis. European Respiratory Journal. 2011;38(5):1136–1144. doi: 10.1183/09031936.00089910. PubMed DOI

Christophi G. P., Caza T., Curtiss C., Gumber D., Massa P. T., Landas S. K. Gene expression profiles in granuloma tissue reveal novel diagnostic markers in sarcoidosis. Experimental and Molecular Pathology. 2014;96(3):393–399. doi: 10.1016/j.yexmp.2014.04.006. PubMed DOI PMC

Busuttil A., Weigt S. S., Keane M. P., et al. CXCR3 ligands are augmented during the pathogenesis of pulmonary sarcoidosis. European Respiratory Journal. 2009;34(3):676–686. doi: 10.1183/09031936.00157508. PubMed DOI

Beima K. M., Miazgowicz M. M., Lewis M. D., Yan P. S., Huang T. H.-M., Weinmann A. S. T-bet binding to newly identified target gene promoters is cell type-independent but results in variable context-dependent functional effects. The Journal of Biological Chemistry. 2006;281(17):11992–12000. doi: 10.1074/jbc.m513613200. PubMed DOI

Lewis M. D., Miller S. A., Miazgowicz M. M., Beima K. M., Weinmann A. S. T-bet's ability to regulate individual target genes requires the conserved T-box domain to recruit histone methyltransferase activity and a separate family member-specific transactivation domain. Molecular and Cellular Biology. 2007;27(24):8510–8521. doi: 10.1128/MCB.01615-07. PubMed DOI PMC

Matsuda J. L., George T. C., Hagman J., Gapin L. Temporal dissection of T-bet functions. The Journal of Immunology. 2007;178(6):3457–3465. doi: 10.4049/jimmunol.178.6.3457. PubMed DOI

Petrek M., Kolek V. T-lymphocyte subpopulations in bronchoalveolar lavage in pulmonary sarcoidosis and other interstitial pulmonary diseases. Casopis Lekaru Ceskych. 1993;132(12):365–368. PubMed

Joint Statement of the American Thoracic Society. Statement on sarcoidosis. Joint statement of the American Thoracic Society, the European Respiratory Society and World Association of Sarcoidosis and other Granulomatous Disorders. American Journal of Respiratory and Critical Care Medicine. 1999;160(2):736–755. doi: 10.1164/ajrccm.160.2.ats4-99. PubMed DOI

Chen C., Ridzon D. A., Broomer A. J., et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research. 2005;33(20, article e179) doi: 10.1093/nar/gni178. PubMed DOI PMC

Kriegova E., Arakelyan A., Fillerova R., et al. PSMB2 and RPL32 are suitable denominators to normalize gene expression profiles in bronchoalveolar cells. BMC Molecular Biology. 2008;9, article 69 doi: 10.1186/1471-2199-9-69. PubMed DOI PMC

Vlachos I. S., Zagganas K., Paraskevopoulou M. D., et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Research. 2015;43(W1):W460–W466. doi: 10.1093/nar/gkv403. PubMed DOI PMC

Lu T.-P., Lee C.-Y., Tsai M.-H., et al. MiRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS ONE. 2012;7(8) doi: 10.1371/journal.pone.0042390.e42390 PubMed DOI PMC

Kohonen T. Self-Organizing Maps. 2nd. Berlin, Germany: Springer; 1997. DOI

Krzywinski M., Schein J., Birol I., et al. Circos: an information aesthetic for comparative genomics. Genome Research. 2009;19(9):1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC

Horvath S. Weighted Network Analysis: Applications in Genomics and Systems Biology. Springer Science & Business Media; 2011.

Zehnalova S., Kudelka M., Platos J., Horak Z. Local representatives in weighted networks. Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM '14); August 2014; Beijing, China. IEEE; pp. 870–875. DOI

Facco M., Baesso I., Miorin M., et al. Expression and role of CCR6/CCL20 chemokine axis in pulmonary sarcoidosis. Journal of Leukocyte Biology. 2007;82(4):946–955. doi: 10.1189/jlb.0307133. PubMed DOI

Facco M., Cabrelle A., Calabrese F., et al. TL1A/DR3 axis involvement in the inflammatory cytokine network during pulmonary sarcoidosis. Clinical and Molecular Allergy. 2015;13(1, article 16) doi: 10.1186/s12948-015-0022-z. PubMed DOI PMC

Fan J., Heller N. M., Gorospe M., Atasoy U., Stellato C. The role of post-transcriptional regulation in chemokine gene expression in inflammation and allergy. European Respiratory Journal. 2005;26(5):933–947. doi: 10.1183/09031936.05.00120204. PubMed DOI

Anderson P. Post-transcriptional control of cytokine production. Nature Immunology. 2008;9(4):353–359. doi: 10.1038/ni1584. PubMed DOI

Cheng H. S., Sivachandran N., Lau A., et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Molecular Medicine. 2013;5(7):949–966. doi: 10.1002/emmm.201202318. PubMed DOI PMC

Devier D. J., Lovera J. F., Lukiw W. J. Increase in NF-κB-sensitive miRNA-146a and miRNA-155 in multiple sclerosis (MS) and pro-inflammatory neurodegeneration. Frontiers in Molecular Neuroscience. 2015;8, article 5 doi: 10.3389/fnmol.2015.00005. PubMed DOI PMC

Rajput C., Tauseef M., Yazbeck P., Thennes T., Mehta D. miR-150 prevents pulmonary inflammation by regulating Interleukin-1R associated kinase-2 downstream of focal adhesion kinase. The FASEB Journal. 2012;26671.10

Murata K., Furu M., Yoshitomi H., et al. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0069118.e69118 PubMed DOI PMC

Li G., Luna C., Qiu J., Epstein D. L., Gonzalez P. Role of miR-204 in the regulation of apoptosis, endoplasmic reticulum stress response, and inflammation in human trabecular meshwork cells. Investigative Ophthalmology & Visual Science. 2011;52(6):2999–3007. doi: 10.1167/iovs.10-6708. PubMed DOI PMC

Dentelli P., Rosso A., Orso F., Olgasi C., Taverna D., Brizzi M. F. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(8):1562–1568. doi: 10.1161/atvbaha.110.206201. PubMed DOI

Kumar M., Ahmad T., Sharma A., et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. Journal of Allergy and Clinical Immunology. 2011;128(5):1077.e10–1085.e10. doi: 10.1016/j.jaci.2011.04.034. PubMed DOI

Cloonan N. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. BioEssays. 2015;37(4):379–388. doi: 10.1002/bies.201400191. PubMed DOI PMC

Asirvatham A. J., Magner W. J., Tomasi T. B. miRNA regulation of cytokine genes. Cytokine. 2009;45(2):58–69. doi: 10.1016/j.cyto.2008.11.010. PubMed DOI PMC

Brodersen P., Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews Molecular Cell Biology. 2009;10(2):141–148. doi: 10.1038/nrm2619. PubMed DOI

Reinhart B. J., Slack F. J., Basson M., et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature. 2000;403(6772):901–906. doi: 10.1038/35002607. PubMed DOI

Brennecke J., Stark A., Russell R. B., Cohen S. M. Principles of microRNA-target recognition. PLoS Biology. 2005;3(3, article e85) doi: 10.1371/journal.pbio.0030085. PubMed DOI PMC

Vasudevan S., Tong Y., Steitz J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–1934. doi: 10.1126/science.1149460. PubMed DOI

Nunez-Iglesias J., Liu C.-C., Morgan T. E., Finch C. E., Zhou X. J. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation. PLoS ONE. 2010;5(2) doi: 10.1371/journal.pone.0008898.e8898 PubMed DOI PMC

Palchevskiy V., Hashemi N., Weigt S. S., et al. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis. Fibrogenesis & Tissue Repair. 2011;4, article 10 doi: 10.1186/1755-1536-4-10. PubMed DOI PMC

Gibejova A., Mrazek F., Subrtova D., et al. Expression of macrophage inflammatory protein-3β/CCL19 in pulmonary sarcoidosis. American Journal of Respiratory and Critical Care Medicine. 2003;167(12):1695–1703. doi: 10.1164/rccm.200205-487oc. PubMed DOI

Chen H., Xu X., Teng J., et al. CXCR4 inhibitor attenuates allergen-induced lung inflammation by down-regulating MMP-9 and ERK1/2. International Journal of Clinical and Experimental Pathology. 2015;8(6):6700–6707. PubMed PMC

Watanabe M., Matsuyama W., Shirahama Y., et al. Dual effect of AMD3100, a CXCR4 antagonist, on bleomycin-induced lung inflammation. The Journal of Immunology. 2007;178(9):5888–5898. doi: 10.4049/jimmunol.178.9.5888. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...