Correlation Network Analysis Reveals Relationships between MicroRNAs, Transcription Factor T-bet, and Deregulated Cytokine/Chemokine-Receptor Network in Pulmonary Sarcoidosis
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26696750
PubMed Central
PMC4677216
DOI
10.1155/2015/121378
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Gene Regulatory Networks * MeSH
- Middle Aged MeSH
- Humans MeSH
- RNA, Messenger analysis MeSH
- MicroRNAs physiology MeSH
- Sarcoidosis, Pulmonary immunology MeSH
- T-Box Domain Proteins physiology MeSH
- Receptors, Chemokine genetics MeSH
- Receptors, Cytokine genetics MeSH
- Aged MeSH
- T-bet Transcription Factor MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Messenger MeSH
- MicroRNAs MeSH
- T-Box Domain Proteins MeSH
- Receptors, Chemokine MeSH
- Receptors, Cytokine MeSH
- T-bet Transcription Factor MeSH
Sarcoidosis is an inflammatory granulomatous disease with unknown etiology driven by cytokines and chemokines. There is limited information regarding the regulation of cytokine/chemokine-receptor network in bronchoalveolar lavage (BAL) cells in pulmonary sarcoidosis, suggesting contribution of miRNAs and transcription factors. We therefore investigated gene expression of 25 inflammation-related miRNAs, 27 cytokines/chemokines/receptors, and a Th1-transcription factor T-bet in unseparated BAL cells obtained from 48 sarcoidosis patients and 14 control subjects using quantitative RT-PCR. We then examined both miRNA-mRNA expressions to enrich relevant relationships. This first study on miRNAs in sarcoid BAL cells detected deregulation of miR-146a, miR-150, miR-202, miR-204, and miR-222 expression comparing to controls. Subanalysis revealed higher number of miR-155, let-7c transcripts in progressing (n = 20) comparing to regressing (n = 28) disease as assessed by 2-year follow-up. Correlation network analysis revealed relationships between microRNAs, transcription factor T-bet, and deregulated cytokine/chemokine-receptor network in sarcoid BAL cells. Furthermore, T-bet showed more pronounced regulatory capability to sarcoidosis-associated cytokines/chemokines/receptors than miRNAs, which may function rather as "fine-tuners" of cytokine/chemokine expression. Our correlation network study implies contribution of both microRNAs and Th1-transcription factor T-bet to the regulation of cytokine/chemokine-receptor network in BAL cells in sarcoidosis. Functional studies are needed to confirm biological relevance of the obtained relationships.
See more in PubMed
Baughman R. P., Lower E. E., Du Bois R. M. Sarcoidosis. The Lancet. 2003;361(9363):1111–1118. doi: 10.1016/s0140-6736(03)12888-7. PubMed DOI
Lynch J. P., White E. S. Pulmonary sarcoidosis. European Respiratory Monograph. 2005;32:105–129.
Facco M., Cabrelle A., Teramo A., et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax. 2011;66(2):144–150. doi: 10.1136/thx.2010.140319. PubMed DOI
Agostini C., Adami F., Semenzato G. New pathogenetic insights into the sarcoid granuloma. Current Opinion in Rheumatology. 2000;12(1):71–76. doi: 10.1097/00002281-200001000-00012. PubMed DOI
Nazarov P. V., Reinsbach S. E., Muller A., et al. Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Research. 2013;41(5):2817–2831. doi: 10.1093/nar/gks1471. PubMed DOI PMC
Zhang X. M., Guo L., Chi M. H., Sun H. M., Chen X. W. Identification of active miRNA and transcription factor regulatory pathways in human obesity-related inflammation. BMC Bioinformatics. 2015;16, article 76 doi: 10.1186/s12859-015-0512-5. PubMed DOI PMC
Greene C. M., Gaughan K. P. MicroRNAs in asthma: potential therapeutic targets. Current Opinion in Pulmonary Medicine. 2013;19(1):66–72. doi: 10.1097/mcp.0b013e32835a5bc8. PubMed DOI
Ezzie M. E., Crawford M., Cho J.-H., et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax. 2012;67(2):122–131. doi: 10.1136/thoraxjnl-2011-200089. PubMed DOI
Crouser E. D., Julian M. W., Crawford M., et al. Differential expression of microRNA and predicted targets in pulmonary sarcoidosis. Biochemical and Biophysical Research Communications. 2012;417(2):886–891. doi: 10.1016/j.bbrc.2011.12.068. PubMed DOI PMC
Jazwa A., Kasper L., Bak M., et al. Differential inflammatory microRNA and cytokine expression in pulmonary sarcoidosis. Archivum Immunologiae et Therapiae Experimentalis. 2015;63(2):139–146. doi: 10.1007/s00005-014-0315-9. PubMed DOI PMC
Maertzdorf J., Weiner J., III, Mollenkopf H.-J., et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(20):7853–7858. doi: 10.1073/pnas.1121072109. PubMed DOI PMC
Kriegova E., Fillerova R., Tomankova T., et al. T-helper cell type-1 transcription factor T-bet is upregulated in pulmonary sarcoidosis. European Respiratory Journal. 2011;38(5):1136–1144. doi: 10.1183/09031936.00089910. PubMed DOI
Christophi G. P., Caza T., Curtiss C., Gumber D., Massa P. T., Landas S. K. Gene expression profiles in granuloma tissue reveal novel diagnostic markers in sarcoidosis. Experimental and Molecular Pathology. 2014;96(3):393–399. doi: 10.1016/j.yexmp.2014.04.006. PubMed DOI PMC
Busuttil A., Weigt S. S., Keane M. P., et al. CXCR3 ligands are augmented during the pathogenesis of pulmonary sarcoidosis. European Respiratory Journal. 2009;34(3):676–686. doi: 10.1183/09031936.00157508. PubMed DOI
Beima K. M., Miazgowicz M. M., Lewis M. D., Yan P. S., Huang T. H.-M., Weinmann A. S. T-bet binding to newly identified target gene promoters is cell type-independent but results in variable context-dependent functional effects. The Journal of Biological Chemistry. 2006;281(17):11992–12000. doi: 10.1074/jbc.m513613200. PubMed DOI
Lewis M. D., Miller S. A., Miazgowicz M. M., Beima K. M., Weinmann A. S. T-bet's ability to regulate individual target genes requires the conserved T-box domain to recruit histone methyltransferase activity and a separate family member-specific transactivation domain. Molecular and Cellular Biology. 2007;27(24):8510–8521. doi: 10.1128/MCB.01615-07. PubMed DOI PMC
Matsuda J. L., George T. C., Hagman J., Gapin L. Temporal dissection of T-bet functions. The Journal of Immunology. 2007;178(6):3457–3465. doi: 10.4049/jimmunol.178.6.3457. PubMed DOI
Petrek M., Kolek V. T-lymphocyte subpopulations in bronchoalveolar lavage in pulmonary sarcoidosis and other interstitial pulmonary diseases. Casopis Lekaru Ceskych. 1993;132(12):365–368. PubMed
Joint Statement of the American Thoracic Society. Statement on sarcoidosis. Joint statement of the American Thoracic Society, the European Respiratory Society and World Association of Sarcoidosis and other Granulomatous Disorders. American Journal of Respiratory and Critical Care Medicine. 1999;160(2):736–755. doi: 10.1164/ajrccm.160.2.ats4-99. PubMed DOI
Chen C., Ridzon D. A., Broomer A. J., et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research. 2005;33(20, article e179) doi: 10.1093/nar/gni178. PubMed DOI PMC
Kriegova E., Arakelyan A., Fillerova R., et al. PSMB2 and RPL32 are suitable denominators to normalize gene expression profiles in bronchoalveolar cells. BMC Molecular Biology. 2008;9, article 69 doi: 10.1186/1471-2199-9-69. PubMed DOI PMC
Vlachos I. S., Zagganas K., Paraskevopoulou M. D., et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Research. 2015;43(W1):W460–W466. doi: 10.1093/nar/gkv403. PubMed DOI PMC
Lu T.-P., Lee C.-Y., Tsai M.-H., et al. MiRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS ONE. 2012;7(8) doi: 10.1371/journal.pone.0042390.e42390 PubMed DOI PMC
Kohonen T. Self-Organizing Maps. 2nd. Berlin, Germany: Springer; 1997. DOI
Krzywinski M., Schein J., Birol I., et al. Circos: an information aesthetic for comparative genomics. Genome Research. 2009;19(9):1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Horvath S. Weighted Network Analysis: Applications in Genomics and Systems Biology. Springer Science & Business Media; 2011.
Zehnalova S., Kudelka M., Platos J., Horak Z. Local representatives in weighted networks. Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM '14); August 2014; Beijing, China. IEEE; pp. 870–875. DOI
Facco M., Baesso I., Miorin M., et al. Expression and role of CCR6/CCL20 chemokine axis in pulmonary sarcoidosis. Journal of Leukocyte Biology. 2007;82(4):946–955. doi: 10.1189/jlb.0307133. PubMed DOI
Facco M., Cabrelle A., Calabrese F., et al. TL1A/DR3 axis involvement in the inflammatory cytokine network during pulmonary sarcoidosis. Clinical and Molecular Allergy. 2015;13(1, article 16) doi: 10.1186/s12948-015-0022-z. PubMed DOI PMC
Fan J., Heller N. M., Gorospe M., Atasoy U., Stellato C. The role of post-transcriptional regulation in chemokine gene expression in inflammation and allergy. European Respiratory Journal. 2005;26(5):933–947. doi: 10.1183/09031936.05.00120204. PubMed DOI
Anderson P. Post-transcriptional control of cytokine production. Nature Immunology. 2008;9(4):353–359. doi: 10.1038/ni1584. PubMed DOI
Cheng H. S., Sivachandran N., Lau A., et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Molecular Medicine. 2013;5(7):949–966. doi: 10.1002/emmm.201202318. PubMed DOI PMC
Devier D. J., Lovera J. F., Lukiw W. J. Increase in NF-κB-sensitive miRNA-146a and miRNA-155 in multiple sclerosis (MS) and pro-inflammatory neurodegeneration. Frontiers in Molecular Neuroscience. 2015;8, article 5 doi: 10.3389/fnmol.2015.00005. PubMed DOI PMC
Rajput C., Tauseef M., Yazbeck P., Thennes T., Mehta D. miR-150 prevents pulmonary inflammation by regulating Interleukin-1R associated kinase-2 downstream of focal adhesion kinase. The FASEB Journal. 2012;26671.10
Murata K., Furu M., Yoshitomi H., et al. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0069118.e69118 PubMed DOI PMC
Li G., Luna C., Qiu J., Epstein D. L., Gonzalez P. Role of miR-204 in the regulation of apoptosis, endoplasmic reticulum stress response, and inflammation in human trabecular meshwork cells. Investigative Ophthalmology & Visual Science. 2011;52(6):2999–3007. doi: 10.1167/iovs.10-6708. PubMed DOI PMC
Dentelli P., Rosso A., Orso F., Olgasi C., Taverna D., Brizzi M. F. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(8):1562–1568. doi: 10.1161/atvbaha.110.206201. PubMed DOI
Kumar M., Ahmad T., Sharma A., et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. Journal of Allergy and Clinical Immunology. 2011;128(5):1077.e10–1085.e10. doi: 10.1016/j.jaci.2011.04.034. PubMed DOI
Cloonan N. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. BioEssays. 2015;37(4):379–388. doi: 10.1002/bies.201400191. PubMed DOI PMC
Asirvatham A. J., Magner W. J., Tomasi T. B. miRNA regulation of cytokine genes. Cytokine. 2009;45(2):58–69. doi: 10.1016/j.cyto.2008.11.010. PubMed DOI PMC
Brodersen P., Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews Molecular Cell Biology. 2009;10(2):141–148. doi: 10.1038/nrm2619. PubMed DOI
Reinhart B. J., Slack F. J., Basson M., et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans . Nature. 2000;403(6772):901–906. doi: 10.1038/35002607. PubMed DOI
Brennecke J., Stark A., Russell R. B., Cohen S. M. Principles of microRNA-target recognition. PLoS Biology. 2005;3(3, article e85) doi: 10.1371/journal.pbio.0030085. PubMed DOI PMC
Vasudevan S., Tong Y., Steitz J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–1934. doi: 10.1126/science.1149460. PubMed DOI
Nunez-Iglesias J., Liu C.-C., Morgan T. E., Finch C. E., Zhou X. J. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation. PLoS ONE. 2010;5(2) doi: 10.1371/journal.pone.0008898.e8898 PubMed DOI PMC
Palchevskiy V., Hashemi N., Weigt S. S., et al. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis. Fibrogenesis & Tissue Repair. 2011;4, article 10 doi: 10.1186/1755-1536-4-10. PubMed DOI PMC
Gibejova A., Mrazek F., Subrtova D., et al. Expression of macrophage inflammatory protein-3β/CCL19 in pulmonary sarcoidosis. American Journal of Respiratory and Critical Care Medicine. 2003;167(12):1695–1703. doi: 10.1164/rccm.200205-487oc. PubMed DOI
Chen H., Xu X., Teng J., et al. CXCR4 inhibitor attenuates allergen-induced lung inflammation by down-regulating MMP-9 and ERK1/2. International Journal of Clinical and Experimental Pathology. 2015;8(6):6700–6707. PubMed PMC
Watanabe M., Matsuyama W., Shirahama Y., et al. Dual effect of AMD3100, a CXCR4 antagonist, on bleomycin-induced lung inflammation. The Journal of Immunology. 2007;178(9):5888–5898. doi: 10.4049/jimmunol.178.9.5888. PubMed DOI
The Serum Expression of Selected miRNAs in Pulmonary Sarcoidosis with/without Löfgren's Syndrome