The Serum Expression of Selected miRNAs in Pulmonary Sarcoidosis with/without Löfgren's Syndrome
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28050119
PubMed Central
PMC5165170
DOI
10.1155/2016/1246129
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA krev MeSH
- mladý dospělý MeSH
- plicní sarkoidóza krev MeSH
- prognóza MeSH
- progrese nemoci MeSH
- regulace genové exprese MeSH
- studie případů a kontrol MeSH
- syndrom MeSH
- transformující růstový faktor beta metabolismus MeSH
- výpočetní biologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA MeSH
- transformující růstový faktor beta MeSH
Purpose. Pulmonary sarcoidosis is associated with dysregulated expression of intracellular miRNAs. There is however only little information on extracellular miRNAs and their association with the disease course in sarcoidosis. We therefore assessed serum miRNAs in sarcoidosis classified according to the presence of Löfgren's syndrome (LS) as a hallmark of good prognosis in contrast to more advanced disease course. Methods. RT-PCR was used to assess 35 miRNAs in 13 healthy controls and 24 sarcoidosis patients (12 with X-ray (CXR) stage ≤ 1 and LS and 12 with insidious onset and CXR stage ≥ 3). Results. Compared to controls, we consistently observed dysregulated expressions of miR-146, miR-16, miR-425-5p, and miR-93-5p in both sarcoidosis groups irrespective of disease course. Specifically, patients without LS had dysregulated expressions of miR-150-5p, miR-1, and miR-212 compared to controls. Patients with LS had dysregulated expressions of miR-21-5p and miR-340-5p compared to controls. Bioinformatics predicted consistently "Pathways in cancer" to be modulated by both altered profiles in patients with/without LS. Three miRNAs (miR-21-5p, miR-340-5p, and miR-212-3p) differed between our patients with LS and those without LS; their cumulative effect may modulate "TGF-β signalling pathway." Conclusions. Further study should focus on possible applications of serum miRNAs for diagnostics follow-up and for prognosis.
Zobrazit více v PubMed
Valeyre D., Prasse A., Nunes H., Uzunhan Y., Brillet P.-Y., Müller-Quernheim J. Sarcoidosis. The Lancet. 2014;383(9923):1155–1167. doi: 10.1016/S0140-6736(13)60680-7. PubMed DOI
Zissel G., Müller-Quernheim J. Specific antigen(s) in sarcoidosis: a link to autoimmunity? European Respiratory Journal. 2016;47(3):707–709. doi: 10.1183/13993003.01791-2015. PubMed DOI
Ameres S. L., Zamore P. D. Diversifying microRNA sequence and function. Nature Reviews Molecular Cell Biology. 2013;14(8):475–488. doi: 10.1038/nrm3611. PubMed DOI
Kiszałkiewicz J., Piotrowski W. J., Pastuszak-Lewandoska D., et al. Altered miRNA expression in pulmonary sarcoidosis. BMC Medical Genetics. 2016;17(1, article 2):12. doi: 10.1186/s12881-016-0266-6. PubMed DOI PMC
Dyskova T., Fillerova R., Novosad T., et al. Correlation network analysis reveals relationships between MicroRNAs, transcription factor T-bet, and deregulated cytokine/chemokine-receptor network in pulmonary sarcoidosis. Mediators of Inflammation. 2015;2015:16. doi: 10.1155/2015/121378.121378 PubMed DOI PMC
Crouser E. D., Julian M. W., Crawford M., et al. Differential expression of microRNA and predicted targets in pulmonary sarcoidosis. Biochemical and Biophysical Research Communications. 2012;417(2):886–891. doi: 10.1016/j.bbrc.2011.12.068. PubMed DOI PMC
Jazwa A., Kasper L., Bak M., et al. Differential inflammatory MicroRNA and cytokine expression in pulmonary sarcoidosis. Archivum Immunologiae et Therapiae Experimentalis. 2015;63(2):139–146. doi: 10.1007/s00005-014-0315-9. PubMed DOI PMC
Weber J. A., Baxter D. H., Zhang S., et al. The microRNA spectrum in 12 body fluids. Clinical Chemistry. 2010;56(11):1733–1741. doi: 10.1373/clinchem.2010.147405. PubMed DOI PMC
Qazi K. R., Paredes P. T., Dahlberg B., Grunewald J., Eklund A., Gabrielsson S. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax. 2010;65(11):1016–1024. doi: 10.1136/thx.2009.132027. PubMed DOI
Marabita F., de Candia P., Torri A., Tegnér J., Abrignani S., Rossi R. L. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Briefings in Bioinformatics. 2015;17(2):204–212. doi: 10.1093/bib/bbv056. PubMed DOI PMC
Witwer K. W., Buzás E. I., Bemis L. T., et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles. 2013;2 doi: 10.3402/jev.v2i0.20360.20360 PubMed DOI PMC
Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. American Journal of Respiratory and Critical Care Medicine. 1999;160(2):736–755. doi: 10.1164/ajrccm.160.2.ats4-99. PubMed DOI
Kirschner M. B., Edelman J. J. B., Kao S. C.-H., Vallely M. P., van Zandwijk N., Reid G. The impact of hemolysis on cell-free microRNA biomarkers. Frontiers in Genetics. 2013;4, article 94 doi: 10.3389/fgene.2013.00094. PubMed DOI PMC
Kriegova E., Arakelyan A., Fillerova R., et al. PSMB2 and RPL32 are suitable denominators to normalize gene expression profiles in bronchoalveolar cells. BMC Molecular Biology. 2008;9, article 69:1471–2199. doi: 10.1186/1471-2199-9-69. PubMed DOI PMC
Maertzdorf J., Weiner J., III, Mollenkopf H.-J., et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(20):7853–7858. doi: 10.1073/pnas.1121072109. PubMed DOI PMC
Navratilova Z., Novosadova E., Smitalova D., Kishore A., Kolek V., Petrek M. Serum and bronchoalveolar exosomal miRNAs in pulmonary sarcoidosis. European Respiratory Journal. 2015;46(supplement 59) doi: 10.1183/13993003.congress-2015.pa3319.PA3319 DOI
Forlenza M., Kaiser T., Savelkoul H. F. J., Wiegertjes G. F. The use of real-time quantitative PCR for the analysis of cytokine mRNA levels. Methods in Molecular Biology. 2012;820:7–23. doi: 10.1007/978-1-61779-439-1_2. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology. 2002;3(7)RESEARCH0034 PubMed PMC
Andersen C. L., Jensen J. L., Ørntoft T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research. 2004;64(15):5245–5250. doi: 10.1158/0008-5472.can-04-0496. PubMed DOI
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B: Methodological. 1995;57(1):289–300.
Trygg J., Wold S. Orthogonal projections to latent structures (O-PLS) Journal of Chemometrics. 2002;16(3):119–128. doi: 10.1002/cem.695. DOI
Levänen B., Bhakta N. R., Torregrosa Paredes P., et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. The Journal of Allergy and Clinical Immunology. 2013;131(3):894.e8–903.e8. doi: 10.1016/j.jaci.2012.11.039. PubMed DOI PMC
Lu T.-P., Lee C.-Y., Tsai M.-H., et al. MiRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS ONE. 2012;7(8) doi: 10.1371/journal.pone.0042390.e42390 PubMed DOI PMC
Askling J., Grunewald J., Eklund A., Hillerdal G., Ekbom A. Increased risk for cancer following sarcoidosis. American Journal of Respiratory and Critical Care Medicine. 1999;160(5, part 1):1668–1672. doi: 10.1164/ajrccm.160.5.9904045. PubMed DOI
Grados A., Ebbo M., Bernit E., et al. Sarcoidosis occurring after solid cancer: a nonfortuitous association: report of 12 cases and review of the literature. Medicine (United States) 2015;94(28, article no. e928) doi: 10.1097/md.0000000000000928. PubMed DOI PMC
Beutler B. D., Cohen P. R. Sarcoidosis in melanoma patients: case report and literature review. Cancers. 2015;7(2):1005–1021. doi: 10.3390/cancers7020821. PubMed DOI PMC
Singla S., Zhou T., Javaid K., et al. Expression profiling elucidates a molecular gene signature for pulmonary hypertension in sarcoidosis. Pulmonary Circulation. 2016;6(4):465–471. doi: 10.1086/688316. PubMed DOI PMC
Landskron G., De La Fuente M., Thuwajit P., Thuwajit C., Hermoso M. A. Chronic inflammation and cytokines in the tumor microenvironment. Journal of Immunology Research. 2014;2014:19. doi: 10.1155/2014/149185.149185 PubMed DOI PMC
Khoury S., Tran N. Circulating microRNAs: potential biomarkers for common malignancies. Biomarkers in Medicine. 2015;9(2):131–151. doi: 10.2217/bmm.14.102. PubMed DOI
Kiess A. P., Wang H., Travis W. D., Yahalom J. Sarcoid in cancer patients: clinical characteristics and associated disease status. Sarcoidosis, Vasculitis and Diffuse Lung Diseases. 2015;32(3):200–207. PubMed
Levänen B., Wheelock Å. M., Eklund A., Grunewald J., Nord M. Increased pulmonary Wnt (wingless/integrated)-signaling in patients with sarcoidosis. Respiratory Medicine. 2011;105(2):282–291. doi: 10.1016/j.rmed.2010.11.018. PubMed DOI
Tzouvelekis A., Ntolios P., Karameris A., et al. Expression of hypoxia-inducible factor (HIF)-1a-vascular endothelial growth factor (VEGF)-inhibitory growth factor (ING)-4- axis in sarcoidosis patients. BMC Research Notes. 2012;5, article 654 doi: 10.1186/1756-0500-5-654. PubMed DOI PMC
Beirne P., Pantelidis P., Charles P., et al. Multiplex immune serum biomarker profiling in sarcoidosis and systemic sclerosis. European Respiratory Journal. 2009;34(6):1376–1382. doi: 10.1183/09031936.00028209. PubMed DOI
Yamashita M., Mouri T., Niisato M., et al. Heterogeneous characteristics of lymphatic microvasculatures associated with pulmonary sarcoid granulomas. Annals of the American Thoracic Society. 2013;10(2):90–97. doi: 10.1513/AnnalsATS.201209-078OC. PubMed DOI
Rastogi R., Du W., Ju D., et al. Dysregulation of p38 and MKP-1 in response to NOD1/TLR4 stimulation in sarcoid bronchoalveolar cells. American Journal of Respiratory and Critical Care Medicine. 2011;183(4):500–510. doi: 10.1164/rccm.201005-0792OC. PubMed DOI PMC
Xaus J., Besalduch N., Comalada M., et al. High expression of p21Waf1 in sarcoid granulomas: a putative role for long-lasting inflammation. Journal of Leukocyte Biology. 2003;74(2):295–301. doi: 10.1189/jlb.1202628. PubMed DOI
Massagué J. TGFβ signalling in context. Nature Reviews Molecular Cell Biology. 2012;13(10):616–630. doi: 10.1038/nrm3434. PubMed DOI PMC
Yang G., Yang L., Wang W., Wang J., Wang J., Xu Z. Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosis disease progression. Gene. 2015;562(1):138–144. doi: 10.1016/j.gene.2015.02.065. PubMed DOI
Arakelyan A., Kriegova E., Kubištova Z., et al. Protein levels of CC chemokine ligand (CCL)15, CCL16 and macrophage stimulating protein in patients with sarcoidosis. Clinical and Experimental Immunology. 2009;155(3):457–465. doi: 10.1111/j.1365-2249.2008.03832.x. PubMed DOI PMC
Rivera N. V., Ronninger M., Shchetynsky K., et al. High-density genetic mapping identifies new susceptibility variants in sarcoidosis phenotypes and shows genomic-driven phenotypic differences. American Journal of Respiratory and Critical Care Medicine. 2016;193(9):1008–1022. doi: 10.1164/rccm.201507-1372oc. PubMed DOI PMC
Navratilova Z., Mrazek F., Kriegova E., et al. The MCP-1-2518 (A to G) single nucleotide polymorphism in Czech patients with pulmonary sarcoidosis: association with Löfgren's syndrome. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases: Official Journal of WASOG. 2007;24(1):33–38. PubMed
Spagnolo P., Sato H., Grunewald J., et al. A common haplotype of the C-C chemokine receptor 2 gene and HLA-DRB1∗0301 are independent genetic risk factors for Löfgren's syndrome. Journal of Internal Medicine. 2008;264(5):433–441. doi: 10.1111/j.1365-2796.2008.01984.x. PubMed DOI
Turchinovich A., Samatov T. R., Tonevitsky A. G., Burwinkel B. Circulating miRNAs: cell-cell communication function? Frontiers in Genetics. 2013;4, article id 119 doi: 10.3389/fgene.2013.00119. PubMed DOI PMC