Effects of Restrained Sampling Space and Nonplanar Amino Groups on Free-Energy Predictions for RNA with Imino and Sheared Tandem GA Base Pairs Flanked by GC, CG, iGiC or iCiG Base Pairs
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM022939
NIGMS NIH HHS - United States
PubMed
20090924
PubMed Central
PMC2807739
DOI
10.1021/ct800540c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Guanine-adenine (GA) base pairs play important roles in determining the structure, dynamics, and stability of RNA. In RNA internal loops, GA base pairs often occur in tandem arrangements and their structure is context and sequence dependent. Calculations reported here test the thermodynamic integration (TI) approach with the amber99 force field by comparing computational predictions of free energy differences with the free energy differences expected on the basis of NMR determined structures of the RNA motifs (5'-GCGGACGC-3')(2), (5'-GCiGGAiCGC-3')(2), (5'-GGCGAGCC-3')(2), and (5'-GGiCGAiGCC-3')(2). Here, iG and iC denote isoguanosine and isocytidine, which have amino and carbonyl groups transposed relative to guanosine and cytidine. The NMR structures show that the GA base pairs adopt either imino (cis Watson-Crick/Watson-Crick A-G) or sheared (trans Hoogsteen/Sugar edge A-G) conformations depending on the identity and orientation of the adjacent base pair. A new mixing function for the TI method is developed that allows alchemical transitions in which atoms can disappear in both the initial and final states. Unrestrained calculations gave DeltaG degrees values 2-4 kcal/mol different from expectations based on NMR data. Restraining the structures with hydrogen bond restraints did not improve the predictions. Agreement with NMR data was improved by 0.7 to 1.5 kcal/mol, however, when structures were restrained with weak positional restraints to sample around the experimentally determined NMR structures. The amber99 force field was modified to partially include pyramidalization effects of the unpaired amino group of guanosine in imino GA base pairs. This provided little or no improvement in comparisons with experiment. The marginal improvement is observed when the structure has potential cross-strand out-of-plane hydrogen bonding with the G amino group. The calculations using positional restraints and a nonplanar amino group reproduce the signs of DeltaG degrees from the experimental results and are, thus, capable of providing useful qualitative insights complementing the NMR experiments. Decomposition of the terms in the calculations reveals that the dominant terms are from electrostatic and interstrand interactions other than hydrogen bonds in the base pairs. The results suggest that a better description of the backbone is key to reproducing the experimental free energy results with computational free energy predictions.
Zobrazit více v PubMed
Krasovska M. V.; Sefcikova J.; Spackova N.; Sponer J.; Walter N. G. Structural dynamics of precursor and product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamics simulations. J. Mol. Biol. 2005, 351, 731. PubMed
Csaszar K.; Spackova N.; Stefl R.; Sponer J.; Leontis N. B. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: The role of non- Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding. J. Mol. Biol. 2001, 313, 1073. PubMed
Auffinger P.; Hashem Y. Nucleic acid solvation: from outside to insight. Curr. Opin. Struct. Biol. 2007, 17, 325. PubMed
McDowell S. E.; Spackova N.; Sponer J.; Walter N. G. Molecular dynamics simulations of RNA: An in silico single molecule approach. Biopolymers 2007, 85, 169. PubMed PMC
Trylska J.; Tozzini V.; McCammon J. A. Exploring global motions and correlations in the ribosome. Biophys. J. 2005, 89, 1455. PubMed PMC
Zagrovic B.; Pande V. Solvent viscosity dependence of the folding rate of a small protein: Distributed computing study. J. Comput. Chem. 2003, 24, 1432. PubMed
Russell R.; Millettt I. S.; Tate M. W.; Kwok L. W.; Nakatani B.; Gruner S. M.; Mochrie S. G. J.; Pande V.; Doniach S.; Herschlag D.; Pollack L. Rapid compaction during RNA folding. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4266. PubMed PMC
Zagrovic B.; Sorin E. J.; Pande V. Beta-hairpin folding simulations in atomistic detail using an implicit solvent model. J. Mol. Biol. 2001, 313, 151. PubMed
Duan Y.; Kollman P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 1998, 282, 740. PubMed
Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179.
MacKerell A. D.; Bashford D.; Bellott M.; Dunbrack R. L.; Evanseck J. D.; Field M. J.; Fischer S.; Gao J.; Guo H.; Ha S.; Joseph-McCarthy D.; Kuchnir L.; Kuczera K.; Lau F. T. K.; Mattos C.; Michnick S.; Ngo T.; Nguyen D. T.; Prodhom B.; Reiher W. E.; Roux B.; Schlenkrich M.; Smith J. C.; Stote R.; Straub J.; Watanabe M.; Wiorkiewicz-Kuczera J.; Yin D.; Karplus M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586. PubMed
Scott W. R. P.; Hunenberger P. H.; Tironi I. G.; Mark A. E.; Billeter S. R.; Fennen J.; Torda A. E.; Huber T.; Kruger P.; van Gunsteren W. F. The GROMOS biomolecular simulation program package. J. Phys. Chem. A 1999, 103, 3596.
Sponer J.; Riley K. E.; Hobza P. Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 2008, 10, 2595. PubMed
Gautheret D. F.; Konings D.; Gutell R. R. A major family of motifs involving G·A mismatches in ribosomal RNA. J. Mol. Biol. 1994, 242, 1. PubMed
Gutell R. R.; Gray M. W.; Schnare M. N. A compilation of large subunit (23S- and 23S-like) ribosomal-RNA structures: 1993. Nucleic Acids Res. 1993, 21, 3055. PubMed PMC
Gutell R. R.; Weiser B.; Woese C. R.; Noller H. F. Comparative anatomy of 16S-like ribosomal-RNA. Prog. Nucleic Acid Res. Mol. Biol. 1985, 32, 155. PubMed
Cannone J. J.; Subramanian S.; Schnare M. N.; Collett J. R.; D’Souza L. M.; Du Y. S.; Feng B.; Lin N.; Madabusi L. V.; Muller K. M.; Pande N.; Shang Z. D.; Yu N.; Gutell R. R. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 2002, 3, 2. PubMed PMC
Pley H. W.; Flaherty K. M.; McKay D. B. 3-Dimensional structure of a hammerhead ribozyme. Nature 1994, 372, 68. PubMed
Pley H. W.; Flaherty K. M.; McKay D. B. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 1994, 372, 111. PubMed
Biou V.; Yaremchuk A.; Tukalo M.; Cusack S. The 2.9 Angstrom crystal structure of T. thermophilus Seryl-tRNA synthetase complexed with tRNA(Ser). Science 1994, 263, 1404. PubMed
Murphy F. L.; Cech T. R. GAAA tetraloop and conserved bulge stabilize tertiary structure of a Group-I Intron domain. J. Mol. Biol. 1994, 236, 49. PubMed
Michel F.; Westhof E. Modeling of the 3-Dimensional architecture of Group-I Catalytic Introns based on comparative sequence-analysis. J. Mol. Biol. 1990, 216, 585. PubMed
Zwieb C. Recognition of a tetranucleotide loop of signal recognition particle RNA by protein-Srp19. J. Biol. Chem. 1992, 267, 15650. PubMed
SantaLucia J.; Kierzek R.; Turner D. H. Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. Biochemistry 1990, 29, 8813. PubMed
SantaLucia J. Jr.; Turner D. H. Structure of r(GGCGAGCC)2 in solution from NMR and restrained molecular dynamics. Biochemistry 1993, 32, 12612. PubMed
Wu M.; Turner D. H. Solution structure of r(GCGGACGC)2 by two-dimensional NMR and the iterative relaxation matrix approach. Biochemistry 1996, 35, 9677. PubMed
Villescas-Diaz G.; Zacharias M. Sequence context dependence of tandem Guanine-Adenine mismatch conformations in RNA: A continuum solvent analysis. Biophys. J. 2003, 85, 416. PubMed PMC
Yildirim I.; Turner D. H. RNA challenges for computational chemists. Biochemistry 2005, 44, 13225. PubMed PMC
Kollman P. A. Free energy calculations: Applications to chemical and biochemical phenomena. Chem. Rev. 1993, 93, 2395.
Chen G.; Kierzek R.; Yildirim I.; Krugh T. R.; Turner D. H.; Kennedy S. D. Stacking effects on local structure in RNA: Changes in the structure of tandem GA pairs when flanking GC pairs are replaced by isoG-isoC pairs. J. Phys. Chem. B 2007, 111, 6718. PubMed PMC
Hobza P.; Sponer J. Structure, energetics, and dynamics of the nucleic acid base pairs: Nonempirical ab initio calculations. Chem. Rev. 1999, 99, 3247. PubMed
Sponer J.; Mokdad A.; Sponer J. E.; Spackova N.; Leszczynski J.; Leontis N. B. Unique tertiary and neighbor interactions determine conservation patterns of cis Watson-Crick A/G base-pairs. J. Mol. Biol. 2003, 330, 967. PubMed
Sponer J.; Florian J.; Hobza P.; Leszczynski J. Nonplanar DNA base pairs. J. Biomol. Struct. Dyn. 1996, 13, 827. PubMed
Wang J. M.; Cieplak P.; Kollman P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules. J. Comput. Chem. 2000, 21, 1049.
Case D. A.; Darden T. A.; Cheatham T. E. I.; Simmerling C. L.; Wang J.; Duke R. E.; Luo R.; Merz K. M.; Pearlman D. A.; Crowley M.; Walker R. C.; Zhang W.; Wang B.; Hayik S.; Roitberg A.; Seabra G.; Wong K. F.; Paesani F.; Wu X.; Brozell S.; Tsui V.; Gohlke H.; Yang L.; Tan C.; Mongan J.; Hornak V.; Cui G.; Beroza P.; Mathews D. H.; Schafmeister C.; Ross W. S.; Kollman P. A.. AMBER 9, University of California: San Francisco, CA; 2006.
Simonson T.; Carlsson J.; Case D. A. Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models. J. Am. Chem. Soc. 2004, 126, 4167. PubMed
Shirts M. R.; Pitera J. W.; Swope W. C.; Pande V. S. Extremely precise free energy calculations of amino acid side chain analogs: Comparison of common molecular mechanics force fields for proteins. J. Chem. Phys. 2003, 119, 5740.
Simonson T. Free-Energy of particle insertion - an exact analysis of the origin singularity for simple liquids. Mol. Phys. 1993, 80, 441.
Wolfram Research, Inc.Mathematica Edition, Version 5.2; Wolfram Research, Inc.: Champaign, IL, 2005.
Pitera J. W.; Van Gunsteren W. F. A comparison of non-bonded scaling approaches for free energy calculations. Mol. Simul. 2002, 28, 45.
Zacharias M.; Straatsma T. P.; McCammon J. A. Separation-shifted scaling, a new scaling method for Lennard-Jones interactions in thermodynamic integration. J. Chem. Phys. 1994, 100, 9025.
Cieplak P.; Cornell W. D.; Bayly C.; Kollman P. A. Application of the multimolecule and multiconformational RESP Methodology to biopolymers - Charge derivation for DNA, RNA, and Proteins. J. Comput. Chem. 1995, 16, 1357.
Cornell W. D.; Cieplak P.; Bayly C. I.; Kollman P. A. Application of RESP charges to calculate conformational energies, hydrogen-bond energies, and free-energies of solvation. J. Am. Chem. Soc. 1993, 115, 9620.
Bayly C. I.; Cieplak P.; Cornell W. D.; Kollman P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges - the Resp Model. J. Phys. Chem. 1993, 97, 10269.
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Montgomery J. A., Jr.; Vreven T.; Kudin K. N.; Burant J. C.; Millam J. M.; Iyengar S. S.; Tomasi J.; Barone V.; Mennucci B.; Cossi M.; Scalmani G.; Rega N.; Petersson G. A.; Nakatsuji H.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Klene M.; Li X.; Knox J. E.; Hratchian H. P.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Ayala P. Y.; Morokuma K.; Voth G. A.; Salvador P.; Dannenberg J. J.; Zakrzewski V. G.; Dapprich S.; Daniels A. D.; Strain M. C.; Farkas O.; Malick D. K.; Rabuck A. D.; Raghavachari K.; Foresman J. B.; Ortiz J. V.; Cui Q.; Baboul A. G.; Clifford S.; Cioslowski J.; Stefanov B. B.; Liu G.; Liashenko A.; Piskorz P.; Komaromi I.; Martin R. L.; Fox D. J.; Keith T.; Al-Laham M. A.; Peng C. Y.; Nanayakkara A.; Challacombe M.; Gill P. M. W.; Johnson B.; Chen W.; Wong M. W.; Gonzalez C. ; Pople J. A.. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford CT,2004.
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926.
Ryjacek F.; Kubar T.; Hobza P. New parameterization of the Cornell et al. empirical force field covering amino group nonplanarity in nucleic acid bases. J. Comput. Chem. 2003, 24, 1891. PubMed
Ryckaert J. P.; Ciccotti G.; Berendsen H. J. C. Numerical-Integration of cartesian equations of motion of a system with constraints: Molecular-Dynamics of N-Alkanes. J. Comput. Phys. 1977, 23, 327.
Jeffrey G. A.An Introduction to Hydrogen Bonding; Oxford University Press:New York, 1997; pp 11−32.
Chen X.; Kierzek R.; Turner D. H. Stability and structure of RNA duplexes containing isoguanosine and isocytidine. J. Am. Chem. Soc. 2001, 123, 1267. PubMed
Leontis N. B.; Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA 2001, 7, 499. PubMed PMC
Grossfield A.; Ren P. Y.; Ponder J. W. Ion solvation thermodynamics from simulation with a polarizable force field. J. Am. Chem. Soc. 2003, 125, 15671. PubMed
Ren P. Y.; Ponder J. W. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 2003, 107, 5933.
Babin V.; Baucom J.; Darden T. A.; Sagui C. Molecular dynamics simulations of DNA with polarizable force fields: Convergence of an ideal B-DNA structure to the crystallographic structure. J. Phys. Chem. B 2006, 110,, 11571. PubMed
Gresh N.; Sponer J. E.; Spackova N.; Leszczynski J.; Sponer J. Theoretical study of binding of hydrated Zn(II) and Mg(II) cations to 5′-guanosine monophosphate. Toward polarizable molecular mechanics for DNA and RNA. J. Phys. Chem. B 2003, 107, 8669.
Humphrey W.; Dalke A.; Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33. PubMed
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
A measure of bending in nucleic acids structures applied to A-tract DNA