Phenotypic plasticity in specialists: How long-spined larval Sympetrum depressiusculum (Odonata: Libellulidae) responds to combined predator cues
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30089145
PubMed Central
PMC6082560
DOI
10.1371/journal.pone.0201406
PII: PONE-D-18-06485
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- fenotyp * MeSH
- fyziologická adaptace * MeSH
- larva MeSH
- potravní řetězec * MeSH
- vážky fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phenotypic plasticity is a common defensive strategy in species experiencing variable predation risk, such as habitat generalists. Larvae of generalist dragonflies can elongate their abdominal spines in environments with fish, but long spines render larvae susceptible to invertebrate predators. Long-spined specialists adapted to fish-heavy habitats are not expected to have phenotypic plasticity in this defence trait, but no empirical studies have been undertaken. Moreover, in comparison to prey responding to multiple predators that induce similar phenotypes, relatively little is known regarding how species react to combinations of predators that favour opposing traits. We examined plasticity of larval dragonfly Sympetrum depressiusculum, a long-spined habitat specialist. In a rearing experiment, larvae were exposed to four environments: (i) no predator control, (ii) fish cues (Carassius auratus), (iii) invertebrate cues (Anax imperator), as well as (iv) a combination of (ii) and (iii). Compared with the control, fish but not invertebrate cues resulted in longer spines for two (one lateral, one dorsal) of the six spines measured. Interestingly, the combined-cue treatment led to the elongation of all four dorsal spines compared with the fish treatment alone, whereas lateral spines showed no response. Our experiment provided evidence of morphological plasticity in a long-spined specialist dragonfly. We showed that nearly all spines can elongate, but also react differently under specific predator settings. Therefore, while spine plasticity evolved in direct response to a single predator type (fish), plasticity was maintained against invertebrate predators as long as fish were also present. Selective spine induction under the combined condition suggests that S. depressiusculum can successfully survive in environments with both predators. Therefore, phenotypic plasticity may be an effective strategy for habitat generalists and specialists. Although more studies are necessary to fully understand how selection shapes the evolution of phenotypic plasticity, we demonstrated that in dragonflies, presence or absence of a specific predator is not the only factor that determines plastic defence responses.
Zobrazit více v PubMed
Kerfoot WC, Sih A. Predation. Direct and indirect impacts on aquatic communities. London: University Press of New England; 1987.
van Buskirk J. Interactive effects of dragonfly predation in expermental pond communities. Ecology. 1988;69: 857–867. 10.2307/1941035 DOI
Crowl TA, Covich AP. Predator-induced life-history shifts in a freshwater snail. Science. 1990;247: 949–951. 10.1126/science.247.4945.949 PubMed DOI
Skelly DK, Werner EE. Behavioral and life-historical responses of larval American toads to an odonate predator. Ecology. 1990;71: 2313–2322. 10.2307/1938642 DOI
Relyea RA. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology. 2001;82: 523–540.
Tseng M. Life-history responses of a mayfly to seasonal constraints and predation risk. Ecol Entomol. 2003;28: 119–123. 10.1046/j.1365-2311.2002.00482.x DOI
Michels E, De Meester L. Inter-clonal variation in phototactic behaviour and key life-history traits in a metapopulation of the cyclical parthenogen Daphnia ambigua: The effect of fish kairomones. Hydrobiologia. 2004;522: 221–233. 10.1023/B:HYDR.0000029988.02195.35 DOI
Lima SL, Dill LM. Behavioral decisions made under the risk of predation: A review and prospectus. Can J Zool. 1990;68: 619–640. 10.1139/z90-092 DOI
Benard MF. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Evol Syst. 2004;35: 651–673. 10.1146/annurev.ecolsys.35.021004.112426 DOI
Moran NA. The evolutionary maintenance of alternative phenotypes. Am Nat. 1992;139: 971–989. 10.1086/285369 DOI
Lively CM, Hazel WN, Schellenberger MJ, Michelson KS. Predator-induced defense: Variation for inducibility in an intertidal barnacle. Ecology. 2000;81: 1240–1247. 10.1890/0012-9658(2000)081[1240:PIDVFI]2.0.CO;2 DOI
Agrawal AA. Phenotypic plasticity in the interactions and evolution of species. Science. 2001;294: 321–326. 10.1126/science.1060701 PubMed DOI
Dicke M, Sabelis MW. Infochemical terminology: Based on cost-benefit analysis rather than origin of compounds? Funct Ecol. 1988;2: 131–139. 10.2307/2389687 DOI
Hettyey A, Tóth Z, Thonhauser KE, Frommen JG, Penn DJ, van Buskirk J. The relative importance of prey-borne and predator-borne chemical cues for inducible antipredator responses in tadpoles. Oecologia. 2015;179: 699–710. 10.1007/s00442-015-3382-7 PubMed DOI
Mitchell MD, Bairos-Novak KR, Ferrari MCO. Mechanisms underlying the control of responses to predator odours in aquatic prey. J Exp Biol. 2017;220: 1937–1946. 10.1242/jeb.135137 PubMed DOI
Tollrian R, Harvell CD. The ecology and evolution of inducible defenses. Princeton, New Jersey: Princeton University Press; 1999.
van Buskirk J. The costs of an inducible defense in anuran larvae. Ecology. 2000;81: 2813–2821. 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2 DOI
Auld JR, Agrawal AA, Relyea RA. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc R Soc B Biol Sci. 2010;277: 503–511. 10.1098/rspb.2009.1355 PubMed DOI PMC
von Elert E, Pohnert G. Predator specificity of kairomones in diel vertical migration of Daphnia: a chemical approach. Oikos. 2000;88: 119–128. 10.1034/j.1600-0706.2000.880114.x DOI
van Buskirk J, Arioli M. Dosage response of an induced defense: How sensitive are tadpoles to predation risk? Ecology. 2002;83: 1580–1585. 10.2307/3071977 DOI
Kishida O, Trussell GC, Mougi A, Nishimura K. Evolutionary ecology of inducible morphological plasticity in predator–prey interaction: Toward the practical links with population ecology. Popul Ecol. 2010;52: 37–46. 10.1007/s10144-009-0182-0 DOI
Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol. 2010;25: 459–467. 10.1016/j.tree.2010.05.006 PubMed DOI
Tollrian R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: Morphological effects of Chaoborus kairomone concentration and their quantification. J Plankton Res. 1993;15: 1309–1318. 10.1093/plankt/15.11.1309 DOI
Tollrian R. Fish-kairomone induced morphological changes in Daphnia lumholtzi (Sars). Arch Für Hydrobiol. 1994;130: 69–75.
Laforsch C, Tollrian R. Embryological aspects of inducible morphological defenses in Daphnia. J Morphol. 2004;262: 701–707. 10.1002/jmor.10270 PubMed DOI
Gyssels F, Stoks R. Behavioral responses to fish kairomones and autotomy in a damselfly. J Ethol. 2006;24: 79–83. 10.1007/s10164-005-0165-3 DOI
Weiss LC, Leimann J, Tollrian R. Predator-induced defences in Daphnia longicephala: Location of kairomone receptors and timeline of sensitive phases to trait formation. J Exp Biol. 2015;218: 2918–2926. 10.1242/jeb.124552 PubMed DOI PMC
Shaffery HM, Relyea RA. Dissecting the smell of fear from conspecific and heterospecific prey: Investigating the processes that induce anti-predator defenses. Oecologia. 2016;180: 55–65. 10.1007/s00442-015-3444-x PubMed DOI
Heynen M, Bunnefeld N, Borcherding J. Facing different predators: adaptiveness of behavioral and morphological traits under predation. Curr Zool. 2017;63: 249–257. 10.1093/cz/zow056 PubMed DOI PMC
Smith AD, Houde ALS, Neff B, Peres-Neto PR. Effects of competition on fitness-related traits. Oecologia. 2017;183: 701–713. 10.1007/s00442-017-3816-5 PubMed DOI
Polačik M, Janáč M. Costly defense in a fluctuating environment-sensitivity of annual Nothobranchius fishes to predator kairomones. Ecol Evol. 2017;7: 4289–4298. 10.1002/ece3.3019 PubMed DOI PMC
Dahl J, Peckarsky BL. Induced morphological defenses in the wild: Predator effects on a mayfly, Drunella coloradensis. Ecology. 2002;83: 1620–1634. 10.1890/0012-9658(2002)083[1620:IMDITW]2.0.CO;2 DOI
Ball SL, Baker RL. Predator-induced life history changes: Antipredator behavior costs or facultative life history shifts? Ecology. 1996;77: 1116–1124. 10.2307/2265580 DOI
Jourdan J, Baier J, Riesch R, Klimpel S, Streit B, Müller R, et al. Adaptive growth reduction in response to fish kairomones allows mosquito larvae (Culex pipiens) to reduce predation risk. Aquat Sci. 2016;78: 303–314. 10.1007/s00027-015-0432-5 DOI
Johansson F, Samuelsson L. Fish-induced variation in abdominal spine length of Leucorrhinia dubia (Odonata) larvae? Oecologia. 1994;100: 74–79. 10.1007/BF00317132 PubMed DOI
Mikolajewski DJ, Rolff J. Benefits of morphological defence demonstrated by direct manipulation in larval dragonflies. Evol Ecol Res. 2004;6: 619–626.
Mikolajewski DJ, Johansson F. Morphological and behavioral defenses in dragonfly larvae: Trait compensation and cospecialization. Behav Ecol. 2004;15: 614–620. 10.1093/beheco/arh061 DOI
Arnqvist G, Johansson F. Ontogenetic reaction norms of predator-induced defensive morphology in dragonfly larvae. Ecology. 1998;79: 1847–1858. 10.1890/0012-9658(1998)079[1847:ORNOPI]2.0.CO;2 DOI
McCauley SJ, Davis CJ, Werner EE. Predator induction of spine length in larval Leucorrhinia intacta (Odonata). Evol Ecol Res. 2008;10: 435–447.
Flenner I, Olne K, Suhling F, Sahlén G. Predator-induced spine length and exocuticle thickness in Leucorrhinia dubia (Insecta: Odonata): A simple physiological trade-off? Ecol Entomol. 2009;34: 735–740. 10.1111/j.1365-2311.2009.01129.x DOI
Petrin Z, Schilling EG, Loftin CS, Johansson F. Predators shape distribution and promote diversification of morphological defenses in Leucorrhinia, Odonata. Evol Ecol. 2010;24: 1003–1016. 10.1007/s10682-010-9361-x DOI
Mikolajewski DJ, Johansson F, Wohlfahrt B, Stoks R. Invertebrate predation selects for the loss of a morphological antipredator trait. Evolution. 2006;60: 1306–1310. 10.1111/j.0014-3820.2006.tb01208.x PubMed DOI
McPeek MA. Behavioral differences between Enallagma species (Odonata) influencing differential vulnerability to predators. Ecology. 1990;71: 1714–1726. 10.2307/1937580 DOI
Mikolajewski DJ, De Block M, Rolff J, Johansson F, Beckerman AP, Stoks R. Predator-driven trait diversification in a dragonfly genus: Covariation in behavioral and morphological antipredator defense. Evolution. 2010;64: 3327–3335. 10.1111/j.1558-5646.2010.01078.x PubMed DOI
Mikolajewski DJ, Rüsen L, Mauersberger R, Johansson F, Rolff J. Relaxed predation results in reduced phenotypic integration in a suite of dragonflies. J Evol Biol. 2015;28: 1354–1363. 10.1111/jeb.12658 PubMed DOI
Johansson F. Reaction norms and production costs of predator-induced morphological defences in a larval dragonfly (Leucorrhinia dubia: Odonata). Can J Zool. 2002;80: 944–950. 10.1139/z02-073 DOI
Pettersson LB, Nilsson PA, Brönmark C. Predator recognition and defence strategies in crucian carp, Carassius carassius. Oikos. 2000;88: 200–212. 10.1034/j.1600-0706.2000.880122.x DOI
Turner AM, Bernot RJ, Boes CM. Chemical cues modify species interactions: The ecological consequences of predator avoidance by freshwater snails. Oikos. 2000;88: 148–158. 10.1034/j.1600-0706.2000.880117.x DOI
Relyea RA. Trait-mediated indirect effects in larval anurans: Reversing competition with the threat of predation. Ecology. 2000;81: 2278–2289. 10.1890/0012-9658(2000)081[2278:TMIEIL]2.0.CO;2 DOI
Relyea RA. How prey respond to combined predators: a review and an empirical test. Ecology. 2003;84: 1827–1839. 10.1890/0012-9658(2003)084[1827:HPRTCP]2.0.CO;2 DOI
Sternberg K, Buchwald R. Die Libellen Baden-Württembergs. Band 2: Großlibellen (Anisoptera). Stuttgart: Verlag Eugen Ulmer Gmbh & Co.; 2000.
Kalkman VJ, Boudot J-P, Bernard R, Conze K-J, De Knijf G, Dyatlova E, et al. European red list of dragonflies. Luxembourg: Publications Office of the European Union; 2010.
Kalkman VJ, Boudot J-P, Bernard R, De Knijf G, Suhling F, Termaat T. Diversity and conservation of European dragonflies and damselflies (Odonata). Hydrobiologia. 2018.
Dolný A, Harabiš F, Bárta D. Vážky (Insecta: Odonata) České republiky. Praha: Academia; 2016.
Dolný A, Harabiš F, Mižičová H. Home range, movement, and distribution patterns of the threatened dragonfly Sympetrum depressiusculum (Odonata: Libellulidae): A thousand times greater territory to protect? PLoS ONE. 2014;9: e100408 10.1371/journal.pone.0100408 PubMed DOI PMC
Šigutová H, Šigut M, Dolný A. Intensive fish ponds as ecological traps for dragonflies: An imminent threat to the endangered species Sympetrum depressiusculum (Odonata: Libellulidae). J Insect Conserv. 2015;19: 961–974. 10.1007/s10841-015-9813-2 DOI
Gerken B, Sternberg K. Die Exuvien Europäischer Libellen (Insecta, Odonata)/The exuviae of European dragonflies. Höxter: Huxaria Druckerei GmbH; 1999.
Dijkstra K-DB, Lewington R. Field guide to the dragonflies of Britain and Europe including western Turkey and northwestern Africa. Gillingham: British Wildlife Publishing; 2006.
Kottelat M, Freyhof J. Handbook of European freshwater fishes. Cornol, Switzerland: Publications Kottelat; 2007.
Akkas SB, Kepenek AO, Beklioglu M, Severcan F. Molecular approach to the chemical characterization of fish-exuded kairomone: A Fourier transform infrared spectroscopic study. Aquat Sci. 2010;72: 71–83. 10.1007/s00027-009-0114-2 DOI
Benke AC, Benke SS. Comparative dynamics and life histories of coexisting dragonfly populations. Ecology. 1975;56: 302–317. 10.2307/1934962 DOI
Suhling F, Sahlén G, Gorb SN, Kalkman VJ, Dijkstra K-DB, van Tol J. Order Odonata In: Thorp J, Rogers DC, editors. Ecology and general biology: Thorp and Covich’s freshwater invertebrates. Academic Press; 2015. pp. 893–932.
Benke AC. A method for comparing individual growth rates of aquatic insects with special reference to Odonata. Ecology. 1970;51: 328–331. 10.2307/1933673 DOI
R Development Core Team. R: A language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria; 2015. https://www.r-project.org.
Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62: 245–253. 10.1111/j.1541-0420.2005.00440.x PubMed DOI
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. R package version 2.4-; 2016. https://CRAN.R-project.org/package=vegan.
Ter Braak CJF, Šmilauer P. Canoco reference manual and user’s guide: Software for ordination, version 5.0. Ithaca, USA: Microcomputer Power; 2012.
Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team. nlme: Linear and nonlinear mixed effects models. R package version 3.1–131; 2017. https://CRAN.R-project.org/package=nlme.
Schoeppner NM, Relyea RA. Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences. Ecol Lett. 2005;8: 505–512. 10.1111/j.1461-0248.2005.00744.x PubMed DOI
Schoeppner NM, Relyea RA. Interpreting the smells of predation: How alarm cues and kairomones induce different prey defences. Funct Ecol. 2009;23: 1114–1121. 10.1111/j.1365-2435.2009.01578.x DOI
Hoverman JT, Relyea RA. Prey responses to fine-scale variation in predation risk from combined predators. Oikos. 2016;125: 254–261. 10.1111/oik.02435 DOI
Hoverman JT, Cothran RD, Relyea RA. Generalist versus specialist strategies of plasticity: Snail responses to predators with different foraging modes. Freshw Biol. 2014;59: 1101–1112. 10.1111/fwb.12332 DOI
McPeek MA. Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. Am Nat. 1996;148: 124–138. 10.1086/285906 DOI
McIntosh AR, Peckarsky BL. Criteria determining behavioural responses to multiple predators by a stream mayfly. Oikos. 1999;85: 554–564. 10.2307/3546705 DOI
Lima SL. Life in a multi-predator environment: some considerations for anti-predatory vigilance. Ann Zool Fenn. 1992;29: 217–226.
Matsuda H, Hori M, Abrams PA. Effects of predator-specific defence on biodiversity and community complexity in two-trophic-level communities. Evol Ecol. 1996;10: 13–28. 10.1007/BF01239343 DOI
Teplitsky C, Plenet S, Joly P. Hierarchical responses of tadpoles to multiple predators. Ecology. 2004;85: 2888–2894. 10.1890/03-3043 DOI
Hoverman JT, Relyea RA. The rules of engagement: How to defend against combinations of predators. Oecologia. 2007;154: 551–560. 10.1007/s00442-007-0847-3 PubMed DOI
Bourdeau PE. Prioritized phenotypic responses to combined predators in a marine snail. Ecology. 2009;90: 165–1669. 10.1890/08-1653.1 PubMed DOI
Pigliucci M. Phenotypic plasticity: Beyond nature and nurture. Baltimore, MD: Johns Hopkins University Press; 2001.
Relyea RA. Integrating phenotypic plasticity when death is on the line In: Pigliucci M, Preston K, editors. Phenotypic integration studying the ecology and evolution of complex phenotypes. Oxford: Oxford University Press; 2004. pp. 176–190.
DeWitt TJ, Sih A, Hucko JA. Trait compensation and cospecialization in a freshwater snail: Size, shape and antipredator behaviour. Anim Behav. 1999;58: 397–407. 10.1006/anbe.1999.1158 PubMed DOI
Cornwallis CK, Birkhead TR. Plasticity in reproductive phenotypes reveals status-specific correlations between behavioral, morphological, and physiological sexual traits. Evolution. 2008;62: 1149–1161. 10.1111/j.1558-5646.2008.00346.x PubMed DOI
Bourdeau PE, Johansson F. Predator-induced morphological defences as by-products of prey behaviour: A review and prospectus. Oikos. 2012;121: 1175–1190. 10.1111/j.1600-0706.2012.20235.x DOI
Snell-Rood EC, van Dyken JD, Cruickshank T, Wade MJ, Moczek AP. Toward a population genetic framework of developmental evolution: The costs, limits, and consequences of phenotypic plasticity. BioEssays. 2010;32: 71–81. 10.1002/bies.200900132 PubMed DOI PMC
Relyea RA. Fine-tuned phenotypes: Tadpole plasticity under 16 combinations of predators and competitors. Ecology. 2004;85: 172–179. 10.1890/03-0169 DOI