Enantiodiscrimination of Inherently Chiral Thiacalixarenes by Residual Dipolar Couplings
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36655948
PubMed Central
PMC11267606
DOI
10.1021/acs.joc.2c02594
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Inherently chiral compounds, such as calixarenes, are chiral due to a nonplanar three-dimensional (3D) structure. Determining their conformation is essential to understand their properties, with nuclear magnetic resonance (NMR) spectroscopy being one applicable method. Using alignment media to measure residual dipolar couplings (RDCs) to obtain structural information is advantageous when classical NMR parameters like the nuclear Overhauser effect (NOE) or J-couplings fail. Besides providing more accurate structural information, the alignment media can induce different orientations of enantiomers. In this study, we examined the ability of polyglutamates with different side-chain moieties─poly-γ-benzyl-l-glutamate (PBLG) and poly-γ-p-biphenylmethyl-l-glutamate (PBPMLG) ─to enantiodifferentiate the inherently chiral phenoxathiin-based thiacalix[4]arenes. Both media, in combination with two solvents, allowed for enantiodiscrimination, which was, to the best of our knowledge, proved for the first time on inherently chiral compounds. Moreover, using the experimental RDCs, we investigated the calix[4]arenes conformational preferences in solution, quantitatively analyzed the differences in the alignment of the enantiomers, and discussed the pitfalls of the use of the RDC analysis.
Zobrazit více v PubMed
Thiele C. M. Residual Dipolar Couplings (RDCs) in Organic Structure Determination. Eur. J. Org. Chem. 2008, 2008, 5673–5685. 10.1002/ejoc.200800686. DOI
Kummerlöwe G.; Luy B. Residual dipolar couplings as a tool in determining the structure of organic molecules. TrAC, Trends Anal. Chem. 2009, 28, 483–493. 10.1016/j.trac.2008.11.016. DOI
Li G.-W.; Liu H.; Qiu F.; Wang X.-J.; Lei X.-X. Residual Dipolar Couplings in Structure Determination of Natural Products. Nat. Prod. Bioprospect. 2018, 8, 279–295. 10.1007/s13659-018-0174-x. PubMed DOI PMC
Neuhaus D.; Williamson M. P.. The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd ed.; John Wiley & Sons Ltd: Chichester, West Sussex, England, 2000; p 656.
Bifulco G.; Dambruoso P.; Gomez-Paloma L.; Riccio R. Determination of Relative Configuration in Organic Compounds by NMR Spectroscopy and Computational Methods. Chem. Rev. 2007, 107, 3744–3779. 10.1021/cr030733c. PubMed DOI
Kummerlöwe G.; Luy B.. Residual Dipolar Couplings for the Configurational and Conformational Analysis of Organic Molecules. In Annual Reports on NMR Spectroscopy; Webb G. A., Ed.; Academic Press, 2009; Vol. 68, pp 193–230.
Marx A.; Thiele C. Orientational Properties of Poly-gamma-benzyl-L-glutamate: Influence of Molecular Weight and Solvent on Order Parameters of the Solute. Chem. – Eur. J. 2009, 15, 254–260. 10.1002/chem.200801147. PubMed DOI
Thiele C. M. Simultaneous assignment of all diastereotopic protons in strychnine using RDCs: PELG as alignment medium for organic molecules. J. Org. Chem. 2004, 69, 7403–7413. 10.1021/jo049867w. PubMed DOI
Lei X.; Qiu F.; Sun H.; Bai L.; Wang W.-X.; Xiang W.; Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew. Chem., Int. Ed. 2017, 56, 12857–12861. 10.1002/anie.201705123. PubMed DOI
Qin S.-Y.; Jiang Y.; Sun H.; Liu H.; Zhang A.-Q.; Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid-Crystalline-Based Medium. Angew. Chem., Int. Ed. 2020, 59, 17097–17103. 10.1002/anie.202007243. PubMed DOI
Arnold L.; Marx A.; Thiele C. M.; Reggelin M. Polyguanidines as Chiral Orienting Media for Organic Compounds. Chem. – Eur. J. 2010, 16, 10342–10346. 10.1002/chem.201000940. PubMed DOI
Dama M.; Berger S. Polyisocyanides As a New Alignment Medium To Measure Residual Dipolar Couplings for Small Organic Molecules. Org. Lett. 2012, 14, 241–243. 10.1021/ol202547y. PubMed DOI
Dama M.; Berger S. Polyacetylenes as a new alignment medium to measure residual dipolar couplings for chiral organic molecules. Tetrahedron Lett. 2012, 53, 6439–6442. 10.1016/j.tetlet.2012.09.060. PubMed DOI
Meyer N. C.; Krupp A.; Schmidts V.; Thiele C. M.; Reggelin M. Polyacetylenes as Enantiodifferentiating Alignment Media. Angew. Chem., Int. Ed. 2012, 51, 8334–8338. 10.1002/anie.201201891. PubMed DOI
Holub J.; Eigner V.; Vrzal L.; Dvorakova H.; Lhotak P. Calix[4]arenes with intramolecularly bridged meta positions prepared via Pd-catalysed double C-H activation. Chem. Commun. 2013, 49, 2798–2800. 10.1039/c3cc40655e. PubMed DOI
Vrzal L.; Flidrova K.; Tobrman T.; Dvorakova H.; Lhotak P. Use of residual dipolar couplings in conformational analysis of meta-disubstituted calix[4]arenes. Chem. Commun. 2014, 50, 7590–7592. 10.1039/c4cc02274b. PubMed DOI
Vrzal L.; Kratochvílová-Šimánová M.; Landovský T.; Polívková K.; Budka J.; Dvořáková H.; Lhoták P. Application of RDC enhanced NMR spectroscopy in structural analysis of thiacalix[4]arene derivatives. Org. Biomol. Chem. 2015, 13, 9610–9618. 10.1039/C5OB01424G. PubMed DOI
Slavík P.; Krupička M.; Eigner V.; Vrzal L.; Dvořáková H.; Lhoták P. Rearrangement of meta-Bridged Calix[4]arenes Promoted by Internal Strain. J. Org. Chem. 2019, 84, 4229–4235. 10.1021/acs.joc.9b00107. PubMed DOI
Landovský T.; Tichotová M.; Vrzal L.; Budka J.; Eigner V.; Dvořáková H.; Lhoták P. Structure elucidation of phenoxathiin-based thiacalix[4]arene conformations using NOE and RDC data. Tetrahedron 2018, 74, 902–907. 10.1016/j.tet.2018.01.020. DOI
Polívková K.; Šimánová M.; Budka J.; Cuřínová P.; Císařová I.; Lhoták P. Unexpected behaviour of monospirothiacalix[4]arene under acidic conditions. Tetrahedron Lett. 2009, 50, 6347–6350. 10.1016/j.tetlet.2009.08.105. DOI
Landovský T.; Dvořáková H.; Eigner V.; Babor M.; Krupička M.; Kohout M.; Lhoták P. Chemoselective oxidation of phenoxathiin-based thiacalix[4]arene and the stereoselective alkylation of products. New J. Chem. 2018, 42, 20074–20086. 10.1039/C8NJ04690E. DOI
Landovský T.; Babor M.; Čejka J.; Eigner V.; Dvořáková H.; Krupička M.; Lhoták P. Nucleophile-induced transformation of phenoxathiin-based thiacalixarenes. Org. Biomol. Chem. 2021, 19, 8075–8085. 10.1039/D1OB01487K. PubMed DOI
Čajan M.; Lhoták P.; Lang J.; Dvořáková H.; Stibor I.; Koča J. The conformational behaviour of thiacalix[4]arenes: the pinched cone-pinched cone transition. J. Chem. Soc., Perkin Trans. 2 2002, 59, 1922–1929. 10.1039/B204955D. DOI
Ogoshi T.; Yamagishi T.-a.; Nakamoto Y. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chem. Rev. 2016, 116, 7937–8002. 10.1021/acs.chemrev.5b00765. PubMed DOI
Dalla Cort A.; Mandolini L.; Pasquini C.; Schiaffino L. “Inherent chirality” and curvature. New J. Chem. 2004, 28, 1198–1199. 10.1039/B404388J. DOI
Szumna A. Inherently chiral concave molecules-from synthesis to applications. Chem. Soc. Rev. 2010, 39, 4274–4285. 10.1039/b919527k. PubMed DOI
Arnott G. E. Inherently Chiral Calixarenes: Synthesis and Applications. Chem. – Eur. J. 2018, 24, 1744–1754. 10.1002/chem.201703367. PubMed DOI
Canet I.; Meddour A.; Courtieu J.; Canet J. L.; Salaun J. New, and Accurate Method To Determine the Enantiomeric Purity of Amino Acids Based on Deuterium NMR in a Cholesteric Lyotropic Liquid Crystal. J. Am. Chem. Soc. 1994, 116, 2155–2156. 10.1021/ja00084a070. DOI
Lesot P.; Merlet D.; Loewenstein A.; Courtieu J. Enantiomeric visualization using proton-decoupled natural abundance deuterium NMR in poly(γ-benzyl-L-glutamate) liquid crystalline solutions. Tetrahedron: Asymmetry 1998, 9, 1871–1881. 10.1016/S0957-4166(98)00179-7. DOI
Sarfati M.; Lesot P.; Merlet D.; Courtieu J. Theoretical and experimental aspects of enantiomeric differentiation using natural abundance multinuclear nmr spectroscopy in chiral polypeptide liquid crystals. Chem. Commun. 2000, 2069–2081. 10.1039/b006244h. DOI
Aroulanda C.; Merlet D.; Courtieu J.; Lesot P. NMR Experimental Evidence of the Differentiation of Enantiotopic Directions in Cs and C2v Molecules Using Partially Oriented, Chiral Media. J. Am. Chem. Soc. 2001, 123, 12059–12066. 10.1021/ja011685l. PubMed DOI
Lesot P.; Sarfati M.; Courtieu J. Natural Abundance Deuterium NMR Spectroscopy in Polypeptide Liquid Crystals as a New and Incisive Means for the Enantiodifferentiation of Chiral Hydrocarbons. Chem. – Eur. J. 2003, 9, 1724–1745. 10.1002/chem.200390199. PubMed DOI
Marx A.; Schmidts V.; Thiele C. M. How different are diastereomorphous orientations of enantiomers in the liquid crystalline phases of PBLG and PBDG: a case study. Magn. Reson. Chem. 2009, 47, 734–740. 10.1002/mrc.2454. PubMed DOI
Luy B. Distinction of enantiomers by NMR spectroscopy using chiral orienting media. J. Indian Inst. Sci. 2010, 90, 119–132.
Krupp A.; Reggelin M. Phenylalanine-based polyarylacetylenes as enantiomer-differentiating alignment media. Magn. Reson. Chem. 2012, 50, S45–S52. 10.1002/mrc.3894. PubMed DOI
Montag T.; Thiele C. M. Cross-Linked Helically Chiral Poly-(γ-benzyl-L-glutamate) as Enantiodiscriminating Alignment Medium. Chem. – Eur. J. 2013, 19, 2271–2274. 10.1002/chem.201202554. PubMed DOI
Hansmann S.; Larem T.; Thiele C. M. Enantiodifferentiating Properties of the Alignment Media PELG and PBLG – A Comparison. Eur. J. Org. Chem. 2016, 2016, 1324–1329. 10.1002/ejoc.201501410. DOI
Lesot P.; Aroulanda C.; Berdagué P.; Meddour A.; Merlet D.; Farjon J.; Giraud N.; Lafon O. Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges. Prog. Nucl. Magn. Reson. Spectrosc. 2020, 116, 85–154. 10.1016/j.pnmrs.2019.10.001. PubMed DOI
Hansmann S.; Schmidts V.; Thiele C. M. Synthesis of Poly-γ-S-2-methylbutyl-L-glutamate and Poly-γ-S-2-methylbutyl-D-glutamate and Their Use as Enantiodiscriminating Alignment Media in NMR Spectroscopy. Chem. – Eur. J. 2017, 23, 9114–9121. 10.1002/chem.201700699. PubMed DOI
Janßen M. A.; Thiele C. M. Poly-γ-S-perillyl-L-glutamate and Poly-γ-S-perillyl-D-glutamate: Diastereomeric Alignment Media Used for the Investigation of the Alignment Process. Chem. – Eur. J. 2020, 26, 7831–7839. 10.1002/chem.201905447. PubMed DOI PMC
Schwab M.; Herold D.; Thiele C. M. Polyaspartates as Thermoresponsive Enantiodifferentiating Helically Chiral Alignment Media for Anisotropic NMR Spectroscopy. Chem. – Eur. J. 2017, 23, 14576–14584. 10.1002/chem.201702884. PubMed DOI
Schwab M.; Schmidts V.; Thiele C. M. Thermoresponsive Alignment Media in NMR Spectroscopy: Helix Reversal of a Copolyaspartate at Ambient Temperatures. Chem. – Eur. J. 2018, 24, 14373–14377. 10.1002/chem.201803540. PubMed DOI
Jeziorowski S.; Thiele C. M. Poly-gamma-p-biphenylmethyl-glutamate as Enantiodifferentiating Alignment Medium for NMR-Spectroscopy with Temperature Tunable Properties. Chem. – Eur. J. 2018, 24, 15631–15637. 10.1002/chem.201802921. PubMed DOI
Hirschmann M.; Schwab M.; Thiele C. M. Molecular Weights: The Key for Lyotropic Liquid Crystalline Phases of Poly-β-benzyl-L-aspartate. Macromolecules 2019, 52, 6025–6034. 10.1021/acs.macromol.9b00970. DOI
Szalontai G.; Kovács M. Distinction of Tris(diimine)ruthenium(II) enantiomers chiral by virtue of helical chirality: temperature-dependent deuterium NMR spectroscopy in partially oriented phases. Magn. Reson. Chem. 2006, 44, 1044–1050. 10.1002/mrc.1892. PubMed DOI
Lafon O.; Lesot P.; Zimmermann H.; Poupko R.; Luz Z. Chiral Discrimination in the 13C and 2H NMR of the Crown and Saddle Isomers of Nonamethoxy-Cyclotriveratrylene in Chiral Liquid-Crystalline Solutions. J. Phys. Chem. B 2007, 111, 9453–9467. 10.1021/jp070564q. PubMed DOI
Berdagué P.; Herbert-Pucheta J.-E.; Jha V.; Panossian A.; Leroux F. R.; Lesot P. Multi-nuclear NMR of axially chiral biaryls in polypeptide orienting solvents: spectral discriminations and enantiorecognition mechanisms. New J. Chem. 2015, 39, 9504–9517. 10.1039/C5NJ01434D. DOI
Landovský T.; Eigner V.; Babor M.; Tichotová M.; Dvořáková H.; Lhoták P. Regioselective SNAr reaction of the phenoxathiin-based thiacalixarene as a route to a novel macrocyclic skeleton. Chem. Commun. 2020, 56, 78–81. 10.1039/C9CC08335A. PubMed DOI
Stoll R. S.; Peters M. V.; Kuhn A.; Heiles S.; Goddard R.; Bühl M.; Thiele C. M.; Hecht S. Photoswitchable Catalysts: Correlating Structure and Conformational Dynamics with Reactivity by a Combined Experimental and Computational Approach. J. Am. Chem. Soc. 2009, 131, 357–367. 10.1021/ja807694s. PubMed DOI
Schmidts V.RDC@hotFCHT Software, TU Darmstadt, 2013.
Thiele C. M.; Schmidts V.; Böttcher B.; Louzao I.; Berger R.; Maliniak A.; Stevensson B. On the Treatment of Conformational Flexibility when Using Residual Dipolar Couplings for Structure Determination. Angew. Chem., Int. Ed. 2009, 48, 6708–6712. 10.1002/anie.200902398. PubMed DOI
Thiele C. M.; Bermel W. Speeding up the measurement of one-bond scalar (1J) and residual dipolar couplings (1D) by using non-uniform sampling (NUS). J. Magn. Reson. 2012, 216, 134–143. 10.1016/j.jmr.2012.01.008. PubMed DOI
Sass J.; Cordier F.; Hoffmann A.; Rogowski M.; Cousin A.; Omichinski J. G.; Löwen H.; Grzesiek S. Purple Membrane Induced Alignment of Biological Macromolecules in the Magnetic Field. J. Am. Chem. Soc. 1999, 121, 2047–2055. 10.1021/ja983887w. DOI
Sun H.; Reinscheid U. M.; Whitson E. L.; d’Auvergne E. J.; Ireland C. M.; Navarro-Vázquez A.; Griesinger C. Challenge of Large-Scale Motion for Residual Dipolar Coupling Based Analysis of Configuration: The Case of Fibrosterol Sulfate A. J. Am. Chem. Soc. 2011, 133, 14629–14636. 10.1021/ja205295q. PubMed DOI PMC
Aroulanda C.; Lesot P. Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: Concept, tools, and applications. Chirality 2022, 34, 182–244. 10.1002/chir.23386. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Montgomery J. A. Jr.; Vreven T.; Kudin K. N.; Burant J. C.; Millam J. M.; Iyengar S. S.; Tomasi J.; Barone V.; Mennucci B.; Cossi M.; Scalmani G.; Rega N.; Petersson G. A.; Nakatsuji H.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Klene M.; Li X.; Knox J. E.; Hratchian H. P.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Ayala P. Y.; Morokuma K.; Voth G. A.; Salvador P.; Dannenberg J. J.; Zakrzewski V. G.; Dapprich S.; Daniels A. D.; Strain M. C.; Farkas O.; Malick D. K.; Rabuck A. D.; Raghavachari K.; J B Foresman J. B.; Ortiz J. V.; Cui Q.; Baboul A. G.; Clifford S.; Cioslowski J.; Stefanov B. B.; Liu G.; Liashenko A.; Piskorz P.; Komaromi I.; Martin R. L.; Fox D. J.; Keith T.; Al-Laham M. A.; Peng C. Y.; Nanayakkara A.; Challacombe M.; Gill P. M. W.; Johnson B.; Chen W.; Wong M. W.; Gonzalez C.; Pople J. A.. Gaussian 03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Ditchfield R.; Hehre W. J.; Pople J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. 10.1063/1.1674902. DOI
Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e132710.1002/wcms.1327. DOI
Schäfer A.; Horn H.; Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. 10.1063/1.463096. DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI
Ochterski J. W.Vibrational Analysis in Gaussian, 1999. help@gaussian.com.