Enantiodiscrimination of Inherently Chiral Thiacalixarenes by Residual Dipolar Couplings

. 2024 Jul 19 ; 89 (14) : 9711-9720. [epub] 20230119

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36655948

Inherently chiral compounds, such as calixarenes, are chiral due to a nonplanar three-dimensional (3D) structure. Determining their conformation is essential to understand their properties, with nuclear magnetic resonance (NMR) spectroscopy being one applicable method. Using alignment media to measure residual dipolar couplings (RDCs) to obtain structural information is advantageous when classical NMR parameters like the nuclear Overhauser effect (NOE) or J-couplings fail. Besides providing more accurate structural information, the alignment media can induce different orientations of enantiomers. In this study, we examined the ability of polyglutamates with different side-chain moieties─poly-γ-benzyl-l-glutamate (PBLG) and poly-γ-p-biphenylmethyl-l-glutamate (PBPMLG) ─to enantiodifferentiate the inherently chiral phenoxathiin-based thiacalix[4]arenes. Both media, in combination with two solvents, allowed for enantiodiscrimination, which was, to the best of our knowledge, proved for the first time on inherently chiral compounds. Moreover, using the experimental RDCs, we investigated the calix[4]arenes conformational preferences in solution, quantitatively analyzed the differences in the alignment of the enantiomers, and discussed the pitfalls of the use of the RDC analysis.

Zobrazit více v PubMed

Thiele C. M. Residual Dipolar Couplings (RDCs) in Organic Structure Determination. Eur. J. Org. Chem. 2008, 2008, 5673–5685. 10.1002/ejoc.200800686. DOI

Kummerlöwe G.; Luy B. Residual dipolar couplings as a tool in determining the structure of organic molecules. TrAC, Trends Anal. Chem. 2009, 28, 483–493. 10.1016/j.trac.2008.11.016. DOI

Li G.-W.; Liu H.; Qiu F.; Wang X.-J.; Lei X.-X. Residual Dipolar Couplings in Structure Determination of Natural Products. Nat. Prod. Bioprospect. 2018, 8, 279–295. 10.1007/s13659-018-0174-x. PubMed DOI PMC

Neuhaus D.; Williamson M. P.. The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd ed.; John Wiley & Sons Ltd: Chichester, West Sussex, England, 2000; p 656.

Bifulco G.; Dambruoso P.; Gomez-Paloma L.; Riccio R. Determination of Relative Configuration in Organic Compounds by NMR Spectroscopy and Computational Methods. Chem. Rev. 2007, 107, 3744–3779. 10.1021/cr030733c. PubMed DOI

Kummerlöwe G.; Luy B.. Residual Dipolar Couplings for the Configurational and Conformational Analysis of Organic Molecules. In Annual Reports on NMR Spectroscopy; Webb G. A., Ed.; Academic Press, 2009; Vol. 68, pp 193–230.

Marx A.; Thiele C. Orientational Properties of Poly-gamma-benzyl-L-glutamate: Influence of Molecular Weight and Solvent on Order Parameters of the Solute. Chem. – Eur. J. 2009, 15, 254–260. 10.1002/chem.200801147. PubMed DOI

Thiele C. M. Simultaneous assignment of all diastereotopic protons in strychnine using RDCs: PELG as alignment medium for organic molecules. J. Org. Chem. 2004, 69, 7403–7413. 10.1021/jo049867w. PubMed DOI

Lei X.; Qiu F.; Sun H.; Bai L.; Wang W.-X.; Xiang W.; Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew. Chem., Int. Ed. 2017, 56, 12857–12861. 10.1002/anie.201705123. PubMed DOI

Qin S.-Y.; Jiang Y.; Sun H.; Liu H.; Zhang A.-Q.; Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid-Crystalline-Based Medium. Angew. Chem., Int. Ed. 2020, 59, 17097–17103. 10.1002/anie.202007243. PubMed DOI

Arnold L.; Marx A.; Thiele C. M.; Reggelin M. Polyguanidines as Chiral Orienting Media for Organic Compounds. Chem. – Eur. J. 2010, 16, 10342–10346. 10.1002/chem.201000940. PubMed DOI

Dama M.; Berger S. Polyisocyanides As a New Alignment Medium To Measure Residual Dipolar Couplings for Small Organic Molecules. Org. Lett. 2012, 14, 241–243. 10.1021/ol202547y. PubMed DOI

Dama M.; Berger S. Polyacetylenes as a new alignment medium to measure residual dipolar couplings for chiral organic molecules. Tetrahedron Lett. 2012, 53, 6439–6442. 10.1016/j.tetlet.2012.09.060. PubMed DOI

Meyer N. C.; Krupp A.; Schmidts V.; Thiele C. M.; Reggelin M. Polyacetylenes as Enantiodifferentiating Alignment Media. Angew. Chem., Int. Ed. 2012, 51, 8334–8338. 10.1002/anie.201201891. PubMed DOI

Holub J.; Eigner V.; Vrzal L.; Dvorakova H.; Lhotak P. Calix[4]arenes with intramolecularly bridged meta positions prepared via Pd-catalysed double C-H activation. Chem. Commun. 2013, 49, 2798–2800. 10.1039/c3cc40655e. PubMed DOI

Vrzal L.; Flidrova K.; Tobrman T.; Dvorakova H.; Lhotak P. Use of residual dipolar couplings in conformational analysis of meta-disubstituted calix[4]arenes. Chem. Commun. 2014, 50, 7590–7592. 10.1039/c4cc02274b. PubMed DOI

Vrzal L.; Kratochvílová-Šimánová M.; Landovský T.; Polívková K.; Budka J.; Dvořáková H.; Lhoták P. Application of RDC enhanced NMR spectroscopy in structural analysis of thiacalix[4]arene derivatives. Org. Biomol. Chem. 2015, 13, 9610–9618. 10.1039/C5OB01424G. PubMed DOI

Slavík P.; Krupička M.; Eigner V.; Vrzal L.; Dvořáková H.; Lhoták P. Rearrangement of meta-Bridged Calix[4]arenes Promoted by Internal Strain. J. Org. Chem. 2019, 84, 4229–4235. 10.1021/acs.joc.9b00107. PubMed DOI

Landovský T.; Tichotová M.; Vrzal L.; Budka J.; Eigner V.; Dvořáková H.; Lhoták P. Structure elucidation of phenoxathiin-based thiacalix[4]arene conformations using NOE and RDC data. Tetrahedron 2018, 74, 902–907. 10.1016/j.tet.2018.01.020. DOI

Polívková K.; Šimánová M.; Budka J.; Cuřínová P.; Císařová I.; Lhoták P. Unexpected behaviour of monospirothiacalix[4]arene under acidic conditions. Tetrahedron Lett. 2009, 50, 6347–6350. 10.1016/j.tetlet.2009.08.105. DOI

Landovský T.; Dvořáková H.; Eigner V.; Babor M.; Krupička M.; Kohout M.; Lhoták P. Chemoselective oxidation of phenoxathiin-based thiacalix[4]arene and the stereoselective alkylation of products. New J. Chem. 2018, 42, 20074–20086. 10.1039/C8NJ04690E. DOI

Landovský T.; Babor M.; Čejka J.; Eigner V.; Dvořáková H.; Krupička M.; Lhoták P. Nucleophile-induced transformation of phenoxathiin-based thiacalixarenes. Org. Biomol. Chem. 2021, 19, 8075–8085. 10.1039/D1OB01487K. PubMed DOI

Čajan M.; Lhoták P.; Lang J.; Dvořáková H.; Stibor I.; Koča J. The conformational behaviour of thiacalix[4]arenes: the pinched cone-pinched cone transition. J. Chem. Soc., Perkin Trans. 2 2002, 59, 1922–1929. 10.1039/B204955D. DOI

Ogoshi T.; Yamagishi T.-a.; Nakamoto Y. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chem. Rev. 2016, 116, 7937–8002. 10.1021/acs.chemrev.5b00765. PubMed DOI

Dalla Cort A.; Mandolini L.; Pasquini C.; Schiaffino L. “Inherent chirality” and curvature. New J. Chem. 2004, 28, 1198–1199. 10.1039/B404388J. DOI

Szumna A. Inherently chiral concave molecules-from synthesis to applications. Chem. Soc. Rev. 2010, 39, 4274–4285. 10.1039/b919527k. PubMed DOI

Arnott G. E. Inherently Chiral Calixarenes: Synthesis and Applications. Chem. – Eur. J. 2018, 24, 1744–1754. 10.1002/chem.201703367. PubMed DOI

Canet I.; Meddour A.; Courtieu J.; Canet J. L.; Salaun J. New, and Accurate Method To Determine the Enantiomeric Purity of Amino Acids Based on Deuterium NMR in a Cholesteric Lyotropic Liquid Crystal. J. Am. Chem. Soc. 1994, 116, 2155–2156. 10.1021/ja00084a070. DOI

Lesot P.; Merlet D.; Loewenstein A.; Courtieu J. Enantiomeric visualization using proton-decoupled natural abundance deuterium NMR in poly(γ-benzyl-L-glutamate) liquid crystalline solutions. Tetrahedron: Asymmetry 1998, 9, 1871–1881. 10.1016/S0957-4166(98)00179-7. DOI

Sarfati M.; Lesot P.; Merlet D.; Courtieu J. Theoretical and experimental aspects of enantiomeric differentiation using natural abundance multinuclear nmr spectroscopy in chiral polypeptide liquid crystals. Chem. Commun. 2000, 2069–2081. 10.1039/b006244h. DOI

Aroulanda C.; Merlet D.; Courtieu J.; Lesot P. NMR Experimental Evidence of the Differentiation of Enantiotopic Directions in Cs and C2v Molecules Using Partially Oriented, Chiral Media. J. Am. Chem. Soc. 2001, 123, 12059–12066. 10.1021/ja011685l. PubMed DOI

Lesot P.; Sarfati M.; Courtieu J. Natural Abundance Deuterium NMR Spectroscopy in Polypeptide Liquid Crystals as a New and Incisive Means for the Enantiodifferentiation of Chiral Hydrocarbons. Chem. – Eur. J. 2003, 9, 1724–1745. 10.1002/chem.200390199. PubMed DOI

Marx A.; Schmidts V.; Thiele C. M. How different are diastereomorphous orientations of enantiomers in the liquid crystalline phases of PBLG and PBDG: a case study. Magn. Reson. Chem. 2009, 47, 734–740. 10.1002/mrc.2454. PubMed DOI

Luy B. Distinction of enantiomers by NMR spectroscopy using chiral orienting media. J. Indian Inst. Sci. 2010, 90, 119–132.

Krupp A.; Reggelin M. Phenylalanine-based polyarylacetylenes as enantiomer-differentiating alignment media. Magn. Reson. Chem. 2012, 50, S45–S52. 10.1002/mrc.3894. PubMed DOI

Montag T.; Thiele C. M. Cross-Linked Helically Chiral Poly-(γ-benzyl-L-glutamate) as Enantiodiscriminating Alignment Medium. Chem. – Eur. J. 2013, 19, 2271–2274. 10.1002/chem.201202554. PubMed DOI

Hansmann S.; Larem T.; Thiele C. M. Enantiodifferentiating Properties of the Alignment Media PELG and PBLG – A Comparison. Eur. J. Org. Chem. 2016, 2016, 1324–1329. 10.1002/ejoc.201501410. DOI

Lesot P.; Aroulanda C.; Berdagué P.; Meddour A.; Merlet D.; Farjon J.; Giraud N.; Lafon O. Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges. Prog. Nucl. Magn. Reson. Spectrosc. 2020, 116, 85–154. 10.1016/j.pnmrs.2019.10.001. PubMed DOI

Hansmann S.; Schmidts V.; Thiele C. M. Synthesis of Poly-γ-S-2-methylbutyl-L-glutamate and Poly-γ-S-2-methylbutyl-D-glutamate and Their Use as Enantiodiscriminating Alignment Media in NMR Spectroscopy. Chem. – Eur. J. 2017, 23, 9114–9121. 10.1002/chem.201700699. PubMed DOI

Janßen M. A.; Thiele C. M. Poly-γ-S-perillyl-L-glutamate and Poly-γ-S-perillyl-D-glutamate: Diastereomeric Alignment Media Used for the Investigation of the Alignment Process. Chem. – Eur. J. 2020, 26, 7831–7839. 10.1002/chem.201905447. PubMed DOI PMC

Schwab M.; Herold D.; Thiele C. M. Polyaspartates as Thermoresponsive Enantiodifferentiating Helically Chiral Alignment Media for Anisotropic NMR Spectroscopy. Chem. – Eur. J. 2017, 23, 14576–14584. 10.1002/chem.201702884. PubMed DOI

Schwab M.; Schmidts V.; Thiele C. M. Thermoresponsive Alignment Media in NMR Spectroscopy: Helix Reversal of a Copolyaspartate at Ambient Temperatures. Chem. – Eur. J. 2018, 24, 14373–14377. 10.1002/chem.201803540. PubMed DOI

Jeziorowski S.; Thiele C. M. Poly-gamma-p-biphenylmethyl-glutamate as Enantiodifferentiating Alignment Medium for NMR-Spectroscopy with Temperature Tunable Properties. Chem. – Eur. J. 2018, 24, 15631–15637. 10.1002/chem.201802921. PubMed DOI

Hirschmann M.; Schwab M.; Thiele C. M. Molecular Weights: The Key for Lyotropic Liquid Crystalline Phases of Poly-β-benzyl-L-aspartate. Macromolecules 2019, 52, 6025–6034. 10.1021/acs.macromol.9b00970. DOI

Szalontai G.; Kovács M. Distinction of Tris(diimine)ruthenium(II) enantiomers chiral by virtue of helical chirality: temperature-dependent deuterium NMR spectroscopy in partially oriented phases. Magn. Reson. Chem. 2006, 44, 1044–1050. 10.1002/mrc.1892. PubMed DOI

Lafon O.; Lesot P.; Zimmermann H.; Poupko R.; Luz Z. Chiral Discrimination in the 13C and 2H NMR of the Crown and Saddle Isomers of Nonamethoxy-Cyclotriveratrylene in Chiral Liquid-Crystalline Solutions. J. Phys. Chem. B 2007, 111, 9453–9467. 10.1021/jp070564q. PubMed DOI

Berdagué P.; Herbert-Pucheta J.-E.; Jha V.; Panossian A.; Leroux F. R.; Lesot P. Multi-nuclear NMR of axially chiral biaryls in polypeptide orienting solvents: spectral discriminations and enantiorecognition mechanisms. New J. Chem. 2015, 39, 9504–9517. 10.1039/C5NJ01434D. DOI

Landovský T.; Eigner V.; Babor M.; Tichotová M.; Dvořáková H.; Lhoták P. Regioselective SNAr reaction of the phenoxathiin-based thiacalixarene as a route to a novel macrocyclic skeleton. Chem. Commun. 2020, 56, 78–81. 10.1039/C9CC08335A. PubMed DOI

Stoll R. S.; Peters M. V.; Kuhn A.; Heiles S.; Goddard R.; Bühl M.; Thiele C. M.; Hecht S. Photoswitchable Catalysts: Correlating Structure and Conformational Dynamics with Reactivity by a Combined Experimental and Computational Approach. J. Am. Chem. Soc. 2009, 131, 357–367. 10.1021/ja807694s. PubMed DOI

Schmidts V.RDC@hotFCHT Software, TU Darmstadt, 2013.

Thiele C. M.; Schmidts V.; Böttcher B.; Louzao I.; Berger R.; Maliniak A.; Stevensson B. On the Treatment of Conformational Flexibility when Using Residual Dipolar Couplings for Structure Determination. Angew. Chem., Int. Ed. 2009, 48, 6708–6712. 10.1002/anie.200902398. PubMed DOI

Thiele C. M.; Bermel W. Speeding up the measurement of one-bond scalar (1J) and residual dipolar couplings (1D) by using non-uniform sampling (NUS). J. Magn. Reson. 2012, 216, 134–143. 10.1016/j.jmr.2012.01.008. PubMed DOI

Sass J.; Cordier F.; Hoffmann A.; Rogowski M.; Cousin A.; Omichinski J. G.; Löwen H.; Grzesiek S. Purple Membrane Induced Alignment of Biological Macromolecules in the Magnetic Field. J. Am. Chem. Soc. 1999, 121, 2047–2055. 10.1021/ja983887w. DOI

Sun H.; Reinscheid U. M.; Whitson E. L.; d’Auvergne E. J.; Ireland C. M.; Navarro-Vázquez A.; Griesinger C. Challenge of Large-Scale Motion for Residual Dipolar Coupling Based Analysis of Configuration: The Case of Fibrosterol Sulfate A. J. Am. Chem. Soc. 2011, 133, 14629–14636. 10.1021/ja205295q. PubMed DOI PMC

Aroulanda C.; Lesot P. Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: Concept, tools, and applications. Chirality 2022, 34, 182–244. 10.1002/chir.23386. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Montgomery J. A. Jr.; Vreven T.; Kudin K. N.; Burant J. C.; Millam J. M.; Iyengar S. S.; Tomasi J.; Barone V.; Mennucci B.; Cossi M.; Scalmani G.; Rega N.; Petersson G. A.; Nakatsuji H.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Klene M.; Li X.; Knox J. E.; Hratchian H. P.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Ayala P. Y.; Morokuma K.; Voth G. A.; Salvador P.; Dannenberg J. J.; Zakrzewski V. G.; Dapprich S.; Daniels A. D.; Strain M. C.; Farkas O.; Malick D. K.; Rabuck A. D.; Raghavachari K.; J B Foresman J. B.; Ortiz J. V.; Cui Q.; Baboul A. G.; Clifford S.; Cioslowski J.; Stefanov B. B.; Liu G.; Liashenko A.; Piskorz P.; Komaromi I.; Martin R. L.; Fox D. J.; Keith T.; Al-Laham M. A.; Peng C. Y.; Nanayakkara A.; Challacombe M.; Gill P. M. W.; Johnson B.; Chen W.; Wong M. W.; Gonzalez C.; Pople J. A.. Gaussian 03, revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Ditchfield R.; Hehre W. J.; Pople J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. 10.1063/1.1674902. DOI

Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e132710.1002/wcms.1327. DOI

Schäfer A.; Horn H.; Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. 10.1063/1.463096. DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI

Ochterski J. W.Vibrational Analysis in Gaussian, 1999. help@gaussian.com.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...