Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LM2015043
Ministry of Education, Youth and Science - International
W1224
Austrian Science Fund - International
J-4154
Austrian Science Fund - International
16-34818L
Grantová Agentura České Republiky - International
I 2385-N28
Austrian Science Fund - International
LQ1604
Ministry of Education, Youth and Science - International
W 1224
Austrian Science Fund FWF - Austria
CZ.1.05/1.1.00/02.0109
European Regional Development Fund - International
SVV260427/2019
Univerzita Karlova v Praze - International
PubMed
32033404
PubMed Central
PMC7072406
DOI
10.3390/biom10020242
PII: biom10020242
Knihovny.cz E-zdroje
- Klíčová slova
- hydrogen/deuterium exchange mass spectrometry, lignocellulose degradation, lytic polysaccharide monooxygenase, oxidative amino acid modification, peptide bond cleavage, reactive oxygen species,
- MeSH
- celulosa chemie MeSH
- fungální proteiny chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- hmotnostní spektrometrie MeSH
- katalytická doména MeSH
- katalýza MeSH
- koncentrace vodíkových iontů MeSH
- konformace proteinů MeSH
- kyslík chemie MeSH
- lignin chemie MeSH
- měď chemie MeSH
- Neurospora crassa enzymologie MeSH
- oxidační stres MeSH
- oxidoreduktasy chemie MeSH
- oxygenasy se smíšenou funkcí chemie MeSH
- polysacharidy chemie MeSH
- reaktivní formy kyslíku chemie MeSH
- substrátová specifita MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- celulosa MeSH
- fungální proteiny MeSH
- kyslík MeSH
- lignin MeSH
- lignocellulose MeSH Prohlížeč
- měď MeSH
- oxidoreduktasy MeSH
- oxygenasy se smíšenou funkcí MeSH
- polysacharidy MeSH
- reaktivní formy kyslíku MeSH
Lytic polysaccharide monooxygenases (LPMOs) are industrially important oxidoreductases employed in lignocellulose saccharification. Using advanced time-resolved mass spectrometric techniques, we elucidated the structural determinants for substrate-mediated stabilization of the fungal LPMO9C from Neurosporacrassa during catalysis. LPMOs require a reduction in the active-site copper for catalytic activity. We show that copper reduction in NcLPMO9C leads to structural rearrangements and compaction around the active site. However, longer exposure to the reducing agent ascorbic acid also initiated an uncoupling reaction of the bound oxygen species, leading to oxidative damage, partial unfolding, and even fragmentation of NcLPMO9C. Interestingly, no changes in the hydrogen/deuterium exchange rate were detected upon incubation of oxidized or reduced LPMO with crystalline cellulose, indicating that the LPMO-substrate interactions are mainly side-chain mediated and neither affect intraprotein hydrogen bonding nor induce significant shielding of the protein surface. On the other hand, we observed a protective effect of the substrate, which slowed down the autooxidative damage induced by the uncoupling reaction. These observations further complement the picture of structural changes during LPMO catalysis.
Zobrazit více v PubMed
Chylenski P., Bissaro B., Sørlie M., Røhr A.K., Várnai A., Horn S.J., Eijsink V.G.H. Lytic polysaccharide monooxygenases in enzymatic processing of lignocellulosic biomass. ACS Catal. 2019;9:4970–4991. doi: 10.1021/acscatal.9b00246. DOI
Vaaje-Kolstad G., Westereng B., Horn S.J., Liu Z., Zhai H., Sørlie M., Eijsink V.G.H. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science. 2010;330:219–222. doi: 10.1126/science.1192231. PubMed DOI
Levasseur A., Drula E., Lombard V., Coutinho P.M., Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels. 2013;6:1–14. doi: 10.1186/1754-6834-6-41. PubMed DOI PMC
Vu V.V., Beeson W.T., Span E.A., Farquhar E.R., Marletta M.A. A family of starch-active polysaccharide monooxygenases. Proc. Natl. Acad. Sci. USA. 2014;111:13822–13827. doi: 10.1073/pnas.1408090111. PubMed DOI PMC
Couturier M., Ladevèze S., Sulzenbacher G., Ciano L., Fanuel M., Moreau C., Villares A., Cathala B., Chaspoul F., Frendsen K.E., et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat. Chem. Biol. 2018;14:306–310. doi: 10.1038/nchembio.2558. PubMed DOI
Sabbadin F., Hemsworth G.R., Ciano L., Henrissat B., Dupree P., Tryfona T., Marques R.D.S., Sweeney S.T., Besser K., Elias L., et al. An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nat. Commun. 2018;9:756. doi: 10.1038/s41467-018-03142-x. PubMed DOI PMC
Isaksen T., Westereng B., Aachmann F.L., Agger J.W., Kracher D., Kittl R., Ludwig R., Haltrich D., Eijsink V.G.H., Horn S.J. A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J. Biol. Chem. 2014;289:2632–2642. doi: 10.1074/jbc.M113.530196. PubMed DOI PMC
Quinlan R.J., Sweeney M.D., Lo Leggio L., Otten H., Poulsen J.N., Johansen K.S., Krogh K.B.R.M., Jørgensen C.I., Tovborg M., Anthonsen A., et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl. Acad. Sci. USA. 2011;108:15079–15084. doi: 10.1073/pnas.1105776108. PubMed DOI PMC
Westereng B., Ishida T., Vaaje-Kolstad G., Wu M., Eijsink V.G.H., Igarashi K., Samejima M., Ståhlberg J., Horn S.J., Sandgren M. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS ONE. 2011;6:e27807. doi: 10.1371/journal.pone.0027807. PubMed DOI PMC
Tan T., Kracher D., Gandini R., Sygmund C., Kittl R., Haltrich D., Hällberg B.M., Ludwig R., Divne C. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat. Commun. 2015;6:7542. doi: 10.1038/ncomms8542. PubMed DOI PMC
Harris P.V., Welner D., McFarland K.C., Re E., Poulsen J.N., Brown K., Salbo R., Ding H., Vlasenko E., Merino S., et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: Structure and function of a large, enigmatic family. Biochemistry. 2010;49:3305–3316. doi: 10.1021/bi100009p. PubMed DOI
Danneels B., Tanghe M., Joosten H., Gundinger T., Spadiut O., Stals I., Desmet T. A quantitative indicator diagram for lytic polysaccharide monooxygenases reveals the role of aromatic surface residues in HjLPMO9A regioselectivity. PLoS ONE. 2017;12:e0178446. doi: 10.1371/journal.pone.0178446. PubMed DOI PMC
Frandsen K.E.H., Poulsen J.N., Tandrup T., Lo Leggio L. Unliganded and substrate bound structures of the cellooligosaccharide active lytic polysaccharide monooxygenase Ls AA9A at low pH. Carbohydr. Res. 2017;448:187–190. doi: 10.1016/j.carres.2017.03.010. PubMed DOI
Li X., Beeson W.T., Phillips C.M., Marletta M.A., Cate J.H.D. Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure. 2012;20:1051–1061. doi: 10.1016/j.str.2012.04.002. PubMed DOI PMC
Kracher D., Scheiblbrandner S., Felice A.K., Breslmayr E., Preims M., Ludwicka K., Haltrich D., Eijsink V.G., Ludwig R. Extracellular electron transfer systems fuel cellulose oxidative degradation. Science. 2016;352:1098–1101. doi: 10.1126/science.aaf3165. PubMed DOI
Frommhagen M., Mutte S.K., Westphal A.H., Koetsier M.J., Hinz S.W.A., Visser J., Vincken J.P., Weijers D., van Berkel W.J.H., Gruppen H., et al. Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Biotechnol. Biofuels. 2017;10:121. doi: 10.1186/s13068-017-0810-4. PubMed DOI PMC
Loose J.S., Forsberg Z., Kracher D., Scheiblbrandner S., Ludwig R., Eijsink V.G., Vaaje-Kolstad G. Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Protein Sci. 2016;25:2175–2186. doi: 10.1002/pro.3043. PubMed DOI PMC
Phillips C.M., Beeson W.T., Cate J.H., Marletta M.A. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol. 2011;6:1399–1406. doi: 10.1021/cb200351y. PubMed DOI
Courtade G., Wimmer R., Røhr Å.K., Preims M., Felice A.K., Dimarogona M., Vaaje-Kolstad G., Sørlie M., Sandgren M., Ludwig R., et al. Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Proc. Natl. Acad. Sci. USA. 2016;113:5922–5927. doi: 10.1073/pnas.1602566113. PubMed DOI PMC
Aachmann F.L., Sorlie M., Skjak-Braek G., Eijsink V.G.H., Vaaje-Kolstad G. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc. Natl. Acad. Sci. USA. 2012;109:18779–18784. doi: 10.1073/pnas.1208822109. PubMed DOI PMC
Kracher D., Andlar M., Furtmüller P.G., Ludwig R. Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability. J. Biol. Chem. 2018;293:1676–1687. doi: 10.1074/jbc.RA117.000109. PubMed DOI PMC
Hangasky J.A., Marletta M.A. A random-sequential kinetic mechanism for polysaccharide monooxygenases. Biochemistry. 2018;57:3191–3199. doi: 10.1021/acs.biochem.8b00129. PubMed DOI
Beeson W.T., Phillips C.M., Cate J.H.D., Marletta M.A. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J. Am. Chem. Soc. 2012;134:890–892. doi: 10.1021/ja210657t. PubMed DOI
Bissaro B., Røhr Å.K., Müller G., Chylenski P., Skaugen M., Forsberg Z., Horn S.J., Vaaje-Kolstad G., Eijsink V.G.H. Oxidative cleavage of polysaccharides by monocopper enzymes depends on H2O2. Nat. Chem. Biol. 2017;13:1123–1128. doi: 10.1038/nchembio.2470. PubMed DOI
Bissaro B., Streit B., Isaksen I., Eijsink V.G.H., Beckham G.T., DuBois J.L., Røhr Å.K. Molecular mechanism of the chitinolytic peroxygenase reaction. Proc. Natl. Acad. Sci. USA. 2020;117:1504–1513. doi: 10.1073/pnas.1904889117. PubMed DOI PMC
Kim S., Stahlberg J., Sandgren M., Paton R.S., Beckham G.T. Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc. Natl. Acad. Sci. USA. 2014;111:149–154. doi: 10.1073/pnas.1316609111. PubMed DOI PMC
Bennati-Granier C., Garajova S., Champion C., Grisel S., Haon M., Zhou S., Fanuel M., Ropartz D., Rogniaux H., Gimbert I., et al. Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina. Biotechnol. Biofuels. 2015;8:90. doi: 10.1186/s13068-015-0274-3. PubMed DOI PMC
Walton P.H., Davies G.J. On the catalytic mechanisms of lytic polysaccharide monooxygenases. Curr. Opin. Chem. Biol. 2016;31:195–207. doi: 10.1016/j.cbpa.2016.04.001. PubMed DOI
Kuusk S., Bissaro B., Kuusk P., Forsberg Z., Eijsink V.G.H., Sørlie M., Väljamäe P. Kinetics of H2O2 -driven degradation of chitin by a bacterial lytic polysaccharide monooxygenase. J. Biol. Chem. 2018;293:523–531. doi: 10.1074/jbc.M117.817593. PubMed DOI PMC
Hangasky J.A., Iavarone A.T., Marletta M.A. Reactivity of O2 versus H2O2 with polysaccharide monooxygenases. Proc. Natl. Acad. Sci. USA. 2018;115:4915–4920. doi: 10.1073/pnas.1801153115. PubMed DOI PMC
Müller G., Chylenski P., Bissaro B., Eijsink V.G.H., Horn S.J. The impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail. Biotechnol. Biofuels. 2018;11:209. doi: 10.1186/s13068-018-1199-4. PubMed DOI PMC
Loose J.S.M., Arntzen M.Ø., Bissaro B., Ludwig R., Eijsink V.G.H., Vaaje-Kolstad G. Multipoint precision binding of substrate protects lytic polysaccharide monooxygenases from self-destructive off-pathway processes. Biochemistry. 2018;57:4114–4124. doi: 10.1021/acs.biochem.8b00484. PubMed DOI
Scarpa M., Stevanato R., Viglino P., Rigo A. Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. Effect of superoxide dismutase. J. Biol. Chem. 1983;258:6695–6697. PubMed
Bissaro B., Várnai A., Røhr Å.K., Eijsink V.G.H. Oxidoreductases and reactive oxygen species in conversion of lignocellulosic biomass. Microbiol. Mol. Biol. Rev. 2018;82:e00029-18. doi: 10.1128/MMBR.00029-18. PubMed DOI PMC
Kittl R., Kracher D., Burgstaller D., Haltrich D., Ludwig R. Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol. Biofuels. 2012;5:79. doi: 10.1186/1754-6834-5-79. PubMed DOI PMC
Span E.A., Suess D.L.M., Deller M.C., Britt R.D., Marletta M.A. The role of the secondary coordination sphere in a fungal polysaccharide monooxygenase. ACS Chem. Biol. 2017;12:1095–1103. doi: 10.1021/acschembio.7b00016. PubMed DOI PMC
Gregory R.C., Hemsworth G.R., Turkenburg J.P., Hart S.J., Walton P.H., Davies G.J. Activity, stability and 3-D structure of the CuII form of a chitin-active lytic polysaccharide monooxygenase from Bacillus amyloliquefaciens. Dalt. Trans. 2016;45:16904–16912. doi: 10.1039/C6DT02793H. PubMed DOI
Sugimoto H., Nakajima Y., Motoyama A., Katagiri E., Watanabe T., Suzuki K. Unfolding of CBP21, a lytic polysaccharide monooxygenase, without dissociation of its copper ion cofactor. Biopolymers. 2019;111:e23339. doi: 10.1002/bip.23339. PubMed DOI
Kadek A., Mrazek H., Halada P., Rey M., Schriemer D.C., Man P. Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 2014;86:4287–4294. doi: 10.1021/ac404076j. PubMed DOI
Rey M., Man P., Brandolin G., Forest E., Pelosi L. Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:3431–3438. doi: 10.1002/rcm.4260. PubMed DOI
Hsieh E.J., Hoopmann M.R., MacLean B., MacCoss M.J. Comparison of database search strategies for high precursor mass accuracy MS/MS data. J. Proteome Res. 2010;9:1138–1143. doi: 10.1021/pr900816a. PubMed DOI PMC
Trcka F., Durech M., Vankova P., Chmelik J., Martinkova V., Hausner J., Kadek A., Marcoux J., Klumpler T., Vojtesek B., et al. Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding. Mol. Cell. Proteomics. 2019;18:320–337. doi: 10.1074/mcp.RA118.001044. PubMed DOI PMC
Kavan D., Man P. MSTools—Web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrom. 2011;302:53–58. doi: 10.1016/j.ijms.2010.07.030. DOI
Borisova A.S., Isaksen T., Dimarogona M., Kognole A.A., Mathiesen G., Várnai A., Røhr Å.K., Payne C.M., Sørlie M., Sandgren M., et al. Structural and functional characterization of a lytic lolysaccharide monooxygenase with broad substrate specificity. J. Biol. Chem. 2015;290:22955–22969. doi: 10.1074/jbc.M115.660183. PubMed DOI PMC
Singh K.R., Blossom B.M., Russo D.A., van Oort B., Croce R., Jensen P.E., Felbyb C., Bjerrum M.J. Thermal unfolding and refolding of a lytic polysaccharide monooxygenase from Thermoascus aurantiacus. RSC Adv. 2019;9:29734–29742. doi: 10.1039/C9RA05920B. PubMed DOI PMC
Yang M., Hoeppner M., Rey M., Kadek A., Man P., Schriemer D.C. Recombinant nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 2015;87:6681–6687. doi: 10.1021/acs.analchem.5b00831. PubMed DOI
Kadek A., Tretyachenko V., Mrazek H., Ivanova L., Halada P., Rey M., Schriemer D.C., Man P. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis. Protein Expr. Purif. 2014;95:121–128. doi: 10.1016/j.pep.2013.12.005. PubMed DOI
Tsiatsiani L., Akeroyd M., Olsthoorn M., Heck A.J.R. Aspergillus niger prolyl endoprotease for hydrogen–deuterium exchange mass spectrometry and protein structural studies. Anal. Chem. 2017;89:7966–7973. doi: 10.1021/acs.analchem.7b01161. PubMed DOI PMC
Uchida K., Kato Y., Kawakishi S. A novel mechanism for oxidative cleavage of prolyl peptides induced by the hydroxyl radical. Biochem. Biophys. Res. Commun. 1990;169:265–271. doi: 10.1016/0006-291X(90)91463-3. PubMed DOI
Garrison W.M. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 1987;87:381–398. doi: 10.1021/cr00078a006. DOI
Frandsen K.E., Simmons T.J., Dupree P., Poulsen J.C., Hemsworth G.R., Ciano L., Johnston E.M., Tovborg M., Johansen K.S., von Freiesleben P., et al. The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nat. Chem. Biol. 2016;12:298–303. doi: 10.1038/nchembio.2029. PubMed DOI PMC
Vaaje-Kolstad G., Forsberg Z., Loose J.S., Bissaro B., Eijsink V.G. Structural diversity of lytic polysaccharide monooxygenases. Curr. Opin. Struct. Biol. 2017;44:67–76. doi: 10.1016/j.sbi.2016.12.012. PubMed DOI
Beckham G.T., Matthews J.F., Bomble Y.J., Bu L., Adney W.S., Himmel M.E., Nimlos M.R., Crowley M.F. Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase. J. Phys. Chem. B. 2010;114:1447–1453. doi: 10.1021/jp908810a. PubMed DOI
Griffo A., Rooijakkers B.J.M., Hähl H., Jacobs K., Linder M.B., Laaksonen P. Binding Forces of Cellulose Binding Modules on Cellulosic Nanomaterials. Biomacromolecules. 2019;20:769–777. doi: 10.1021/acs.biomac.8b01346. PubMed DOI PMC