Positive impact of dynamic seeding of mesenchymal stem cells on bone-like biodegradable scaffolds with increased content of calcium phosphate nanoparticles

. 2019 Aug ; 46 (4) : 4483-4500. [epub] 20190610

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31183678

Grantová podpora
15-25813A Ministry of Health of the Czech Republic

Odkazy

PubMed 31183678
DOI 10.1007/s11033-019-04903-7
PII: 10.1007/s11033-019-04903-7
Knihovny.cz E-zdroje

One of the main aims of bone tissue engineering, regenerative medicine and cell therapy is development of an optimal artificial environment (scaffold) that can trigger a favorable response within the host tissue, it is well colonized by resident cells of organism and ideally, it can be in vitro pre-colonized by cells of interest to intensify the process of tissue regeneration. The aim of this study was to develop an effective tool for regenerative medicine, which combines the optimal bone-like scaffold and colonization technique suitable for cell application. Accordingly, this study includes material (physical, chemical and structural) and in vitro biological evaluation of scaffolds prior to in vivo study. Thus, porosity, permeability or elasticity of two types of bone-like scaffolds differing in the ratio of collagen type I and natural calcium phosphate nanoparticles (bCaP) were determined, then analyzes of scaffold interaction with mesenchymal stem cells (MSCs) were performed. Simultaneously, dynamic seeding using a perfusion bioreactor followed by static cultivation was compared with standard static cultivation for the whole period of cultivation. In summary, cell colonization ability was estimated by determination of cell distribution within the scaffold (number, depth and homogeneity), matrix metalloproteinase activity and gene expression analysis of signaling molecules and differentiation markers. Results showed, the used dynamic colonization technique together with the newly-developed collagen-based scaffold with high content of bCaP to be an effective combined tool for producing bone grafts for bone implantology and regenerative medicine.

Zobrazit více v PubMed

Biomaterials. 2001 Jan;22(1):87-96 PubMed

Annu Rev Biomed Eng. 2001;3:307-33 PubMed

J Biomed Mater Res. 2001 Dec 15;57(4):588-96 PubMed

J Biomed Mater Res. 2002 Jun 15;60(4):613-21 PubMed

Biomaterials. 2002 Jun;23(12):2499-507 PubMed

Biomaterials. 2003 Nov;24(25):4691-7 PubMed

Calcif Tissue Int. 2004 May;74(5):437-47 PubMed

Biotechnol Bioeng. 2004 Jun 5;86(5):493-502 PubMed

Mol Cell Biol. 1992 Mar;12(3):915-27 PubMed

Science. 2005 Nov 18;310(5751):1139-43 PubMed

J Cell Biochem. 2006 Aug 1;98(5):1076-84 PubMed

Cell. 2006 Aug 25;126(4):677-89 PubMed

Exp Cell Res. 2007 Jan 1;313(1):22-37 PubMed

Am J Physiol Cell Physiol. 2007 May;292(5):C1701-13 PubMed

Technol Health Care. 2007;15(1):3-17 PubMed

Nat Mater. 2007 Dec;6(12):997-1003 PubMed

Oral Dis. 2007 Nov;13(6):530-7 PubMed

Scand J Clin Lab Invest. 2008;68(1):58-67 PubMed

J Cell Mol Med. 2008 Jan-Feb;12(1):281-91 PubMed

Acta Biomater. 2008 Nov;4(6):1904-15 PubMed

Tissue Eng Part A. 2008 Aug;14(8):1331-40 PubMed

Tissue Eng Part A. 2009 May;15(5):1141-9 PubMed

Anal Biochem. 2009 Apr 1;387(1):136-8 PubMed

Biomaterials. 2009 Apr;30(11):2085-94 PubMed

Biotechnol Prog. 2009 Nov-Dec;25(6):1762-71 PubMed

Ann Biomed Eng. 2010 Jan;38(1):2-20 PubMed

Biomaterials. 2010 Jan;31(2):279-87 PubMed

Tissue Eng Part C Methods. 2010 Apr;16(2):281-9 PubMed

Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):419-27 PubMed

J Biomech. 2010 Mar 3;43(4):618-26 PubMed

Ann Biomed Eng. 2010 Mar;38(3):558-69 PubMed

Semin Cancer Biol. 2010 Jun;20(3):161-8 PubMed

J Mater Sci Mater Med. 2010 Nov;21(11):3039-48 PubMed

Physiol Res. 2011;60(3):559-71 PubMed

Biotechnol Bioeng. 2012 Jun;109(6):1583-94 PubMed

Methods Mol Biol. 2012;879:491-504 PubMed

Nat Methods. 2012 Jun 28;9(7):676-82 PubMed

Ocul Surf. 2013 Apr;11(2):65-74 PubMed

Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4849-58 PubMed

J Biomed Mater Res A. 2014 Nov;102(11):3918-30 PubMed

Acta Biomater. 2014 May;10(5):2005-13 PubMed

ScientificWorldJournal. 2013 Dec 23;2013:123974 PubMed

J Biomed Nanotechnol. 2014 Feb;10(2):287-98 PubMed

J Biomed Mater Res A. 2015 Feb;103(2):671-82 PubMed

Biomed Res Int. 2014;2014:938368 PubMed

J Biomed Mater Res B Appl Biomater. 2015 Feb;103(2):243-53 PubMed

Arch Biochem Biophys. 2014 Nov 1;561:64-73 PubMed

Int J Biochem Cell Biol. 2015 Aug;65:20-31 PubMed

Biomed Mater. 2015 Nov 20;10(6):065008 PubMed

Acta Biomater. 2016 Mar;33:166-75 PubMed

J Mech Behav Biomed Mater. 2017 Jan;65:295-305 PubMed

Histochem Cell Biol. 2017 Sep;148(3):273-288 PubMed

J Mater Sci Mater Med. 2018 Feb 01;29(3):20 PubMed

Adv Sci (Weinh). 2018 Apr 19;5(6):1700817 PubMed

Int J Biol Macromol. 2019 Apr 1;126:1116-1124 PubMed

J Biomech. 1997 Jul;30(7):743-5 PubMed

J Biomed Mater Res. 1998 Feb;39(2):190-9 PubMed

Indian J Biochem Biophys. 1997 Oct;34(5):449-60 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...