Positive impact of dynamic seeding of mesenchymal stem cells on bone-like biodegradable scaffolds with increased content of calcium phosphate nanoparticles
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15-25813A
Ministry of Health of the Czech Republic
PubMed
31183678
DOI
10.1007/s11033-019-04903-7
PII: 10.1007/s11033-019-04903-7
Knihovny.cz E-zdroje
- Klíčová slova
- Bone tissue engineering, Collagen scaffolds, Dynamic seeding, Mesenchymal stem cells, Static cultivation,
- MeSH
- buněčná diferenciace MeSH
- fosforečnany vápenaté metabolismus MeSH
- kolagen chemie MeSH
- kosti a kostní tkáň chemie MeSH
- kultivované buňky MeSH
- mezenchymální kmenové buňky metabolismus MeSH
- nanočástice MeSH
- osteogeneze účinky léků MeSH
- prasata MeSH
- regenerativní lékařství MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- calcium phosphate MeSH Prohlížeč
- fosforečnany vápenaté MeSH
- kolagen MeSH
One of the main aims of bone tissue engineering, regenerative medicine and cell therapy is development of an optimal artificial environment (scaffold) that can trigger a favorable response within the host tissue, it is well colonized by resident cells of organism and ideally, it can be in vitro pre-colonized by cells of interest to intensify the process of tissue regeneration. The aim of this study was to develop an effective tool for regenerative medicine, which combines the optimal bone-like scaffold and colonization technique suitable for cell application. Accordingly, this study includes material (physical, chemical and structural) and in vitro biological evaluation of scaffolds prior to in vivo study. Thus, porosity, permeability or elasticity of two types of bone-like scaffolds differing in the ratio of collagen type I and natural calcium phosphate nanoparticles (bCaP) were determined, then analyzes of scaffold interaction with mesenchymal stem cells (MSCs) were performed. Simultaneously, dynamic seeding using a perfusion bioreactor followed by static cultivation was compared with standard static cultivation for the whole period of cultivation. In summary, cell colonization ability was estimated by determination of cell distribution within the scaffold (number, depth and homogeneity), matrix metalloproteinase activity and gene expression analysis of signaling molecules and differentiation markers. Results showed, the used dynamic colonization technique together with the newly-developed collagen-based scaffold with high content of bCaP to be an effective combined tool for producing bone grafts for bone implantology and regenerative medicine.
Zobrazit více v PubMed
Biomaterials. 2001 Jan;22(1):87-96 PubMed
Annu Rev Biomed Eng. 2001;3:307-33 PubMed
J Biomed Mater Res. 2001 Dec 15;57(4):588-96 PubMed
J Biomed Mater Res. 2002 Jun 15;60(4):613-21 PubMed
Biomaterials. 2002 Jun;23(12):2499-507 PubMed
Biomaterials. 2003 Nov;24(25):4691-7 PubMed
Calcif Tissue Int. 2004 May;74(5):437-47 PubMed
Biotechnol Bioeng. 2004 Jun 5;86(5):493-502 PubMed
Mol Cell Biol. 1992 Mar;12(3):915-27 PubMed
Science. 2005 Nov 18;310(5751):1139-43 PubMed
J Cell Biochem. 2006 Aug 1;98(5):1076-84 PubMed
Cell. 2006 Aug 25;126(4):677-89 PubMed
Exp Cell Res. 2007 Jan 1;313(1):22-37 PubMed
Am J Physiol Cell Physiol. 2007 May;292(5):C1701-13 PubMed
Technol Health Care. 2007;15(1):3-17 PubMed
Nat Mater. 2007 Dec;6(12):997-1003 PubMed
Oral Dis. 2007 Nov;13(6):530-7 PubMed
Scand J Clin Lab Invest. 2008;68(1):58-67 PubMed
J Cell Mol Med. 2008 Jan-Feb;12(1):281-91 PubMed
Acta Biomater. 2008 Nov;4(6):1904-15 PubMed
Tissue Eng Part A. 2008 Aug;14(8):1331-40 PubMed
Tissue Eng Part A. 2009 May;15(5):1141-9 PubMed
Anal Biochem. 2009 Apr 1;387(1):136-8 PubMed
Biomaterials. 2009 Apr;30(11):2085-94 PubMed
Biotechnol Prog. 2009 Nov-Dec;25(6):1762-71 PubMed
Ann Biomed Eng. 2010 Jan;38(1):2-20 PubMed
Biomaterials. 2010 Jan;31(2):279-87 PubMed
Tissue Eng Part C Methods. 2010 Apr;16(2):281-9 PubMed
Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):419-27 PubMed
J Biomech. 2010 Mar 3;43(4):618-26 PubMed
Ann Biomed Eng. 2010 Mar;38(3):558-69 PubMed
Semin Cancer Biol. 2010 Jun;20(3):161-8 PubMed
J Mater Sci Mater Med. 2010 Nov;21(11):3039-48 PubMed
Physiol Res. 2011;60(3):559-71 PubMed
Biotechnol Bioeng. 2012 Jun;109(6):1583-94 PubMed
Methods Mol Biol. 2012;879:491-504 PubMed
Nat Methods. 2012 Jun 28;9(7):676-82 PubMed
Ocul Surf. 2013 Apr;11(2):65-74 PubMed
Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4849-58 PubMed
J Biomed Mater Res A. 2014 Nov;102(11):3918-30 PubMed
Acta Biomater. 2014 May;10(5):2005-13 PubMed
ScientificWorldJournal. 2013 Dec 23;2013:123974 PubMed
J Biomed Nanotechnol. 2014 Feb;10(2):287-98 PubMed
J Biomed Mater Res A. 2015 Feb;103(2):671-82 PubMed
Biomed Res Int. 2014;2014:938368 PubMed
J Biomed Mater Res B Appl Biomater. 2015 Feb;103(2):243-53 PubMed
Arch Biochem Biophys. 2014 Nov 1;561:64-73 PubMed
Int J Biochem Cell Biol. 2015 Aug;65:20-31 PubMed
Biomed Mater. 2015 Nov 20;10(6):065008 PubMed
Acta Biomater. 2016 Mar;33:166-75 PubMed
J Mech Behav Biomed Mater. 2017 Jan;65:295-305 PubMed
Histochem Cell Biol. 2017 Sep;148(3):273-288 PubMed
J Mater Sci Mater Med. 2018 Feb 01;29(3):20 PubMed
Adv Sci (Weinh). 2018 Apr 19;5(6):1700817 PubMed
Int J Biol Macromol. 2019 Apr 1;126:1116-1124 PubMed
J Biomech. 1997 Jul;30(7):743-5 PubMed
J Biomed Mater Res. 1998 Feb;39(2):190-9 PubMed
Indian J Biochem Biophys. 1997 Oct;34(5):449-60 PubMed