Dry versus hydrated collagen scaffolds: are dry states representative of hydrated states?
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
15-25813A
Ministerstvo Zdravotnictvi Ceske Republiky
CZ.1.05/41.00/16.0346
Research and Development for Innovations Operational Programme
Progres Q29/1LF
Ministry of Education, Youth and Sports of the Czech Republic
400215
GAUK
67985891
RVO
CEP - Centrální evidence projektů
PubMed
29392427
DOI
10.1007/s10856-017-6024-2
PII: 10.1007/s10856-017-6024-2
Knihovny.cz E-zdroje
- MeSH
- biokompatibilní materiály chemie MeSH
- fosforečnany vápenaté chemie MeSH
- kolagen chemie MeSH
- kyselina hyaluronová chemie MeSH
- mechanické jevy MeSH
- modul pružnosti MeSH
- pevnost v tlaku MeSH
- polyestery chemie MeSH
- poréznost MeSH
- rentgenová mikrotomografie MeSH
- testování materiálů MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- voda chemie MeSH
- vysoušení * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- calcium phosphate MeSH Prohlížeč
- fosforečnany vápenaté MeSH
- kolagen MeSH
- kyselina hyaluronová MeSH
- poly(lactide) MeSH Prohlížeč
- polyestery MeSH
- voda MeSH
Collagen composite scaffolds have been used for a number of studies in tissue engineering. The hydration of such highly porous and hydrophilic structures may influence mechanical behaviour and porosity due to swelling. The differences in physical properties following hydration would represent a significant limiting factor for the seeding, growth and differentiation of cells in vitro and the overall applicability of such hydrophilic materials in vivo. Scaffolds based on collagen matrix, poly(DL-lactide) nanofibers, calcium phosphate particles and sodium hyaluronate with 8 different material compositions were characterised in the dry and hydrated states using X-ray microcomputed tomography, compression tests, hydraulic permeability measurement, degradation tests and infrared spectrometry. Hydration, simulating the conditions of cell seeding and cultivation up to 48 h and 576 h, was found to exert a minor effect on the morphological parameters and permeability. Conversely, hydration had a major statistically significant effect on the mechanical behaviour of all the tested scaffolds. The elastic modulus and compressive strength of all the scaffolds decreased by ~95%. The quantitative results provided confirm the importance of analysing scaffolds in the hydrated rather than the dry state since the former more precisely simulates the real environment for which such materials are designed.
Zobrazit více v PubMed
J Mech Behav Biomed Mater. 2014 Jun;34:106-15 PubMed
Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:208-20 PubMed
J Mech Behav Biomed Mater. 2012 Apr;8:204-15 PubMed
Int J Biol Macromol. 2016 Oct;91:51-9 PubMed
Acta Biomater. 2008 Nov;4(6):1904-15 PubMed
Biomaterials. 2004 Mar;25(6):1077-86 PubMed
Acta Biomater. 2015 Oct;25:131-42 PubMed
Calcif Tissue Int. 2004 May;74(5):437-47 PubMed
Acta Biomater. 2015 Apr;17:16-25 PubMed
J Mech Behav Biomed Mater. 2015 Nov;51:169-83 PubMed
Ann Biomed Eng. 2010 Mar;38(3):558-69 PubMed
Carbohydr Polym. 2016 Nov 5;152:566-574 PubMed
J Mech Behav Biomed Mater. 2014 Aug;36:32-46 PubMed
Acta Biomater. 2016 Sep 1;41:193-203 PubMed
J Mech Behav Biomed Mater. 2016 Aug;61:464-474 PubMed
Cell Prolif. 2013 Feb;46(1):23-37 PubMed
Biomed Mater. 2015 Nov 20;10(6):065008 PubMed
Biomaterials. 2007 Feb;28(6):1036-47 PubMed
Indian J Biochem Biophys. 1997 Oct;34(5):449-60 PubMed
Biomaterials. 2002 Jun;23(12):2499-507 PubMed
J Biomech. 1997 Jul;30(7):743-5 PubMed
Annu Rev Biomed Eng. 2001;3:307-33 PubMed
Med Eng Phys. 2009 May;31(4):420-7 PubMed
ScientificWorldJournal. 2013 Dec 23;2013:123974 PubMed
Int J Biol Macromol. 2015 Mar;74:397-403 PubMed
Tissue Eng Part C Methods. 2010 Apr;16(2):281-9 PubMed
Appl Biochem Biotechnol. 2005 Jun;125(3):147-58 PubMed
Carbohydr Polym. 2014 Feb 15;102:901-11 PubMed
Acta Biomater. 2010 Oct;6(10):3957-68 PubMed
Acta Biomater. 2013 Nov;9(10):8611-23 PubMed
J Biomed Mater Res. 1986 Oct;20(8):1219-28 PubMed
Technol Health Care. 2007;15(1):3-17 PubMed
Mater Sci Eng C Mater Biol Appl. 2009 Oct 15;29(8):2448-2453 PubMed
Acta Biomater. 2011 Oct;7(10):3757-65 PubMed
Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:473-83 PubMed
Biomaterials. 2010 Jan;31(2):279-87 PubMed
Nano Lett. 2011 Feb 9;11(2):757-66 PubMed
Colloids Surf B Biointerfaces. 2014 Jan 1;113:352-60 PubMed
Colloids Surf B Biointerfaces. 2015 Dec 1;136:1098-106 PubMed
Int J Biol Macromol. 2013 Sep;60:262-7 PubMed
Cell. 2006 Aug 25;126(4):677-89 PubMed
J Biomed Mater Res B Appl Biomater. 2015 Feb;103(2):243-53 PubMed
Acta Biomater. 2015 Jan;11:3-16 PubMed
Mater Sci Eng C Mater Biol Appl. 2013 Dec 1;33(8):4849-58 PubMed
J Biomed Mater Res. 2001 Dec 15;57(4):588-96 PubMed
Acta Biomater. 2016 Mar;33:166-75 PubMed
Enhancing Guided Bone Regeneration with a Novel Carp Collagen Scaffold: Principles and Applications
Vancomycin-releasing cross-linked collagen sponges as wound dressings