Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-31276A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34202232
PubMed Central
PMC8301420
DOI
10.3390/biomedicines9070733
PII: biomedicines9070733
Knihovny.cz E-zdroje
- Klíčová slova
- FGF2, animal model, autograft, biomechanics, ceramic, collagen, histology, lumbar spinal fusion, micro-CT, tissue engineering,
- Publikační typ
- časopisecké články MeSH
Many growth factors have been studied as additives accelerating lumbar fusion rates in different animal models. However, their low hydrolytic and thermal stability both in vitro and in vivo limits their workability and use. In the proposed work, a stabilized vasculogenic and prohealing fibroblast growth factor-2 (FGF2-STAB®) exhibiting a functional half-life in vitro at 37 °C more than 20 days was applied for lumbar fusion in combination with a bioresorbable scaffold on porcine models. An experimental animal study was designed to investigate the intervertebral fusion efficiency and safety of a bioresorbable ceramic/biopolymer hybrid implant enriched with FGF2-STAB® in comparison with a tricortical bone autograft used as a gold standard. Twenty-four experimental pigs underwent L2/3 discectomy with implantation of either the tricortical iliac crest bone autograft or the bioresorbable hybrid implant (BHI) followed by lateral intervertebral fixation. The quality of spinal fusion was assessed by micro-computed tomography (micro-CT), biomechanical testing, and histological examination at both 8 and 16 weeks after the surgery. While 8 weeks after implantation, micro-CT analysis demonstrated similar fusion quality in both groups, in contrast, spines with BHI involving inorganic hydroxyapatite and tricalcium phosphate along with organic collagen, oxidized cellulose, and FGF2- STAB® showed a significant increase in a fusion quality in comparison to the autograft group 16 weeks post-surgery (p = 0.023). Biomechanical testing revealed significantly higher stiffness of spines treated with the bioresorbable hybrid implant group compared to the autograft group (p < 0.05). Whilst histomorphological evaluation showed significant progression of new bone formation in the BHI group besides non-union and fibrocartilage tissue formed in the autograft group. Significant osteoinductive effects of BHI based on bioceramics, collagen, oxidized cellulose, and FGF2-STAB® could improve outcomes in spinal fusion surgery and bone tissue regeneration.
Zobrazit více v PubMed
Rajaee S.S., Bae H., Kanim L.E., Delamarter R.B. Spinal fusion in the United States. Spine. 2012;37:67–76. doi: 10.1097/BRS.0b013e31820cccfb. PubMed DOI
Chun D.S., Baker K.C., Hsu W.K. Lumbar pseudarthrosis: A review of current diagnosis and treatment. Neurosurg. Focus. 2015;39:E10. doi: 10.3171/2015.7.FOCUS15292. PubMed DOI
Albrektsson T., Johansson C. Osteoinduction, osteoconduction and osseointegration. Use Bone Substit. Spine Surg. 2002;10:12–17. doi: 10.1007/978-3-642-56071-2_3. PubMed DOI PMC
Seiler J.G., Johnson J. Iliac crest autogenous bone grafting: Donor site complications. J. South. Orthop. Assoc. 2000;9:91–97. PubMed
Qu H., Fu H., Han Z., Sun Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 2019;9:26252–26262. doi: 10.1039/C9RA05214C. PubMed DOI PMC
Einhorn T.A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 1998;355S:S7–S21. doi: 10.1097/00003086-199810001-00003. PubMed DOI
El Bialy I., Jiskoot W., Nejadnik M.R. Formulation, Delivery and Stability of Bone Morphogenetic Proteins for Effective Bone Regeneration. Pharm. Res. 2017;34:1152–1170. doi: 10.1007/s11095-017-2147-x. PubMed DOI PMC
Ye F., Zeng Z., Wang J., Liu H., Zheng Z. Comparison of the use of rhBMP-7 versus iliac crest autograft in single-level lumbar fusion: A meta-analysis of randomized controlled trials. J. Bone Miner. Metab. 2017;350:119–127. doi: 10.1007/s00774-017-0821-z. PubMed DOI
Cottrill E., Ahmed A.K., Lessing N., Pennington Z., Ishida W., Perdomo-Pantoja A., Lo S.-F., Howell E., Holmes C., Goodwin C.R., et al. Investigational growth factors utilized in animal models of spinal fusion: Systematic review. World J. Orthop. 2019;10:176–191. doi: 10.5312/wjo.v10.i4.176. PubMed DOI PMC
Coffin J.D., Homer-Bouthiette C., Hurley M.M. Fibroblast Growth Factor 2 and Its Receptors in Bone Biology and Disease. J. Endocr. Soc. 2018;2:657–671. doi: 10.1210/js.2018-00105. PubMed DOI PMC
Inoue G., Uchida K., Matsushita O., Fujimaki H., Saito W., Miyagi M., Sekiguchi H., Nishi N., Ohtori S., Yogoro M., et al. Effect of freeze-dried allograft bone with human basic fibroblast growth factor containing a collagen-binding domain from clostridium histolyticum collagenase on bone formation after lumbar poster-olateral fusion surgery in rats. Spine. 2017;42:E995–E1001. doi: 10.1097/BRS.0000000000002074. PubMed DOI
Charoenlarp P., Rajendran A.K., Iseki S. Role of fibroblast growth factors in bone regeneration. Inflamm. Regen. 2017;37:1–7. doi: 10.1186/s41232-017-0043-8. PubMed DOI PMC
Buchtova M., Chaloupkova R., Zakrzewska M., Vesela I., Cela P., Barathova J., Gudernova I., Zajickova R., Trantirek L., Martin J., et al. Instability restricts signaling of multiple fibroblast growth factors. Cell. Mol. Life Sci. 2015;72:2445–2459. doi: 10.1007/s00018-015-1856-8. PubMed DOI PMC
Enantis . Stable Fibroblast Growth Factor 2 FGF2-STAB®. Enantis; Brno, Czech Republic: 2017.
Nečas A., Proks P., Urbanová L., Srnec R., Stehlík L., Crha M., Raušer P., Plánka L., Janovec J., Dvořák M., et al. Healing of Large Segmental Bone Defect after Implantation of Autogenous Cancellous Bone Graft in Comparison to Hydroxyapatite and 0.5% Collagen Scaffold Combined with Mesenchymal Stem Cells. Acta Veter. Brno. 2010;79:607–612. doi: 10.2754/avb201079040607. DOI
Prosecka E., Rampichova M., Vojtová L., Tvrdik D., Melčáková Š., Juhasova J., Plencner M., Jakubová R., Necas A., Klepáček J., et al. Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. J. Biomed. Mater. Res. Part A. 2011;99:307–315. doi: 10.1002/jbm.a.33189. PubMed DOI
Plánka L., Nečas A., Crha M., Proks P., Vojtova L., Gal P. Treatment of a bone bridge by transplantation of mesenchymal stem cells and chon-drocytes in a composite scaffold in pigs. Experimental study. Acta Chir. Orthop. Traumatol. Cech. 2011;78:528–536. PubMed
Nečas A., Plánka L., Srnec R., Crha M., Hlučilová J., Klíma J., Starý D., Křen L., Amler E., Vojtova L., et al. Quality of newly formed cartilaginous tissue in defects of articular surface after transplantation of mesenchymal stem cells in a composite scaffold based on collagen i with chitosan micro- and nanofibres. Physiol. Res. 2010;59:605–614. doi: 10.33549/physiolres.931725. PubMed DOI
Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI
Wang M. Composite Scaffolds for Bone Tissue Engineering. Am. J. Biochem. Biotechnol. 2006;2:80–84. doi: 10.3844/ajbbsp.2006.80.84. DOI
Sukhodub L., Moseke C., Sulkio-Cleff B., Maleev V., Semenov M., Bereznyak E., Bolbukh T. Collagen–hydroxyapatite–water interactions investigated by XRD, piezogravimetry, infrared and Raman spectroscopy. J. Mol. Struct. 2004;704:53–58. doi: 10.1016/j.molstruc.2003.12.061. DOI
Sachlos E., Gotora D., Czernuszka J.T. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 2006;12:2479–2487. doi: 10.1089/ten.2006.12.2479. PubMed DOI
Prosecka E., Rampichova M., Litvinec A., Tonar Z., Kralickova M., Vojtová L., Kochova P., Plencner M., Buzgo M., Mickova A., et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. Part A. 2015;103:671–682. doi: 10.1002/jbm.a.35216. PubMed DOI
Veillette C.J., McKee M.D. Growth factors—BMPs, DBMs, and buffy coat products: Are there any proven differences amongst them? Injury. 2007;38:S38–S48. doi: 10.1016/j.injury.2007.02.009. PubMed DOI
Babrnáková J., Pavliňáková V., Brtníková J., Sedláček P., Prosecká E., Rampichová M., Filová E., Hearnden V., Vojtová L. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation. Mater. Sci. Eng. C. 2019;100:236–246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI
Ong S.-Y., Wu J., Moochhala S.M., Tan M.-H., Lu J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29:4323–4332. doi: 10.1016/j.biomaterials.2008.07.034. PubMed DOI
Novotna K., Havelka P., Sopuch T., Kolarova K., Vosmanska V., Lisa V., Svorcik V., Bacakova L. Cellulose-based materials as scaffolds for tissue engineering. Cellulose. 2013;20:2263–2278. doi: 10.1007/s10570-013-0006-4. DOI
Hosoya T., Bacher M., Potthast A., Elder T., Rosenau T. Insights into degradation pathways of oxidized anhydroglucose units in cellulose by β-alkoxy-elimination: A combined theoretical and experimental approach. Cellulose. 2018;25:3797–3814. doi: 10.1007/s10570-018-1835-y. DOI
Vojtová L., Pavliňáková V., Muchová J., Kacvinská K., Brtníková J., Knoz M., Lipový B., Faldyna M., Göpfert E., Holoubek J., et al. Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB® Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation. Biomedicines. 2021;9:590. doi: 10.3390/biomedicines9060590. PubMed DOI PMC
Muchová J., Hearnden V., Michlovská L., Vištejnová L., Zavaďáková A., Šmerková K., Kočiová S., Adam V., Kopel P., Vojtová L. Mutual influence of selenium nanoparticles and FGF2-STAB® on biocompatible properties of collagen/chitosan 3D scaffolds: In vitro and ex ovo evaluation. J. Nanobiotechnology. 2021;19:1–16. doi: 10.1186/s12951-021-00849-w. PubMed DOI PMC
Dong C., Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymer. 2016;8:42. doi: 10.3390/polym8020042. PubMed DOI PMC
Šťastný P., Sedlacek R., Suchý T., Lukasova V., Rampichova M., Trunec M. Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro. Mater. Sci. Eng. C. 2019;100:544–553. doi: 10.1016/j.msec.2019.03.027. PubMed DOI
Šťastný P., Chlup Z., Kalasova D., Zikmund T., Kaiser J., Trunec M. Epoxy-based gelcasting of machinable hydroxyapatite foams for medical applications. J. Am. Ceram. Soc. 2018;101:3317–3327. doi: 10.1111/jace.15523. DOI
Sloviková A., Vojtová L., Jančař J. Preparation and modification of collagen-based porous scaffold for tissue engineering. Chem. Pap. 2008;62:417–422. doi: 10.2478/s11696-008-0045-8. DOI
Dvorak P., Bednar D., Vanacek P., Balek L., Eiselleova L., Stepankova V., Sebestova E., Bosakova M., Konecna Z., Mazurenko S., et al. Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol. Bioeng. 2018;115:850–862. doi: 10.1002/bit.26531. PubMed DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Tan G.H., Goss B., Thorpe P.J., Williams R.P. CT-based classification of long spinal allograft fusion. Eur. Spine J. 2007;16:1875–1881. doi: 10.1007/s00586-007-0376-0. PubMed DOI PMC
Scholz M., Schleicher P., Eindorf T., Friedersdorff F., Gelinsky M., König U., Sewing A., Haas N., Kandziora F. Cages augmented with mineralized collagen and platelet-rich plasma as an osteoconductive/inductive combination for interbody fusion. Spine. 2010;35:740–746. doi: 10.1097/BRS.0b013e3181bdc6cc. PubMed DOI
Chen G., Gulbranson D.R., Yu P., Hou Z., Thomson J.A. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells. 2011;30:623–630. doi: 10.1002/stem.1021. PubMed DOI PMC
Andreopoulos F.M., Persaud I. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials. 2006;27:2468–2476. doi: 10.1016/j.biomaterials.2005.11.019. PubMed DOI
Cai S., Liu Y., Shu X.Z., Prestwich G.D. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials. 2005;26:6054–6067. doi: 10.1016/j.biomaterials.2005.03.012. PubMed DOI
Benington L., Rajan G., Locher C., Lim L.Y. Fibroblast Growth Factor 2—A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics. 2020;12:508. doi: 10.3390/pharmaceutics12060508. PubMed DOI PMC
Koledova Z., Sumbal J., Rabata A., De La Bourdonnaye G., Chaloupkova R., Hrdlickova B., Damborsky J., Stepankova V. Fibroblast growth factor 2 protein stability provides decreased dependence on heparin for induction of FGFR signaling and alters ERK signaling dynamics. Front. Cell Dev. Biol. 2019;7:331. doi: 10.3389/fcell.2019.00331. PubMed DOI PMC
Kanematsu A., Marui A., Yamamoto S., Ozeki M., Hirano Y., Yamamoto M., Ogawa O., Komeda M., Tabata Y. Type I collagen can function as a reservoir of basic fibroblast growth factor. J. Control. Release. 2004;99:281–292. doi: 10.1016/j.jconrel.2004.07.008. PubMed DOI
Munisso M.C., Morimoto N., Notodihardjo S.C., Mitsui T., Kakudo N., Kusumoto K. Collagen/Gelatin Sponges (CGSs) Provide Both Protection and Release of bFGF: An In Vitro Study. BioMed Res. Int. 2019;2019:1–9. doi: 10.1155/2019/4016351. PubMed DOI PMC
Wu J.M., Xu Y.Y., Li Z.H., Yuan X.Y., Wang P.F., Zhang X.Z., Liu Y.Q., Guan J., Guo Y., Li R.X., et al. Heparin-functionalized collagen matrices with controlled release of basic fibroblast growth factor. J. Mater. Sci. Mater. Med. 2011;22:107–114. doi: 10.1007/s10856-010-4176-4. PubMed DOI
Ludwig T.E., Levenstein M.E., Jones J.M., Berggren W.T., Mitchen E.R., Frane J.L., Crandall L.J., A Daigh C., Conard K.R., Piekarczyk M.S., et al. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 2006;24:185–187. doi: 10.1038/nbt1177. PubMed DOI
Oh S.H., Park I.K., Kim J.M., Lee J.H. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials. 2007;28:1664–1671. doi: 10.1016/j.biomaterials.2006.11.024. PubMed DOI
Marie P. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene. 2003;316:23–32. doi: 10.1016/S0378-1119(03)00748-0. PubMed DOI
Suchý T., Šupová M., Bartoš M., Sedláček R., Piola M., Soncini M., Fiore G.B., Sauerova P., Kalbacova M.H. Dry versus hydrated collagen scaffolds: Are dry states representative of hydrated states? J. Mater. Sci. Mater. Med. 2018;29:20. doi: 10.1007/s10856-017-6024-2. PubMed DOI
Mosekilde L., Mosekilde L. Normal vertebral body size and compressive strength: Relations to age and to vertebral and iliac trabecular bone compressive strength. Bone. 1986;7:207–212. doi: 10.1016/8756-3282(86)90019-0. PubMed DOI
De Faria S.P. Biomechanical Analysis of the Human Lumbar Spine—An Experimental and Computational Approach. LAETA, IDMEC, IST; Lisbon, Portugal: 2015.
Busscher I., van der Veen A.J., van Dieën J.H., Kingma I., Verkerke G.J., Veldhuizen A.G. In vitro biomechanical characteristics of the spine. Spine. 2010;35:E35–E42. doi: 10.1097/BRS.0b013e3181b21885. PubMed DOI
Lee J.H., Nam Y., Lee J.-H. Animal models of orthopedic research: A spinal fusion model. J. Korean Orthop. Assoc. 2017;52:344–349. doi: 10.4055/jkoa.2017.52.4.344. DOI
McGilvray K.C., Waldorff E.I., Easley J., Seim H.B., Zhang N., Linovitz R.J., Ryaby J.T., Puttlitz C.M. Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: Biomechanical, microcomputed tomographic, and histologic analyses. Spine J. 2017;17:1907–1916. doi: 10.1016/j.spinee.2017.06.034. PubMed DOI
Yong M.R., Saifzadeh S., Askin G.N., Labrom R.D., Hutmacher D.W., Adam C.J. Biological performance of a polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model. Eur. Spine J. 2013;23:650–657. doi: 10.1007/s00586-013-3085-x. PubMed DOI PMC
Chau A.M.T., Xu L.L., Wong J.H.-Y., Mobbs R.J. Current status of bone graft options for anterior interbody fusion of the cervical and lumbar spine. Neurosurg. Rev. 2013;37:23–37. doi: 10.1007/s10143-013-0483-9. PubMed DOI
Sherman B.P., Lindley E.M., Turner A.S., Iii H.B.S., Benedict J., Burger E.L., Patel V.V. Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model. Eur. Spine J. 2010;19:2156–2163. doi: 10.1007/s00586-010-1546-z. PubMed DOI PMC
Ren C., Song Y., Xue Y., Yang X., Zhou C. Evaluation of bioabsorbable multiamino acid copolymer/nanohydroxyapatite/calcium sulfate cage in a goat spine model. World Neurosurg. 2017;103:341–347. doi: 10.1016/j.wneu.2017.04.005. PubMed DOI
Xu H., Zhang F., Wang H., Geng F., Shao M., Xu S., Xia X., Ma X., Lu F., Jiang J. Evaluation of a Porous Bioabsorbable Interbody Mg-Zn Alloy Cage in a Goat Cervical Spine Model. BioMed Res. Int. 2018;2018:1–10. doi: 10.1155/2018/7961509. PubMed DOI PMC
Abbah S.A., Lam C.X., Ramruttun K.A., Goh J.C., Wong H.-K. Autogenous bone marrow stromal cell sheets-loaded mpcl/tcp scaffolds induced osteogenesis in a porcine model of spinal interbody fusion. Tissue Eng. Part A. 2011;17:809–817. doi: 10.1089/ten.tea.2010.0255. PubMed DOI
Dewan A.K., Dewan R.A., Calderon N., Fuentes A., Lazard Z., Davis A.R., Heggeness M., Hipp J.A., Olmsted-Davis E.A. Assessing mechanical integrity of spinal fusion by in situ endochondral oste-oinduction in the murine model. J. Orthop. Surg. Res. 2010;5:E1–E9. doi: 10.1186/1749-799X-5-58. PubMed DOI PMC
Kroeze R.J., Smit T.H., Vergroesen P.-P., Bank R.A., Stoop R., Van Rietbergen B., Van Royen B.J., Helder M.N. Spinal fusion using adipose stem cells seeded on a radiolucent cage filler: A feasibility study of a single surgical procedure in goats. Eur. Spine J. 2014;24:1031–1042. doi: 10.1007/s00586-014-3696-x. PubMed DOI
Daentzer D., Willbold E., Kalla K., Bartsch I., Masalha W., Hallbaum M., Hurschler C., Kauth T., Kaltbeitzel D., Hopmann C., et al. Bioabsorbable interbody magnesium-polymer cage. Spine. 2014;39:E1220–E1227. doi: 10.1097/BRS.0000000000000507. PubMed DOI
Tang J., Guo J., Li Z., Yang C., Xie D., Chen J., Li S., Li S., Kim G.B., Bai X., et al. A fast degradable citrate-based bone scaffold promotes spinal fusion. J. Mater. Chem. B. 2015;3:5569–5576. doi: 10.1039/C5TB00607D. PubMed DOI PMC
Abbah S.A., Lam C.X., Ramruttun A.K., Goh J.C., Wong H.-K. Fusion performance of low-dose recombinant human bone morphogenetic protein 2 and bone marrow-derived multipotent stromal cells in biodegradable scaffolds. Spine. 2011;36:1752–1759. doi: 10.1097/BRS.0b013e31822576a4. PubMed DOI
Sandhu H.S., Toth J.M., Diwan A., Seim H.B., Kanim L.E., Kabo J.M., Turner A.S. Histologic evaluation of the efficacy of rhbmp-2 compared with autograft bone in sheep spinal anterior interbody fusion. Spine. 2002;27:567–575. doi: 10.1097/00007632-200203150-00003. PubMed DOI
Manzur M., Virk S.S., Jivanelli B., Vaishnav A.S., McAnany S.J., Albert T.J., Iyer S., Gang C.H., Qureshi S. The rate of fusion for stand-alone anterior lumbar interbody fusion: A systematic review. Spine J. 2019;19:1294–1301. doi: 10.1016/j.spinee.2019.03.001. PubMed DOI