A Biological Study of Composites Based on the Blends of Nanohydroxyapatite, Silk Fibroin and Chitosan

. 2022 Aug 08 ; 15 (15) : . [epub] 20220808

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35955380

In this work, the biological properties of three-dimensional scaffolds based on a blend of nanohydroxyapatite (nHA), silk fibroin (SF), and chitosan (CTS), were prepared using a lyophilization technique with various weight ratios: 10:45:45, 15:15:70, 15:70:15, 20:40:40, 40:30:30, and 70:15:15 nHA:SF:CTS, respectively. The basic 3D scaffolds were obtained from 5% (w/w) chitosan and 5% silk fibroin solutions and then nHA was added. The morphology and physicochemical properties of scaffolds were studied and compared. A biological test was performed to study the growth and osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs). It was found that the addition of chitosan increases the resistance properties and extends the degradation time of materials. In vitro studies with human mesenchymal stem cells found a high degree of biotolerance for the materials produced, especially for the 20:40:40 and 15:70:15 (nHa:SF:CTS) ratios. The presence of silk fibroin and the elongated shape of the pores positively influenced the differentiation of cells into osteogenic cells. By taking advantage of the differentiation/proliferation cues offered by individual components, the composites based on the nanohydroxyapatite, silk fibroin, and chitosan scaffold may be suitable for bone tissue engineering, and possibly offer an alternative to the widespread use of collagen materials.

Zobrazit více v PubMed

Office of the Surgeon General (US) Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville (MD): Office of the Surgeon General (US); 2004. 2 The Basics of Bone in Health and Disease. [(accessed on 8 July 2022)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK45504/ PubMed

Wei S., Ma J.-X., Xu L., Gu X.-S., Ma X.-L. Biodegradable materials for bone defect repair. Mil. Med. Res. 2020;7:1–25. doi: 10.1186/s40779-020-00280-6. PubMed DOI PMC

Genasan K., Mehrali M., Veerappan T., Talebian S., Malliga Raman M., Singh S., Swamiappan S., Mehrali M., Kamarul T., Balaji Raghavendran H.R. Calcium-Silicate-Incorporated Gellan-Chitosan Induced Osteogenic Differentiation in Mesenchymal Stromal Cells. Polymers. 2021;13:3211. doi: 10.3390/polym13193211. PubMed DOI PMC

Hasany M., Talebian S., Sadat S., Ranjbar N., Mehrali M., Wallace G.G., Mehrali M. Synthesis, properties, and biomedical applications of alginate methacrylate (ALMA)-based hydrogels: Current advances and challenges. Appl. Mater. Today. 2021;24:101150. doi: 10.1016/j.apmt.2021.101150. DOI

Rosa N., Moura M.F.S.F., Olhero S., Simoes R., Magalhães F.D., Marques A.T., Ferreira J.P.S., Reis A.R., Carvalho M., Parente M. Bone: An Outstanding Composite Material. Appl. Sci. 2022;12:3381. doi: 10.3390/app12073381. DOI

Almer J.D., Stock S.R. Micromechanical response of mineral and collagen phases in bone. J. Struct. Biol. 2007;157:365–370. doi: 10.1016/j.jsb.2006.09.001. PubMed DOI

Aksekili A.M.E., Polat Y., Yüksel K., Asiltürk M., Uğurlu M., Kara H., Önder E.Ö., Tosun N. An evaluation of the effect on lower extremity fracture healing of collagen-based fusion material containing 2 different calcium phosphate salts: An experimental rat model. Adv. Clin. Exp. Med. 2018;27:1295–1301. doi: 10.17219/acem/90766. PubMed DOI

Filippi M., Born G., Chaaban M., Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front. Bioeng. Biotechnol. 2020;8:474. doi: 10.3389/fbioe.2020.00474. PubMed DOI PMC

Tuwalska A., Grabska-Zielińska S., Sionkowska A. Chitosan/Silk Fibroin Materials for Biomedical Applications—A Review. Polymers. 2022;14:1343. doi: 10.3390/polym14071343. PubMed DOI PMC

Wang Y., Kim H.-J., Vunjak-Novakovic G., Kaplan D.L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2008;27:6064–6082. doi: 10.1016/j.biomaterials.2006.07.008. PubMed DOI

Kadumudi F.B., Jahanshahi M., Mehrali M., Zsurzsan T.-G., Taebnia N., Hasany M., Mohanty S., Knott A., Godau B., Akbari M., et al. A Protein-Based, Water-Insoluble, and Bendable Polymer with Ionic Conductivity: A Roadmap for Flexible and Green Electronics. Adv. Sci. 2019;6:1801241. doi: 10.1002/advs.201801241. PubMed DOI PMC

Dinoro J., Maher M., Talebian S., Jafarkhani M., Mehrali M., Orive G., Foroughi J., Lord M.S., Dolatshahi-Pirouz A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials. 2019;214:119214. doi: 10.1016/j.biomaterials.2019.05.025. PubMed DOI

Levengood S.L., Zhang M. Chitosan-based scaffolds for bone tissue engineering. J. Mater. Chem. B Mater. Biol. Med. 2014;2:3161–3184. doi: 10.1039/c4tb00027g. PubMed DOI PMC

Czechowska-Biskup R., Jarosińska D., Rokita B., Ulański P., Rosiak J.M. Determination of degree of deacetylation of chitosan—Comparision of methods. Prog. Chem. Appl. Chitin Its Deriv. 2012;17:5–20.

Ostrowska-Czubenko J., Gierszewska-Drużyńska M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr. Polym. 2009;77:590–598. doi: 10.1016/j.carbpol.2009.01.036. DOI

Kubasiewicz-Ross P., Hadzik J., Seeliger J., Kozak K., Jurczyszyn K., Gerber H., Dominiak M., Kunert-Keil C. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann. Anat. 2017;213:83–90. doi: 10.1016/j.aanat.2017.05.010. PubMed DOI

Sionkowska A., Tuwalska A. Preparation and characterization of new materials based on silk fibroin, chitosan and nanohydroxyapatite. Int. J. Polym. Anal. Charact. 2020;25:315–333. doi: 10.1080/1023666X.2020.1786271. DOI

Jung Park H., Lee J.S., Lee O.J., Sheikh F.A., Moon B.M., Ju H.W., Kim J.H., Kim D.K., Park C.H. Fabrication of microporous three-dimensional scaffolds from silk fibroin for tissue engineering. Macromol. Res. 2014;22:592–599. doi: 10.1007/s13233-014-2083-0. DOI

Ajisawa A. Dissolution of silk fibroin with calcium chloride/ethanol aqueous solution. J. Seric. Sci. Jpn. 1998;67:91–94. doi: 10.11416/kontyushigen1930.67.91. DOI

Vojtová L., Pavliňáková V., Muchová J., Kacvinská K., Brtníková J., Knoz M., Lipový B., Faldyna M., Göpfert E., Holoubek J., et al. Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB(R) Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation. [(accessed on 8 July 2022)];Biomedicines. 2021 6:590. doi: 10.3390/biomedicines9060590. Available online: https://pubmed.ncbi.nlm.nih.gov/34067330/ PubMed DOI PMC

Slovikova A., Vojtova L., Jancar J. Preparation and modification of collagen-based scaffold for tissue engineering. [(accessed on 8 July 2022)];Chem. Pap. 2008 4:417–422. doi: 10.2478/s11696-008-0045-8. Available online: https://www.degruyter.com/document/doi/10.2478/s11696-008-0045-8/html. DOI

Sionkowska A., Planecka A. Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. J. Mol. Liq. 2013;178:5–14. doi: 10.1016/j.molliq.2012.10.042. DOI

Porstmann B., Jung K., Schmechta H., Evers U., Pergande M., Porstmann T., Kramm H.J., Krause H. Measurement of lysozyme in human body fluids: Comparison of various enzyme immunoassay techniques and their diagnostic application. Clin. Biochem. 1989;22:349–355. doi: 10.1016/S0009-9120(89)80031-1. PubMed DOI

Osyczka A.M., Nöth U., O’Connor J., Caterson E.J., Yoon K., Danielson K.G., Tuan R.S. Multilineage differentiation of adult human bone marrow progenitor cells transduced with human papilloma virus type 16 E6/E7 genes. Calcif. Tissue Int. 2002;71:447–458. doi: 10.1007/s00223-001-1090-2. PubMed DOI

Hammer R., Harper D., Ryan P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001;4:9.

Fernandes Queiroz M., Melo K.R.T., Sabry D.A., Sassaki G.L., Rocha H.A.O. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Mar. Drugs. 2015;13:141–158. doi: 10.3390/md13010141. PubMed DOI PMC

Infrared Spectroscopy: Fundamentals and Applications. Biological Application. John Wiley and Sons, Ltd.; Hoboken, NJ, USA: 2004. Chapter 7. B. Stuart.

Ibrahim M., Abdel-Fattah W.I., El-Sayed E.S.M., Omar A. A novel model for Chitosan/Hydroxyapatite Interaction. Quantum Matter. 2013;2:234–237. doi: 10.1166/qm.2013.1053. DOI

Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI

Loh Q.L., Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 2013;19:485–502. doi: 10.1089/ten.teb.2012.0437. PubMed DOI PMC

Sugawara Y., Kamioka H., Honjo T., Tezuka K., Takano-Yamamoto T. Threedimensional reconstruction of chick calvarial osteocytes and their cell processes using confocal microscopy. Bone. 2005;36:877–883. doi: 10.1016/j.bone.2004.10.008. PubMed DOI

Abbasi N., Hamlet S., Love R.M., Nguyen N.-T. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Dev. 2020;5:1–9. doi: 10.1016/j.jsamd.2020.01.007. DOI

Lim T.C., Chian K.S., Leong K.F. Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neovascularization and cellular infiltration. J. Biomed. Mater. Res. 2010;94:1303–1311. doi: 10.1002/jbm.a.32747. PubMed DOI

Murphy C.M., Haugh M.G., O’Brien F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–466. doi: 10.1016/j.biomaterials.2009.09.063. PubMed DOI

Di Luca A., Ostrowska B., Lorenzo-Moldero I., Lepedda A.J., Swieszkowski W., Van Blitterswijk C., Moroni L. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci. Rep. 2016;6:22898. doi: 10.1038/srep22898. PubMed DOI PMC

Mineralizacja Organizmu Człowieka Żyjącego: (Mineralogia Człowieka) Mineralization of the Living Human Organism Pawlikowski, Maciej, Choroby Wewnętrzne, Minerały Biochemia 1987, Prace Mineralogiczne/Polska Akademia Nauk. Volume 79. Komisja Nauk Minerologicznych; Cracow, Poland: 1987. p. 79-3396.

Sashina E.S., Bochek A.M., Noselov N.P., Kirichenko D.A. Structure and solubility of natural silk fibroin. Russ. J. Appl. Chem. 2006;79:876–896. doi: 10.1134/S1070427206060012. DOI

Krticka M., Planka L., Vojtova L., Nekuda V., Stastny P., Sedlacek R., Brinek A., Kavkova M., Gopfert E., Hedvicakova V., et al. Lumbar interbody fusion conducted on a porcine model with a bioresorbable ceramic/biopolymer hybrid implant enriched with Hyperstable Fibroblast Growth Factor 2. Biomedicines. 2021;9:733. doi: 10.3390/biomedicines9070733. PubMed DOI PMC

Stachewicz U., Szewczyk P., Kruk A., Barber A., Czyrska-Filemonowicz A. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Mater. Sci. Eng. C. 2019;95:397–408. doi: 10.1016/j.msec.2017.08.076. PubMed DOI

Han Y., Lian M., Wu Q., Qiao Z., Sun B., Dai K. Effect of pore size on cell behavior using melt electrowritten scaffolds. Front. Bioeng. Biotechnol. 2021;9:495. doi: 10.3389/fbioe.2021.629270. PubMed DOI PMC

Spoerke E.D., Murray N.G., Li H., Brinson L.C., Dunand D.C., Stupp S.I. Titanium with aligned, elongated pores for orthopedic tissue engineering applications. J. Biomed. Mater. Res. Part A. 2008;84:402–412. doi: 10.1002/jbm.a.31317. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...