Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB® Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-29874A
Ministerstvo Zdravotnictví Ceské Republiky
LO1508
Ministry of Education, Youth and Sports of the Czech Republic
CEITEC VUT/FEKT-J-20-6146
Vysoké Učení Technické v Brně
PubMed
34067330
PubMed Central
PMC8224647
DOI
10.3390/biomedicines9060590
PII: biomedicines9060590
Knihovny.cz E-zdroje
- Klíčová slova
- FGF2, chitosan, collagen, scaffold, skin regeneration, tissue engineering,
- Publikační typ
- časopisecké články MeSH
Wound healing is a process regulated by a complex interaction of multiple growth factors including fibroblast growth factor 2 (FGF2). Although FGF2 appears in several tissue engineered studies, its applications are limited due to its low stability both in vitro and in vivo. Here, this shortcoming is overcome by a unique nine-point mutant of the low molecular weight isoform FGF2 retaining full biological activity even after twenty days at 37 °C. Crosslinked freeze-dried 3D porous collagen/chitosan scaffolds enriched with this hyper stable recombinant human protein named FGF2-STAB® were tested for in vitro biocompatibility and cytotoxicity using murine 3T3-A31 fibroblasts, for angiogenic potential using an ex ovo chick chorioallantoic membrane assay and for wound healing in vivo with 3-month old white New Zealand rabbits. Metabolic activity assays indicated the positive effect of FGF2-STAB® already at very low concentrations (0.01 µg/mL). The angiogenic properties examined ex ovo showed enhanced vascularization of the tested scaffolds. Histological evaluation and gene expression analysis by RT-qPCR proved newly formed granulation tissue at the place of a previous skin defect without significant inflammation infiltration in vivo. This work highlights the safety and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® protein. Moreover, these sponges could be used as scaffolds for growing cells for dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration.
Clinic of Plastic and Esthetic Surgery St Anne's University Hospital 602 00 Brno Czech Republic
Institute of Experimental Medicine of the Czech Academy of Science 142 20 Prague Czech Republic
Zobrazit více v PubMed
Yan W.C., Davoodi P., Vijayavenkataraman S., Tian Y., Ng W.C., Fuh J.Y.H., Robinson K.S., Wang C.H. 3D bioprinting of skin tissue: From pre-processing to final product evaluation. Adv. Drug Deliv. Rev. 2018;132:270–295. doi: 10.1016/j.addr.2018.07.016. PubMed DOI
Mathes S.H., Ruffner H. The use of skin models in drug development. Adv. Drug Deliv. Rev. 2014;69–70:81–102. doi: 10.1016/j.addr.2013.12.006. PubMed DOI
Parenteau N.L., Bilbo P., Nolte C.J.M., Mason V.S., Rosenberg M. The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function. Cytotechnology. 1992;9:163–171. doi: 10.1007/BF02521744. PubMed DOI
Shpichka A., Butnaru D., Bezrukov E.A., Sukhanov R.B., Atala A., Burdukovskii V., Zhang Y., Timashev P. Skin tissue regeneration for burn injury. Stem Cell Res. Ther. 2019;10:94. doi: 10.1186/s13287-019-1203-3. PubMed DOI PMC
Liu Y., Ma L., Gao C. Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater. Sci. Eng. C. 2012;32:2361–2366. doi: 10.1016/j.msec.2012.07.008. DOI
Yannas I., Tzeranis D., So P.T. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves. Biomed. Mater. 2015;11:014106. doi: 10.1088/1748-6041/11/1/014106. PubMed DOI PMC
Vojtová L., Zikmund T., Pavliňáková V., Šalplachta J., Kalasová D., Prosecká E., Brtníková J., Žídek J., Pavliňák D., Kaiser J. The 3D imaging of mesenchymal stem cells on porous scaffolds using high-contrasted X-ary computed nanotomography. J. Microsc. 2019;273:169–177. doi: 10.1111/jmi.12771. PubMed DOI
Sloviková A., Vojtová L., Jančař J. Preparation and modification of collagen-based porous scaffold for tissue engineering. Chem. Pap. 2008;62:417–422. doi: 10.2478/s11696-008-0045-8. DOI
Hoque M.E., Nuge T., Yeow T.K., Nordin N., Prasad R.G.S.V. Gelatin Based Scaffolds for Tissue Engineering—A Review. Polym. Res. J. 2015;9:15.
Weyers A., Linhardt R.J. Neoproteoglycans in tissue engineering. FEBS J. 2013;280:2511–2522. doi: 10.1111/febs.12187. PubMed DOI PMC
Chen S., Jang T.-S., Pan H.M., Jung H.-D., Sia M.W., Xie S., Hang Y., Chong S.K.M., Wang D., Song J. 3D Freeform Printing of Nanocomposite Hydrogels through in situ Precipitation in Reactive Viscous Fluid. Int. J. Bioprint. 2020;6:258. doi: 10.18063/ijb.v6i2.258. PubMed DOI PMC
Farokhi M., Jonidi Shariatzadeh F., Solouk A., Mirzadeh H. Alginate Based Scaffolds for Cartilage Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2020;69:230–247. doi: 10.1080/00914037.2018.1562924. DOI
Ahmed S., Annu, Ali A., Sheikh J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol. 2018;116:849–862. doi: 10.1016/j.ijbiomac.2018.04.176. PubMed DOI
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.
Chan B.P., Leong K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J. 2008;17:467–479. doi: 10.1007/s00586-008-0745-3. PubMed DOI PMC
Nikolova M.P., Chavali M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019;4:271–292. doi: 10.1016/j.bioactmat.2019.10.005. PubMed DOI PMC
Gostynska N., Shankar Krishnakumar G., Campodoni E., Panseri S., Montesi M., Sprio S., Kon E., Marcacci M., Tampieri A., Sandri M. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application. Biomed. Mater. 2017;12 doi: 10.1088/1748-605X/aa7694. PubMed DOI
Reyna-Urrutia V.A., Mata-Haro V., Cauich-Rodriguez J.V., Herrera-Kao W.A., Cervantes-Uc J.M. Effect of two crosslinking methods on the physicochemical and biological properties of the collagen-chitosan scaffolds. Eur. Polym. J. 2019;117:424–433. doi: 10.1016/j.eurpolymj.2019.05.010. DOI
Zhang X., Adachi S., Ura K., Takagi Y. Properties of collagen extracted from Amur sturgeon Acipenser schrenckii and assessment of collagen fibrils in vitro. Int. J. Biol. Macromol. 2019;137:809–820. doi: 10.1016/j.ijbiomac.2019.07.021. PubMed DOI
Dong C., Lv Y. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives. Polymers. 2016;8:42. doi: 10.3390/polym8020042. PubMed DOI PMC
Sananta P., Rahaditya I.G.M.O., Imadudin M.I., Putera M.A., Andarini S., Kalsum U., Mustamsir E., Dradjat R.S. Collagen scaffold for mesencyhmal stem cell from stromal vascular fraction (biocompatibility and attachment study): Experimental paper. Ann. Med. Surg. 2020;59:31–34. doi: 10.1016/j.amsu.2020.07.055. PubMed DOI PMC
Kaczmarek B., Sionkowska A. Chitosan/collagen blends with inorganic and organic additive—A review. Adv. Polym. Technol. 2018;37:2367–2376. doi: 10.1002/adv.21912. DOI
Babrnáková J., Pavliňáková V., Brtníková J., Sedláček P., Prosecká E., Rampichová M., Filová E., Hearnden V., Vojtová L. Synergistic effect of bovine platelet lysate and various polysaccharides on the biological properties of collagen-based scaffolds for tissue engineering: Scaffold preparation, chemo-physical characterization, in vitro and ex ovo evaluation. Mater. Sci. Eng. C. 2019;100:236–246. doi: 10.1016/j.msec.2019.02.092. PubMed DOI
Pratiwi A.R., Yuliati A., Soepribadi I., Ariani M.D. Application of chitosan scaffolds on vascular endothelial growth factor and fibroblast growth factor 2 expressions in tissue engineering principles. Dent. J. 2015;48:213. doi: 10.20473/j.djmkg.v48.i4.p213-216. DOI
Liu H., Wang C., Li C., Qin Y., Wang Z., Yang F., Li Z., Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8:7533–7549. doi: 10.1039/C7RA13510F. PubMed DOI PMC
Dorazilová J., Muchová J., Šmerková K., Kočiová S., Diviš P., Kopel P., Veselý R., Pavliňáková V., Adam V., Vojtová L. Synergistic Effect of Chitosan and Selenium Nanoparticles on Biodegradation and Antibacterial Properties of Collagenous Scaffolds Designed for Infected Burn Wounds. Nanomaterials. 2020;10:1971. doi: 10.3390/nano10101971. PubMed DOI PMC
Nečas A., Plánka L., Srnec R., Crha M., Hlučilová J., Klíma J., Starý D., Křen L., Amler E., Vojtová L., et al. Quality of Newly Formed Cartilaginous Tissue in Defects of Articular Surface after Transplantation of Mesenchymal Stem Cells in a Composite Scaffold Based on Collagen I with Chitosan Micro-and Nanofibres. Physiol. Res. 2010;59:605–614. doi: 10.33549/physiolres.931725. PubMed DOI
Peng L., Xiang R.C., Jia W.W., Dong X.X., Wang G.E. Preparation and evaluation of porous chitosan/collagen scaffolds for periodontal tissue engineering. J. Bioact. Compat. Polym. 2006;21:207–220. doi: 10.1177/0883911506065100. DOI
Tong C., Hao H., Xia L., Liu J., Ti D., Dong L., Hou Q., Song H., Liu H., Zhao Y., et al. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Wound Repair Regen. 2016;24:45–56. doi: 10.1111/wrr.12369. PubMed DOI
Croisier F., Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013;49:780–792. doi: 10.1016/j.eurpolymj.2012.12.009. DOI
Muchová J., Hearnden V., Michlovská L., Vištejnová L., Zavad’áková A., Šmerková K., Kočiová S., Adam V., Kopel P., Vojtová L. Mutual influence of selenium nanoparticles and FGF2-STAB® on biocompatible properties of collagen/chitosan 3D scaffolds: In vitro and ex ovo evaluation. J. Nanobiotechnol. 2021;19:103. doi: 10.1186/s12951-021-00849-w. PubMed DOI PMC
Dolivo D.M., Larson S.A., Dominko T. Fibroblast Growth Factor 2 as an Antifibrotic: Antagonism of Myofibroblast Differentiation and Suppression of Pro-Fibrotic Gene Expression. Cytokine Growth Factor Rev. 2017;38:49–58. doi: 10.1016/j.cytogfr.2017.09.003. PubMed DOI PMC
Takei Y., Minamizaki T., Yoshiko Y. Functional Diversity of Fibroblast Growth Factors in Bone Formation. Int. J. Endocrinol. 2015;2015:1–12. doi: 10.1155/2015/729352. PubMed DOI PMC
Acharya A.N., Coates H., Tavora-Vièira D., Rajan G.P. A pilot study investigating basic fibroblast growth factor for the repair of chronic tympanic membrane perforations in pediatric patients. Int. J. Pediatr. Otorhinolaryngol. 2015;79:332–335. doi: 10.1016/j.ijporl.2014.12.014. PubMed DOI
Lou Z., Lou Z. Regeneration of Traumatic Tympanic Membrane Perforations. Exp. Laryngol. Otol. 2017;131:564. doi: 10.1017/S0022215117001001. PubMed DOI
Coffin J.D., Homer-Bouthiette C., Hurley M.M. Fibroblast Growth Factor 2 and Its Receptors in Bone Biology and Disease. J. Endocr. Soc. 2018;2:657–671. doi: 10.1210/js.2018-00105. PubMed DOI PMC
Momose T., Miyaji H., Kato A., Ogawa K., Yoshida T., Nishida E., Murakami S., Kosen Y., Sugaya T., Kawanami M. Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog. Open Dent. J. 2016;10:347–359. doi: 10.2174/1874210601610010347. PubMed DOI PMC
Yoshida T., Miyaji H., Otani K., Inoue K., Nakane K., Nishimura H., Ibara A., Shimada A., Ogawa K., Nishida E., et al. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. J. Periodontal Res. 2015;50:265–273. doi: 10.1111/jre.12206. PubMed DOI
Yang W., Cao Y., Zhang Z., Du F., Shi Y., Li X., Zhang Q. Targeted delivery of FGF2 to subchondral bone enhanced the repair of articular cartilage defect. Acta Biomater. 2018;69:170–182. doi: 10.1016/j.actbio.2018.01.039. PubMed DOI
Washio A., Teshima H., Yokota K., Kitamura C., Tabata Y. Preparation of gelatin hydrogel sponges incorporating bioactive glasses capable for the controlled release of fibroblast growth factor-2. J. Biomater. Sci. Polym. Ed. 2019;30:49–63. doi: 10.1080/09205063.2018.1544474. PubMed DOI
Fayazzadeh E., Yavarifar H., Rafie S.R., Motamed S., Sotoudeh Anvari M., Boroumand M.A. Fibroblast Growth Factor-1 vs. Fibroblast Growth Factor-2 in Ischemic Skin Flap Survival in a Rat Animal Model. World J. Plast. Surg. 2016;5:274–279. PubMed PMC
Lin W., Xiang L.-J., Shi H.-X., Zhang J., Jiang L., Cai P., Lin Z.-L., Lin B.-B., Huang Y., Zhang H.-L., et al. Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice. Biomed. Res. Int. 2015;2015:1–9. doi: 10.1155/2015/730139. PubMed DOI PMC
Ono I. A Study on the Alterations in Skin Viscoelasticity before and after an Intradermal Administration of Growth Factor. J. Cutan. Aesthet. Surg. 2011;4:98–104. doi: 10.4103/0974-2077.85022. PubMed DOI PMC
Buchtova M., Chaloupkova R., Zakrzewska M., Vesela I., Cela P., Barathova J., Gudernova I., Zajickova R., Trantirek L., Martin J., et al. Instability restricts signaling of multiple fibroblast growth factors. Cell. Mol. Life Sci. 2015;72:2445–2459. doi: 10.1007/s00018-015-1856-8. PubMed DOI PMC
Dvorak P., Bednar D., Vanacek P., Balek L., Eiselleova L., Stepankova V., Sebestova E., Kunova Bosakova M., Konecna Z., Mazurenko S., et al. Computer-assisted engineering of hyperstable fibroblast growth factor 2. Biotechnol. Bioeng. 2018;115:850–862. doi: 10.1002/bit.26531. PubMed DOI
Prosecká E., Rampichová M., Litvinec A., Tonar Z., Králíčková M., Vojtová L., Kochová P., Plencner M., Buzgo M., Míčková A., et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. Part A. 2015;103:671–682. doi: 10.1002/jbm.a.35216. PubMed DOI
Vokurka J., Hromcik F., Faldyna M., Gopfert E., Vicenova M., Pozarova L., Holla L.I. Platelet-rich plasma, platelet-rich fibrin, and enamel matrix derivative for oral mucosal wound healing. Pol. J. Vet. Sci. 2020;23:169–176. doi: 10.24425/pjvs.2020.132762. PubMed DOI
Hromcik F., Vokurka J., Gopfert E., Faldyna M., Hermanova M., Kyr M., Vicenova M., Izakovicova Holla L. Granulation tissue enriched by aspirin and omega-3 fatty acids in healing experimental periodontal lesion. Biomed. Pap. 2020 doi: 10.5507/bp.2020.003. PubMed DOI
Primer-BLAST National Center for Biotechnology Information, Pike Bethesda, MD, USA. [(accessed on 27 January 2021)]; Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/
Zelnickova P., Matiasovic J., Pavlova B., Kudlackova H., Kovaru F., Faldyna M. Quantitative nitric oxide production by rat, bovine and porcine macrophages. Nitric Oxide. 2008;19:36–41. doi: 10.1016/j.niox.2008.04.001. PubMed DOI
Prosecká E., Rampichová M., Vojtová L., Tvrdík D., Melčáková Š., Juhasová J., Plencner M., Jakubová R., Jančář J., Nečas A., et al. Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. J. Biomed. Mater. Res. Part A. 2011;99A:307–315. doi: 10.1002/jbm.a.33189. PubMed DOI
Zidek J., Vojtova L., Abdel-Mohsen A.M., Chmelik J., Zikmund T., Brtnikova J., Jakubicek R., Zubal L., Jan J., Kaiser J. Accurate micro-computed tomography imaging of pore spaces in collagen-based scaffold. J. Mater. Sci. Mater. Med. 2016;27:110. doi: 10.1007/s10856-016-5717-2. PubMed DOI
Bočková J., Vojtová L., Přikryl R., Čechal J., Jančář J. Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications. Chem. Pap. 2008;62:580–588. doi: 10.2478/s11696-008-0076-1. DOI
Jančář J., Vojtová L., Nečas A., Srnec R., Urbanová L., Crha M. Stability of collagen scaffold implants for animals with iatrogenic articular cartilage defects. Acta Vet-Brno. 2009;78:643–648. doi: 10.2754/avb200978040643. DOI
Andreopoulos F.M., Persaud I. Delivery of basic fibroblast growth factor (bFGF) from photoresponsive hydrogel scaffolds. Biomaterials. 2006;27:2468–2476. doi: 10.1016/j.biomaterials.2005.11.019. PubMed DOI
Cai S., Liu Y., Xiao Z.S., Prestwich G.D. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials. 2005;26:6054–6067. doi: 10.1016/j.biomaterials.2005.03.012. PubMed DOI
Chen G., Gulbranson D.R., Yu P., Hou Z., Thomson J.A. Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells. 2012;30:623–630. doi: 10.1002/stem.1021. PubMed DOI PMC
Benington L., Rajan G., Locher C., Lim L.Y. Fibroblast growth factor 2—A review of stabilisation approaches for clinical applications. Pharmaceutics. 2020;12:508. doi: 10.3390/pharmaceutics12060508. PubMed DOI PMC
Tiede S., Ernst N., Bayat A., Paus R., Tronnier V., Zechel C. Basic fibroblast growth factor: A potential new therapeutic tool for the treatment of hypertrophic and keloid scars. Ann. Anat. 2009;191:33–44. doi: 10.1016/j.aanat.2008.10.001. PubMed DOI
Akita S., Akino K., Hirano A. Basic Fibroblast Growth Factor in Scarless Wound Healing. Adv. Wound Care. 2013;2:44–49. doi: 10.1089/wound.2011.0324. PubMed DOI PMC
Wang Y., Liu X.C., Zhao J., Kong X.R., Shi R.F., Zhao X.B., Song C.X., Liu T.J., Lu F. Degradable PLGA scaffolds with basic fibroblast growth factor: Experimental studies in myocardial revascularization. Tex. Heart Inst. J. 2009;36:89–97. PubMed PMC
Koledova Z., Sumbal J., Rabata A., de La Bourdonnaye G., Chaloupkova R., Hrdlickova B., Damborsky J., Stepankova V. Fibroblast Growth Factor 2 Protein Stability Provides Decreased Dependence on Heparin for Induction of FGFR Signaling and Alters ERK Signaling Dynamics. Front. Cell Dev. Biol. 2019;7:331. doi: 10.3389/fcell.2019.00331. PubMed DOI PMC
Ludwig T.E., Levenstein M.E., Jones J.M., Berggren W.T., Mitchen E.R., Frane J.L., Crandall L.J., Daigh C.A., Conard K.R., Piekarczyk M.S., et al. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 2006;24:185–187. doi: 10.1038/nbt1177. PubMed DOI
Kanematsu A., Marui A., Yamamoto S., Ozeki M., Hirano Y., Yamamoto M., Ogawa O., Komeda M., Tabata Y. Type I collagen can function as a reservoir of basic fibroblast growth factor. J. Control Release. 2004;99:281–292. doi: 10.1016/j.jconrel.2004.07.008. PubMed DOI
Munisso M.C., Morimoto N., Notodihardjo S.C., Mitsui T., Kakudo N., Kusumoto K. Collagen/Gelatin Sponges (CGSs) Provide Both Protection and Release of bFGF: An in Vitro Study. Biomed. Res. Int. 2019;2019 doi: 10.1155/2019/4016351. PubMed DOI PMC
Wu J.M., Xu Y.Y., Li Z.H., Yuan X.Y., Wang P.F., Zhang X.Z., Liu Y.Q., Guan J., Guo Y., Li R.X., et al. Heparin-functionalized collagen matrices with controlled release of basic fibroblast growth factor. J. Mater. Sci. Mater. Med. 2011;22:107–114. doi: 10.1007/s10856-010-4176-4. PubMed DOI
Prasadh S., Wong R.C.W. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci. Int. 2018;15:48–55. doi: 10.1016/S1348-8643(18)30005-3. DOI
Chen Z., Wei B., Mo X., Lim C.T., Ramakrishna S., Cui F. Mechanical properties of electrospun collagen-chitosan complex single fibers and membrane. Mater. Sci. Eng. C. 2009;29:2428–2435. doi: 10.1016/j.msec.2009.07.006. DOI
Susanto A., Satari M.H., Abbas B., Koesoemowidodo R.S.A., Cahyanto A. Fabrication and Characterization of Chitosan-Collagen Membrane from Barramundi (Lates Calcarifer) Scales for Guided Tissue Regeneration. Eur. J. Dent. 2019;13:370–375. doi: 10.1055/s-0039-1698610. PubMed DOI PMC
Mahmoud A.A., Salama A.H. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: Preparation, evaluation and in-vivo wound healing assessment. Eur. J. Pharm. Sci. 2016;83:155–165. doi: 10.1016/j.ejps.2015.12.026. PubMed DOI
Rodríguez-Vázquez M., Vega-Ruiz B., Ramos-Zúñiga R., Saldaña-Koppel D.A., Quiñones-Olvera L.F. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. Biomed. Res. Int. 2015;2015:821279. doi: 10.1155/2015/821279. PubMed DOI PMC
Sionkowska A., Kaczmarek B., Gadzala-Kopciuch R. Gentamicin release from chitosan and collagen composites. J. Drug Deliv. Sci. Technol. 2016;35:353–359. doi: 10.1016/j.jddst.2016.09.001. DOI
Martínez A., Blanco M.D., Davidenko N., Cameron R.E., Martínez A. Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition 1 and different crosslinking agents on scaffold properties. Carbohydr. Polym. 2015;132:606–619. doi: 10.1016/j.carbpol.2015.06.084. PubMed DOI
Rezaii M., Oryan S., Javeri A. Curcumin nanoparticles incorporated collagen-chitosan scaffold promotes cutaneous wound healing through regulation of TGF-β1/Smad7 gene expression. Mater. Sci. Eng. C. 2019;98:347–357. doi: 10.1016/j.msec.2018.12.143. PubMed DOI
Litwin M., Radwańska A., Paprocka M., Kieda C., Dobosz T., Witkiewicz W., Baczyńska D. The role of FGF2 in migration and tubulogenesis of endothelial progenitor cells in relation to pro-angiogenic growth factor production. Mol. Cell. Biochem. 2015;410:131–142. doi: 10.1007/s11010-015-2545-5. PubMed DOI
Pepper M.S., Ferrara N., Orci L., Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 1992;189:824–831. doi: 10.1016/0006-291X(92)92277-5. PubMed DOI
Seghezzi G., Patel S., Ren C.J., Gualandris A., Pintucci G., Robbins E.S., Shapiro R.L., Galloway A.C., Rifkin D.B., Mignatti P. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: An autocrine mechanism contributing to angiogenesis. J. Cell Biol. 1998;141:1659–1673. doi: 10.1083/jcb.141.7.1659. PubMed DOI PMC
Yun Y.R., Lee S., Jeon E., Kang W., Kim K.H., Kim H.W., Jang J.H. Fibroblast growth factor 2-functionalized collagen matrices for skeletal muscle tissue engineering. Biotechnol. Lett. 2012;34:771–778. doi: 10.1007/s10529-011-0812-4. PubMed DOI
Marks M.G., Doillon C., Silvert F.H. Effects of fibroblasts and basic fibroblast growth factor on facilitation of dermal wound healing by type I collagen matrices. J. Biomed. Mater. Res. 1991;25:683–696. doi: 10.1002/jbm.820250510. PubMed DOI
Judith R., Nithya M., Rose C., Mandal A.B. Application of a PDGF-containing novel gel for cutaneous wound healing. Life Sci. 2010;87:1–8. doi: 10.1016/j.lfs.2010.05.003. PubMed DOI
Kim S.Y., Nair M.G. Macrophages in wound healing: Activation and plasticity. Immunol. Cell Biol. 2019;97:258–267. doi: 10.1111/imcb.12236. PubMed DOI PMC
Shrivastava R., Shukla N. Attributes of alternatively activated (M2) macrophages. Life Sci. 2019;224:222–231. doi: 10.1016/j.lfs.2019.03.062. PubMed DOI
Brew K., Dinakarpandian D., Nagase H. Tissue inhibitors of metalloproteinases: Evolution, structure and function. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2000;1477:267–283. doi: 10.1016/S0167-4838(99)00279-4. PubMed DOI
Bertaux B., Hornebeck W., Eisen A.Z., Dubertret L. Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases. J. Investig. Dermatol. 1991;97:679–685. doi: 10.1111/1523-1747.ep12483956. PubMed DOI
Hayakawa T., Yamashita K., Tanzawa K., Uchijima E., Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells A possible new growth factor in serum. FEBS Lett. 1992;298:29–32. doi: 10.1016/0014-5793(92)80015-9. PubMed DOI
Holmes K., Roberts O.L., Thomas A.M., Cross M.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal. 2007;19:2003–2012. doi: 10.1016/j.cellsig.2007.05.013. PubMed DOI
Jetten N., Verbruggen S., Gijbels M.J., Post M.J., De Winther M.P.J., Donners M.M.P.C. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17:109–118. doi: 10.1007/s10456-013-9381-6. PubMed DOI
Singla D.K., Singla R.D., Abdelli L.S., Glass C. Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart. PLoS ONE. 2015;10:e0120739. doi: 10.1371/journal.pone.0120739. PubMed DOI PMC
Im J.H., Buzzelli J.N., Jones K., Franchini F., Gordon-Weeks A., Markelc B., Chen J., Kim J., Cao Y., Muschel R.J. FGF2 alters macrophage polarization, tumour immunity and growth and can be targeted during radiotherapy. Nat. Commun. 2020;11:1–14. doi: 10.1038/s41467-020-17914-x. PubMed DOI PMC
Replica-mold nanopatterned PHEMA hydrogel surfaces for ophthalmic applications